Josep Sardanyés, investigador principal del grup de Biologia Matemàtica i Computacional, va impartir una xerrada divulgativa sobre la teoria del caos a estudiants de tercer i quart d’ESO de l’Institut Pla Marcell (Cardedeu) amb el títol “Què és el caos?”. Durant la xerrada, es van tractar temes com ara l’ús de les matemàtiques, la no-linealitat, la dinàmica (determinista i aleatòria), la introducció de la probabilitat, les equacions diferencials com a regla del joc en l’estudi de l’evolució (que usarien més tard per crear models ells mateixos), fractals i, com a exemple del caos, el pèndol doble.

La jornada va començar amb la pregunta “Per a què serveixen les matemàtiques?” i progressivament es van explorar idees com “per comptar”, “per construir edificis”. Amb l’ajuda del Josep, els estudiants es van endinsar en com les matemàtiques s’utilitzen per construir circuits electrònics, com els dels telèfons mòbils, que tenen una antena fractal, ja que reben ones de moltes freqüències diferents. També es va parlar de com les matemàtiques són emprades per llançar coets com en la missió Apol·lo i, per exemple, per investigar, els processos biològics. Va destacar que hi ha matemàtiques bàsiques que permeten construir coses molt útils, com la “$25,000,000,000 eigenvector”, la matriu que determina l’algoritme de cerca de Google.

Es va introduir el concepte de predictibilitat: què és predictible? Per exemple, els terratrèmols ho són? Doncs no, no els podem predir, però podem conèixer la probabilitat d’un terratrèmol cada cert temps t (període de retorn). També es va parlar sobre la dinàmica. El determinisme és “allò que jo puc determinar”, d’acord amb un dels estudiants. Per exemple, l’òrbita del cometa Halley, el qual és un sistema no lineal predictible.

Què és un punt d’equilibri? Un punt del qual ja no et mous. I com podem calcular aquests punts d’equilibri? Si volem estudiar aquell punt del qual ja no et mous, és a dir, que no hi hagi canvi en el moviment, la taxa de canvi ha de ser 0, per tant, dx/dt=0.

Per exemple, un pèndol en té dos: el de dalt, el qual quan el moc infinitesimalment més enllà del punt d’equilibri (faig una petita pertorbació), cau cap al punt d’equilibri de sota, de forma que és un punt inestable, i el de sota, el qual tot i que el pertorbi es manté estable.

Ara era el torn de la probabilitat: La Regla de Laplace o Regla de successió va ser presentada. Aquesta regla estableix que, donat un esdeveniment, anomenat A, la probabilitat que es produeixi és:

P(A)= nombre de casos favorables/ nombre de casos totals.

Com a exemple, el Josep va organitzar un concurs en què, si en cinc llançaments consecutius sortia cara, un dels alumnes voluntaris podia endur-se la moneda. Donat que la probabilitat d’aconseguir-ho era (1/2)5=0.03125, la pèrdua de diners no era probablement preocupant. La probabilitat té un gran impacte en els processos estocàstics, els quals inclouen elements de soroll, que no ha de ser confós amb el soroll acústic, sinó que es refereix a aquells factors que afecten la variabilitat dels resultats.

A continuació, la discussió es va centrar en la naturalesa del temps: ¿és continu o discret? La resposta depèn del fenomen a estudiar. Per exemple, es pot considerar com a variable contínua en casos com reaccions químiques, o com a variable discreta en situacions com la vida d’un insecte, que es pot estudiar en etapes. Sistemes discrets poden ser abordats amb:

X(n+1)​=f(xn​), xn​=f(x(n−1)​).

A continuació, es va estudiar el concepte de no-linealitat, en què la totalitat no és equivalent a la suma de les parts. Es va fer una analogia amb la combinació de dues cançons que, tot i ser agradables per separat, juntes no generaven la “suma” d’aquesta bellesa i fins i tot podien resultar desagradables [veure àudios].

Seguidament, es va introduir el primer model matemàtic dels alumnes en una dimensió (1D): com creix una població de bacteris amb una concentració x. L’equació definida va ser dx/dt​=f(x,t)=αxαx2=αx(1−x), on el terme αx2 introdueix la competència pels recursos (espai, nutrients, etc). Aquesta és una equació de tipus logístic amb el temps com a variable contínua. Es van identificar els punts d’equilibri com x*=0 i x*=1, i la seva estabilitat depenia del valor de α.

inestable estable
α > 0 X*=0 X
α > 0 X*=1 X
α < 0 X*=0 X
α < 0 X*=1 X

Es va continuar amb un model en dues dimensions (2D) de preses (x) i depredadors (y), amb les equacions dxdt​=αxβxy i dydt​=βxyαy. Les gràfiques de x i y en funció del temps van mostrar comportaments oscil.latoris amb un espai de fase que consistia en cercles centrats, anomenats centres.

Per concloure, es van abordar l’atractor de Lorentz, que destaquen la impossibilitat matemàtica de predir el clima de manera exacta, ja que és molt sensible a les condicions inicials i deriva cap al caos determinista.

S’explorà la idea de dimensions no naturals, com ara una dimensió de valor 0.4, amb l’exemple del conjunt de Cantor generat en la divisió successiva d’una recta.

Finalment, es va exposar un exemple de caos mitjançant el pèndol doble, on es va ressaltar que si el sistema no fos caòtic, tirant els dos pèndols simultàniament, haurien de seguir les mateixes trajectòries, cosa que no va succeir.

Aquestes activitats de divulgació tenen com a finalitat motivar les vocacions científiques, especialment entre els joves. La sessió que en Josep ha realitzat és ja la quarta d’aquest tipus, consolidant així el seu compromís amb la difusió del coneixement científic. Amb aquestes xerrades, busca despertar la curiositat i l’interès dels estudiants, proporcionant-los una visió fascinant del món de les matemàtiques i la seva aplicació en diferents àmbits. La seva dedicació en aquesta tasca contribueix a la formació de possibles futurs científics, inspirant-los a explorar els secrets que la matemàtica ofereix.

 

Com a activitats per a pensar:

  • Quina seria la probabilitat de treure potències de 2 en un dau de 6 cares? (Si voleu saber la resposta, haurem de sumar una lletra de l’alfabet català a la següent resposta, a això li diem el Xifratge d’en Cèsar en Criptografia).

IJ IB USFT QPUFODJFT EF EPT FO VO EBV EF TJT DBSFT: FM V, FM EPT J FM RVBUSF. FT B EJS, EPT FMFWBU B AFSP EPT FMFWBU B V J EPT FMFWBU B EPT QFS UBOU TPO USFT DBTPT GBWPSBCMFT FOUSF TJT UPUBMT. BJYJ MB QSPCBCJMJUBU EFNBOBEB FT 0.5.

Per a comprovar la resposta, podeu anar al següent link i usar Desplaçament 1: http://www.xtec.cat/~jjareno/activitats/criptologia/cesar.htm

  • Sigui n el nombre de tirades fetes, quina creus que és la probabilitat de treure cara n vegades en n tirades?

MB QSPCBCJMJUBU TFSJB EF (1/2)^n KB RVF QFS DBEB UJSBEB MB QSPCBCJMJUBU FT EF USFVSF DBSB FT EF  ½ JEFNBOBS RVF B UPUFT MB UJSBEFT TJHVJ DBSB FT JNQPTBS MB QSPCBCJMJUBU EF  ½ B DBEB UJSBEB.

Subscribe for more CRM News

Stay updated to our mailing list to get the lastest information about CRM activities.

CRM Comm

Pau Varela & Mariona Fucho

CRMComm@crm.cat

 

Eva Miranda to Deliver Prestigious Nachdiplom Lecture at ETH Zurich

Eva Miranda to Deliver Prestigious Nachdiplom Lecture at ETH Zurich

Eva Miranda, a Full Professor at the Universitat Politècnica de Catalunya and affiliated researcher at CRM, has been invited to give a lecture in the Nachdiplom series at ETH Zurich. Her lecture, titled “Singular Symplectic Manifolds,” is scheduled for the fall of 2025 and is expected to delve into the intricacies of this complex topic, a subject she has extensively researched since 2009.

We Welcome 6 New Additions to the CRM Team

We Welcome 6 New Additions to the CRM Team

The Centre de Recerca Matemàtica (CRM) welcomes a dynamic group of members, including Jordi Castellví in Combinatorics, Mariona Fucho Rius as the new Scientific Comm Officer, Alexandre Garcia-Duran in Neuroscience, Pablo Nicolás in Algebra and Geometry, Amaia Vielba in Computational Biology, and Søren István Adorján Dyhr in fluid dynamics. Each brings a unique blend of expertise and interdisciplinary focus, enhancing CRM’s research landscape in mathematics and its applications.

Doctoral INPhINIT Fellowships – Incoming Call 2024

Doctoral INPhINIT Fellowships – Incoming Call 2024

The CRM is offering 9 positions as part of the INPhINIT Incoming Call 2024 granted by ''la Caixa'' Foundation.Application Deadline: 24 January 2024, 2 pm (Peninsular Spain time)The "la Caixa" Foundation is offering 30 doctoral fellowships for...

The CRM Signs the CoARA Agreement

The CRM Signs the CoARA Agreement

Expanding from earlier initiatives like the San Francisco Declaration on Research Assessment (DORA) or the Leiden Manifesto, CoARA widens its scope beyond a simple statement of purpose. It actively encourages organizations to pledge their commitment to overhaul their assessment methods within a defined time frame, spanning from 2022 to 2027.

Matemàtiques per a la perfecta cocció de la carn

Matemàtiques per a la perfecta cocció de la carn

La Unitat de Transferència del Coneixement del CRM col·labora en un projecte que aplica models matemàtics per proporcionar un control en temps real per a la cocció de la carn, assegurant una cocció uniforme i al punt desitjat.  A la cuina, com a la...