
POISSON DAYS
This activity is part of the
Poisson CRM Days 2022
to July 15, 2022
Registration is free but mandatory. Limited seats available, the registration will be on a first come, first served basis.
Description

Siméon-Denis Poisson, (born June 21, 1781, Pithiviers, France—died April 25, 1840, Sceaux)
As a part of the CRM-ICMAT Joint Intensive Research Programme POISSON, we are celebrating a special Poisson event at CRM during the French National Day in July 14 and 15.
PLENARY SPEAKERS & SHORT TALKS
PLENARY TALKS
On Poisson brackets and quantization
Lluís Santaló Lecturer: Alejandro Cabrera | Federal University of Rio de Janeiro
ABSTRACT
In this talk, we shall review the crucial role that Poisson brackets play in the idea of quantization and, thus, to help establish a connection between the formalisms behind classical and quantum mechanics. We shall first focus on highlighting some of the physical aspects behind these ideas and, finally, try to account for (at least part of) the corresponding wide range of ramifications in mathematics.
ABSTRACT
In this seminar we discuss the compatibility between deformation quantization and phase space reduction. More explicitly, on the classical side one can reduce (formal) Poisson structures with formal momentum maps, and on the quantum side one can reduce equivariant star products. First, we describe these reductions by morphisms of L-infinity algebras. This allows us to rephrase the “reduction commutes with quantization” problem, originally formulated in the setting of geometric quantization, in terms of L-infinity morphisms.
This is a joint project with A. Kraft and J. Schnitzer.
Poisson geometry around Poisson submanifolds
Lecturer: Rui Loja | University of Illinois at Urbana-Champaign
ABSTRACT
The point of departure of this talk is the construction of local linear models around Poisson submanifolds. I will explain that this is not always possible, and that understanding this problem requires a theory of multiplicative Ehresmann connections, which extends the well-known theory of connections on principal bundles. This talk is based on joint work with Ioan Marcut.
ABSTRACT
This talk reviews the notions of (strict) Lie 2-groups and bundle gerbes, actions of Lie 2-groups on a Lie Groupoid and its quotient. Moreover, it shows that for suitable quotients of groupoids there exists a bundle gerbe and viceversa.
ABSTRACT
Existence and classification of $b$-contact structures
Lecturer: Cédric Oms | École normale supérieure de Lyon
ABSTRACT
$b$-contact structures are a generalization of contact structures and can be seen as a Jacobi structure which is not transitive but transversally vanishing. Using the $h$-principle, we will give existence results for those structures in dimension 3. Furthermore, the overtwisted/tight dichotomy can be prescribed in each contact leaf of the Jacobi structure. Time permitting, we will classify these structures for some manifolds with a distinguished hypersurface. This is based on joint work with Robert Cardona.
SHORT TALKS
ABSTRACT
TBP
Lecturer: Alberto Cavallar | UPC – Caltech
ABSTRACT
ABSTRACT
Geometric quantization of b-symplectic toric manifolds
Lecturer: Pau Mir | Universitat Politècnica de Catalunya
ABSTRACT
We prove that Bohr-Sommerfeld quantization coincides with formal geometric quantization on symplectic toric and b-symplectic toric manifolds. Taking as starting point the construction of Guillemin-Sternberg, we prove the symplectic case. Taking into account the orientation of the connected components of the critical hypersurface Z, we introduce the Bohr-Sommerfeld quantization for b-symplectic toric manifolds and show that it is determined by its b-Delzant polytope. This is joint work with Eva Miranda and Jonathan Weitsman.
Hamiltonian mechanics and gauge theories on Lie algebroids
Lecturer: Pablo Nicolás | Universitat Politècnica de Catalunya
ABSTRACT
Many singular structures in smooth manifolds, like b-manifolds, bk-manifolds, c-manifolds and, more generally, E-manifolds, are examples of Lie algebroids. With this motivation, we define a canonical Liouville form on the prolongation of the dual of any algebroid . This provides us with a general framework for mechanics on Lie algebroids. After developing gauge theories in this setting, we generalize the hamiltonian and Poisson formulations of Wong’s equations introduced by A. Weinstein and R. Montgomery, respectively. We also present natural examples of Lie algebroid structures in general relativity and Yang-Mills theories. This is a joint work with E. Miranda and P. Mir.
schedule
THURSDAY July 14, 2022 | FRIDAY July 15, 2022 | |
10:30 11:30 | Alejandro Cabrera Federal University of Rio de Janeiro | Cédric Oms École normale supérieure de Lyon |
11:30 12:00 | COFFEE BREAK | |
12:00 13:00 | Rui Fernandes University of Illinois at Urbana-Champaign | Chiara Esposito University of Salerno |
13:15 13:45 | Anastasia Matveeva (Online) Universitat Politècnica De Catalunya | Joaquim Brugués University of Antwerp |
LUNCH | ||
15:30 16:30 | Pau Mir Universitat Politècnica de Catalunya | Pablo Nicolás Universitat Politècnica de Catalunya |
16:45 17:15 | Alfonso Garmendia Potsdam Uni | CLOSING Boris Khesin University of Toronto |
17:30 18:00 | Alberto Cavallar (Online) UPC-Caltech |
Lodging information
ON-CAMPUS AND BELLATERRA
BARCELONA AND OFF-CAMPUS
![]() |
For inquiries about this event please contact the research programs coordinator Ms. Núria Hernández at nhernandez@crm.cat
|