A l’inici de la pandèmia, en Joachim Kock (CRM-UAB) va començar a experimentar amb models epidemiològics. Inesperadament va fer un descobriment matemàtic que el va portar a solucionar un problema d’informàtica teòrica obert des dels anys vuitanta. El seu article amb el resultat acaba de ser publicat a la prestigiosa revista d’informàtica Journal of the ACM (Association for Computing Machinery).
La COVID i les xarxes de Petri
Un dels models matemàtics més simples i més utilitzats per a descriure epidèmies és el model SIR. Aquest model divideix la població en tres grups (o compartiments): les persones sanes (S), les persones infectades (I) i les persones recuperades i per tant immunes (R). El model estipula que hi ha dues transicions possibles entre els compartiments: la primera té lloc quan una persona sana es troba amb una d’infectada, i el resultat és que totes dues esdevenen infectades. L’altra transició té lloc quan una persona infectada es recupera.
Les relacions entre els compartiments i les transicions es poden visualitzar amb la figura següent, que és un exemple d’una xarxa de Petri:
Els cercles representen els compartiments, els quadrats representen les transicions possibles i les fletxes enllacen els compartiments que participen en les transicions. El fet que dues persones resultin infectades en la primera transició s’indica a la xarxa de Petri amb el pes 2 a la fletxa corresponent.
Per utilitzar la xarxa de Petri i predir l’evolució de contagis i recuperacions en una situació real, són necessaris dos paràmetres que indiquen amb quina taxa s’efectuen les transicions i també cal conèixer la distribució inicial de persones. De l’estimació d’aquests paràmetres se n’encarreguen investigadors dels camps de la medicina i de l’estadística. Llavors, a partir de la xarxa i dels paràmetres, s’escriuen unes equacions diferencials les solucions de les quals descriuen l’evolució dels elements de cada compartiment.
Les xarxes de Petri tenen el seu origen en la química. Van ser inventades per Carl Adam Petri el 1939 quan tenia només 13 anys. Originalment, els compartiments eren concentracions de substàncies químiques en una solució i les transicions eren reaccions químiques. Mica en mica les xarxes de Petri van anar trobant usos en altres camps de modelització d’evolucions, com ara l’evolució de poblacions d’animals en circuits ecològics. Quan s’utilitza el model SIR en epidemiologia, en realitat els compartiments S, I, i R s’interpreten com a concentracions, i el model descriu com evolucionen.
A l’inici de la pandèmia, quan J. Kock va començar a experimentar amb modelització de la COVID-19, volia tractar a les persones del model com a individus, enlloc de com a concentracions. Aquesta idea la va tenir a arrel dels seus coneixements en informàtica teòrica.
Computació concurrent i el problema de semàntiques
En informàtica teòrica les xarxes de Petri s’utilitzen d’una manera diferent, no amb paràmetres continus i equacions diferencials sinó amb eines de matemàtica discreta. Els compartiments i les transicions ja no simbolitzen concentracions i reaccions. En comptes d’això, els compartiments tenen un nombre petit de fitxes (tokens) que es mouen d’acord amb les transicions. Una transició pot disparar-se si hi ha fitxes suficients als compartiments d’entrada. Llavors aquestes fitxes es consumeixen i produeixen fitxes noves als compartiments de sortida.
Un dels usos principals de les xarxes de Petri en informàtica és com a model de computació concurrent, és a dir, descriure processos computacionals que concorren amb alguns recursos compartits (les fitxes). La teoria de la concurrència en aquest sentit tècnic també és molt important en l’estudi de cadenes de producció, distribució, logística o business modelling, entre d’altres. Hi ha molts aspectes de la computació concurrent que es poden descriure amb l’ajut de les xarxes de Petri i permeten estudiar, per exemple, si una xarxa pot funcionar indefinidament o si en algun moment haurà de parar per falta de recursos. Aquí pot continuar l’analogia amb les xarxes químiques: un procés químic, com ara una combustió, s’atura si li falta oxigen. O en el cas d’una pandèmia, s’acaba quan no hi ha més contaminats.
Per entendre el problema d’informàtica que ha resolt J. Kock cal introduir una mica de terminologia. Un estat d’una xarxa de Petri és una distribució determinada de fitxes als compartiments. Un procés d’una xarxa és essencialment passar d’un estat a un altre mitjançant disparaments de transicions. Bàsicament hi ha dues maneres de formalitzar tots aquests conceptes matemàticament amb el que s’anomena la semàntica operativa de les xarxes de Petri.
Les dues maneres són importants per a l’anàlisi de la computació concurrent ja que donen informació complementària. La primera consisteix en dir que un procés és una seqüència de disparaments. Això defineix un sistema algebraic a on es poden encadenar seqüències (si l’estat final d’una coincideix amb l’estat inicial de l’altre) per a formar seqüències més llargues. L’altra manera consisteix en considerar només la relació de causalitat en una configuració de disparaments, però sense que segueixin una seqüència necessàriament. Aquest últim és un enfocament geomètric, perquè la configuració de disparaments és formalment una funció d’un graf cap a la xarxa.
L’enfocament algebraic té avantatges per a realitzar càlculs, però no explica bé els aspectes de concurrència i de causalitat. En canvi l’enfocament geomètric explica amb claredat aquests termes però té el problema que no permet encadenar dos processos per a obtenir-ne un de més llarg ja que no hi ha una manera única d’enganxar dos grafs. Les dues semàntiques coexisteixen, però des dels anys vuitanta hi havia el problema obert de reconciliar-les. És un problema en el qual hi ha treballat molta gent, però a arrel d’uns articles publicats al voltant de l’any 2000 es considerava que el problema no podia tenir solució.
Un nou plantejament: aspectes categòrics i homotòpics
La idea de J. Kock va ser la de traçar a les persones individualment en les simulacions de la COVID-19, de manera semblant a l’ús de les xarxes de Petri en informàtica. “En retrospectiva, no va ser una bona idea des del punt de vista de l’epidemiologia”, diu J. Kock. Utilitzar models discrets no porta problemes però tampoc té avantatges respecte els models continus. Fent provatures, però, va descobrir que era impossible traçar les persones individualment, no pels grans nombres de la població si no perquè el formalisme de les xarxes de Petri no ho permet. Va trobar un obstrucció principal per a rastrejar fitxes individualitzades en una xarxa de Petri convencional i va resultar ser la mateixa obstrucció que impedia la reconciliació de les semàntiques algebraica i geomètrica.
J. Kock llavors es va embarcar en una revisió completa de la teoria de les xarxes de Petri: “Calia modificar la pròpia definició de xarxa de Petri, i la modificació té a veure amb els meus camps d’especialització, la teoria d’homotopia, la teoria de categories i la combinatòria. La modificació és molt lleugera, i pot semblar sorprenent que tingui un efecte tan gran: consisteix simplement en utilitzar fletxes paral·leles en comptes de pesos, és a dir, passar d’un nombre natural a un conjunt (de fletxes) amb aquest nombre d’elements. En teoria d’homotopia, aquest tipus de consideració és habitual.” El que faltava a les xarxes de Petri convencionals era l’accés a la informació de les simetries d’una xarxa.
Teoria d’homotopia i simetries
Originalment, la teoria d’homotopia estudiava les deformacions contínues d’objectes geomètrics, però poc a poc va esdevenir una teoria general de com objectes matemàtics es poden considerar equivalents sense ser iguals. És particularment important estudiar les situacions on dos objectes poden ser equivalents en més d’una manera, cosa que revela homotopies superiors.
Les simetries d’un objecte són maneres de ser equivalent a si mateix. Per exemple, un conjunt amb 5 elements té 5!=120 simetries, és a dir 120 maneres d’estar en bijecció amb si mateix. En canvi el nombre 5 no reflecteix aquesta estructura “superior”. Així, passar de nombres a conjunts ja és un pas vers la teoria d’homotopia.
Impacte multidisciplinari
La reconciliació de les dues semàntiques és important per a la teoria de les xarxes de Petri però no té gaire efecte en les aplicacions. De fet, és una característica important que la modificació de la definició per a gairebé totes les aplicacions sigui retrocompatible. Es poden seguir fent servir les xarxes de Petri com en els últims 30 anys.
Tot i així, el nou enfocament i la nova definició han portat a avantatges en els càlculs de les aplicacions. I, curiosament, aquests avantatges han acabat repercutint en el camp de l’epidemiologia. Patterson i els seus col·laboradors recentment han desenvolupat un mòdul de xarxes de Petri per al llenguatge de programació científica ‘Julia‘ fent servir la nova definició. El fet que aquesta definició sigui purament combinatòria (mentre que la tradicional amb els pesos és una descripció híbrida combinatòria-algebraica) ha facilitat la implementació i la interacció amb altres mòduls de Julia. Aquesta nova teoria l’han aplicat en la modelització de la COVID-19, per tant la recerca de J. Kock ha acabat tenint impacte també en línia amb la seva intenció original.
Aquest treball és un exemple de recerca interdisciplinari en varis aspectes. Fent proves per millorar els models epidemiològics, J. Kock ha acabat contribuint a la informàtica teòrica. Per altra banda, ha necessitat eines de camps diferents d’aquest per poder resoldre el problema, tals com la teoria de categories i la teoria d’homotopia. També li ha calgut tenir coneixements suficientment amplis per a poder imaginar noves interaccions entre els camps i identificar les eines adients. Finalment, ha acabat millorant models epidemiològics indirectament a través dels mòduls del llenguatge de programació Julia.
“Crec que hi ha vàries morals en aquesta història”, reflexiona J. Kock. “La primera, que les matemàtiques abstractes permeten transferir coneixements i experiència d’una ciència a una altra, a vegades de manera inesperada. Segona, que a vegades es busca una cosa i se n’acaba trobant una altra, per tant, pot ser productiu experimentar amb idees sense saber exactament a on porten.”
Referències:
Joachim Kock: Whole-grain Petri nets and processes, Journal of the ACM, vol. 70 (1), pp.1-58 (February 2023). DOI: https://doi.org/10.1145/3559103.
Altres enllaços:
Simuladors del model SIR: simulador 1 d’AiroDoctor, simulador 2 de GeoGebra.
Simulador de xarxes de Petri: https://apo.adrian-jagusch.de/#!/Sample%20Net
CRM Comm Team
Anna Drou | Pau Varela
CRMComm@crm.cat
18 anys de la Mari Paz Valero al CRM al costat de la Fundació Aura
La Mari Paz Valero va començar a treballar al CRM l'any 2005. El seu primer contacte amb el centre va ser a través de l’interès del professor emèrit i exdirector del CRM, Manel Castellet, i la Aura Fundació amb l’acompanyament del seu preparador...
CRM Researchers Are Developing a New Efficient Data Compression Method
Researchers from the Centre de Recerca Matemàtica (CRM) are working on an innovative project called DYSEDAS, which aims to develop an efficient method for storing large amounts of data using techniques from symbolic dynamical systems. The project's...
Annual Meeting of CRM’s SAB: A Conversation with Chair Robert MacKay
The CRM Scientific Advisory Board (SAB), comprising distinguished international mathematicians, held its annual meeting from July 8th to 10th, coinciding with CRM's 40th anniversary, focusing on advising CRM's strategic direction and evaluating...
CRM at the 9th European Congress of Mathematics
The 9th European Congress of Mathematics (9ECM) took place in Seville from July 15 to 19, 2024, with 1300 participants, featuring plenary lectures, invited talks, minisymposium talks, and thematic session presentations. CRM participated with...
Ten International High School Students Engage in Advanced Mathematics at CRM
The Centre de Recerca Matemàtica (CRM) hosted ten students from diverse countries during the Barcelona International Youth Science Challenge (BIYSC), engaging them in a comprehensive mathematics program that explored various facets of mathematics...
Collaboration Agreement between CRM-Montréal and CRM-Barcelona
The Centre de recherches mathématiques (CRM – Montréal) and the Centre de Recerca Matemàtica (CRM – Barcelona) began a collaborative partnership on July 1, 2024, to enhance mathematical research and knowledge exchange between Quebec, Canada, and...
4th BMS-BGSMath Junior Meeting 2024: Fostering Connections Between Young Researchers
The 4th BMS-BGSMath Junior Meeting, held from June 26-28, 2024, at the Zuse Institute Berlin, featured plenary talks, short presentations, and elevator talks, fostering dynamic exchanges between young researchers from the Berlin Mathematical...
Los Sesgos Inconscientes: Reflexiones de la catedrática Capitolina Díaz
El viernes 14 de junio, la catedrática de sociología de la Universidad de Valencia, Capitolina Díaz, abordó un tema que afecta profundamente a nuestra sociedad: los sesgos inconscientes, y en particular, en el ámbito de la investigación. Empezó...
“Mates i a xalar” a la ràdio: xerrades de matemàtiques divulgatives a les Terres de l’Ebre
“Mates i a xalar” a la ràdio: xerrades de matemàtiques divulgatives a les Terres de l’Ebre El divendres 10 de maig, un grup d’investigadors del Centre de Recerca Matemàtica, en col·laboració amb el Centre d’Estudis de la Ribera d’Ebre (CERE), van...
Hypatia 2024
El passat dilluns 3 de juny va començar l’Hypatia 2024, un curs d’estiu que es va estendre fins dijous 6 de juny. L’Hypatia és una iniciativa per formar joves investigadors i investigadores i obrir nous camps d’estudi per aquells més sèniors,...
El CRM participa un any més a la Festa de la Ciència
El CRM participa un any més a la Festa de la CiènciaEl Centre de Recerca Matemàtica (CRM) va participar en la 17a Festa de la Ciència amb dos tallers: La La Lambda: Les Matemàtiques de la Música, que va explorar la relació entre les matemàtiques i...
The CRM’s 2023 Annual Report Highlights Growth and Collaboration
The CRM's 2023 Annual Report highlights significant growth, numerous publications, and new projects, emphasizing the center's status as an international leader in mathematical research. Key achievements include the attraction of new talent through...