
Eva Miranda, professor of mathematics at the Universitat Politècnica de Catalunya (UPC) and affiliated researcher at the Centre de Recerca Matemàtica (CRM), is one of the featured experts in an article by the international publication Quanta Magazine that explores one of the most profound questions in modern science: are there limits to what we can ever know about the physical world?
The article, titled Next-Level Chaos Traces the True Limit of Predictability and published on March 7th, examines how chaos theory, originally concerned with systems sensitive to initial conditions, is evolving into a more radical conceptual landscape: undecidability. If classical chaos already shattered our hopes of perfect prediction by showing that small differences in starting conditions can lead to wildly different outcomes, undecidability goes a step further. It does not stem from imprecision, but from the intrinsic structure of certain systems that defy computation entirely.
As Miranda explains, classical chaos is the realm of the butterfly and the hurricane, a world where evolution is deterministic but practically unpredictable. “It’s the dance of shadows,” she says, “a choreography of dynamical systems that elude our grasp not because they lack order, but because that order escapes us.” Undecidability, by contrast, emerges when a physical system (a fluid, a planetary orbit, a mechanical structure) is so rich that it can encode any computation, like a Turing machine. And when that happens, the halting problem enters the picture: no algorithm can determine whether the system will evolve in one way or another.
“Undecidability is something else entirely; colder, more philosophical, and perhaps more disquieting,” she adds. “It’s a closed door we may knock on forever without knowing if it will ever open.”
Within this context, Miranda and her collaborators, Robert Cardona, Daniel Peralta-Salas, and Francisco Presas, designed a theoretical fluid system that encodes the operations of a Turing machine. In this setup, a particle (symbolically represented by a rubber duck) follows a trajectory that simulates a computation. Predicting whether the duck reaches a certain area is equivalent to solving the halting problem, a provably unresolvable problem. This means that, in principle, even with perfect knowledge of the system’s initial state, no definitive prediction can be made.
“Some systems are so complex, so capable of encoding processes, that they simulate any computation,” Miranda explains. “And when that happens, we enter the realm of problems that are not difficult, but impossible.”
Beyond the sensitivity to initial conditions lies a deeper void. “Some systems contain, at their core, regions of mathematical silence,” she says. “It is precisely this silence, this space where even logic cannot advance, that fascinates us. As Emily Dickinson wrote: ‘The brain is wider than the sky.’ But even that brain, reaching out through conjectures, proofs, and intuitions, sometimes meets skies that will never be crossed. And perhaps it is in those limits that we truly begin to understand.”
This contribution is part of a broader intellectual shift, one that Quanta Magazine has chronicled in its Quanta Fundamentals series. In a related piece, How Chaos Theory Makes the Future Unpredictable (March 31, 2025), the magazine revisits the origins of chaos theory, from Edward Lorenz’s butterfly effect to more recent understandings of nonlinear dynamics in fields ranging from meteorology to orbital mechanics.
Miranda sees the growing presence of undecidability in physics not as a limitation, but as a transformation. “The 20th century already cracked some certainties with relativity and quantum mechanics,” she says. “But now the shift is subtler, more internal. It doesn’t come from the lab or the telescope, but from a change in perspective: we’re beginning to suspect that some questions don’t just lack answers, they lack meaning within our systems.”
She highlights that these logical boundaries, long familiar to mathematicians, are now surfacing in concrete physical contexts: “In celestial mechanics, fluid evolution, and Hamiltonian systems with symmetries, we are beginning to encounter questions that may be undecidable, not because we lack data, but because of the system’s internal structure.”
In this changing landscape, Miranda also underscores the importance of high-level science communication. “Magazines like Quanta are a necessary exception in the midst of all the noise,” she says. She believes such platforms bridge the artificial divide between science and culture: “They remind us that doing mathematics or physics is also a way of seeing the world, of listening to it, of translating it. Communicating it well doesn’t mean watering it down, it means sharing its essence.”
|
CRM CommPau Varela
|
Mathematics Beneath the Tarmac: CRM’s Role in Enhance Europe
The Centre de Recerca Matemàtica (CRM) participates in Enhance Europe. This European research project explores how solar heat from asphalt can be harvested and reused as thermal energy in cities. Through its Knowledge Transfer Unit, CRM leads the...
Talent jove al CRM: tres estudiants del programa Joves i Ciència fan estada a la Unitat de Transferència
D'esquerra a dreta: Lucía Escudero, Clara Castelló, Marc Homs-Dones, Roger Carrillo, Manel Mas, Maria Borrell i David Romero. Per segon any, la Unitat de Transferència del CRM ha acollit tres estudiants del programa Joves i Ciència de la Fundació...
BAMB! 2025: A School for Models, Minds, and the Messy Art of Behavior
BAMB! 2025 brought together thirty early-career researchers in Barcelona for an intense nine-day training on model-based analysis of behaviour. Organised by the Centre de Recerca Matemàtica with top international researchers, the school combined...
Barcelona, Stochastic Analysis and Quantitative Finance: Highlights of the 2025 Summer School
The 5th edition of the Barcelona Summer School on Stochastic Analysis and Quantitative Finance took place from July 21 to 25, 2025, at the Centre de Recerca Matemàtica (CRM), marking the revival of an academic tradition interrupted by the pandemic. The program offered...
Scientific vision and dialogue: the SAB meets at CRM to advise on future directions
The Scientific Advisory Board of the CRM met in July 2025 to advise on the centre’s scientific direction and review key aspects of its activity. In addition to looking at strategic plans and recruitment priorities, Board members took part in a...
Mathematics Illuminates Metabolic Mysteries: Understanding SDH-b Dysfunction in Pheochromocytoma
A mathematical model developed by researchers from the University of Birmingham, Queen Mary University of London, and the Centre de Recerca Matemàtica reveals how chromaffin cells adapt to the loss of SDH-b—a key metabolic enzyme subunit whose dysfunction is linked to...
ESGI 2025: Mathematics Meets Industry at the CRM
Over the course of five days, ESGI 2025 turned the CRM into a collaborative lab where mathematics tackled questions raised by industry. From safer autonomous driving systems to smart water resource allocation and the financial uncertainties of wind...
Quatre noves figures s’incorporen a l’exposició del CRM sobre dones matemàtiques
Aquest estiu, el CRM ha ampliat fins a tretze els roll ups de la seva exposició sobre dones matemàtiques, incorporant quatre noves figures del context espanyol i català. La mostra aprofita l’afluència de visitants al centre per visibilitzar...
From Real Problems to Mathematical Applications: A Chronicle of the XI Iberian Modeling Week
From July 7 to 11, the CRM became a hub for collaborative problem-solving during the XI Iberian Modeling Week, an international training initiative that brought together nearly 30 students from diverse academic backgrounds to tackle real-world...
The Way DNA Folds Might Help Explain How Cells Decide What to Become
A new study by researchers from the University of Edinburgh, Oxford, and CRM reveals how the 3D structure of DNA and a microscopic molecular tug-of-war shape the identity of every cell in our...
The CRM hosts a new edition of the Barcelona Introduction to Mathematical Research summer school
From June 30 to July 25, 2025, the CRM is organising a new edition of the Barcelona Introduction to Mathematical Research (BIMR), a summer school hosted at the Universitat Autònoma de Barcelona. The programme brings together 30 undergraduate...
Niclas Rieger defends his PhD thesis on data-driven climate analysis and marine pollution
Niclas Rieger defended his PhD thesis at the Institut de Ciències del Mar, culminating a research journey focused on extracting insights from both massive climate datasets and scarce environmental observations. Developed within the European CAFE...