A descent theorem in type theory

Egbert Rijke

September 26th, 2013

The descent property for model toposes (Rezk)

Let M be a model category, let I be a small category and $X:I\to M$ be a functor with $\bar X:\equiv \operatorname{hocolim}_I(X)$.

- ▶ Given a morphism $f: A \to \bar{X}$ in M we can define $Y: I \to M$ by $Y(i) :\equiv X(i) \times_{\bar{X}}^h A$. Then the canonical morphism $\bar{Y} \to A$ is a weak equivalence.
- ▶ Given $Y: \mathbf{I} \to \mathbf{M}$ and a cartesian transformation $\alpha: Y \to X$, the canonical morphism $Y(i) \to X(i) \times_{\bar{X}}^h \bar{Y}$ is a weak equivalence.

Another way of looking at this is that there is an equivalence

"cartesian transformations to X" \simeq "morphisms into \bar{X} "

The goal is to give a translation of the descent property into type theory.

- ▶ To simplify matters a bit: we take diagrams over graphs.
 - ► So this is just the first step towards a more general theorem. We get to see what's possible.
 - Graphs are not restricted in homotopy level the way categories (currently) are.
- We can directly give definitions of cartesian transformations and attempt a proof of a direct translation of the descent property. However, this is not as easy as it sounds.
- ▶ Instead, we make use of the virtues of *dependent* type theory
 - ► Functions into the colimit are equivalently described by families over the colimit.
 - Likewise, cartesian transformations of diagrams are equivalently described by certain families of diagrams. We just have to figure out which ones!

Overview of the rest of the talk

- ► First we give a bit of theory of graphs in type theory.
- ► Then we describe colimits as higher inductive types.
- And finally we head for the descent theorem.

Graphs and their families and morphisms

▶ A graph is a pair $\langle \Gamma_0, \Gamma_1 \rangle$ where

$$\begin{array}{ll} \Gamma_0: \mathsf{Type} & \text{the type of } \mathit{vertices} \\ \Gamma_1: \Gamma_0 \to \Gamma_0 \to \mathsf{Type} & \text{the type of } \mathit{edges} \end{array}$$

▶ A family of graphs A over Γ is a pair $\langle A_0, A_1 \rangle$ where

$$A_0:\Gamma_0 o \mathsf{Type}$$
 $A_1:\prod_{\{i,j:\Gamma_0\}}\prod_{(q:\Gamma_1(i,j))}A_0(i) o A_0(j) o \mathsf{Type}.$

▶ A graph morphism $f: \Delta \to \Gamma$ is a pair $\langle f_0, f_1 \rangle$ where

$$f_0:\Delta_0\to\Gamma_0$$

 $f_1:\prod_{\{u,v:\Delta_0\}}\Delta_1(u,v)\to\Gamma_1(f_0(u),f_0(v)).$

Sums and fibers of graphs

Suppose A is a family of graphs over Γ. Define the graph $\Sigma(\Gamma, A)$ by

$$\begin{split} \Sigma(\Gamma,A)_0 &:= \sum_{(i:\Gamma_0)} A_0(i) \\ \Sigma(\Gamma,A)_1(\langle i,x\rangle,\langle j,y\rangle) &:= \sum_{(q:\Gamma_1(i,j))} A_1(q,x,y). \end{split}$$

There's a graph morphism $\pi_1 : \Sigma(\Gamma, A) \to \Gamma$ for the projection.

▶ Suppose $f : \Delta \to \Gamma$ is a morphism of graphs. Define the family fib_f over Γ by

$$(\mathsf{fib}_f)_0(i) :\equiv \mathsf{fib}_{f_0}(i)$$

 $(\mathsf{fib}_f)_1(q, \langle u, \alpha \rangle, \langle v, \beta \rangle) :\equiv \mathsf{fib}_{f_1(u,v)}(\langle \alpha^{-1}, \beta^{-1} \rangle_*(q))$

The object classifier of Graphs

The object classifier for graphs U is defined by

$$\mathsf{U}_0 :\equiv \mathsf{Type}$$

$$\mathsf{U}_1(X,Y) :\equiv X \to Y \to \mathsf{Type}$$

▶ Therefore a family of graphs over Γ is exactly a morphism $\Gamma \to U$ of graphs.

Theorem

For any graph Γ there is an equivalence

$$\left(\sum_{(\Delta:\mathsf{Graph})}\Delta o \Gamma\right)\simeq \Gamma o \mathsf{U}$$

Diagrams over graphs

Definition

A diagram D over Γ is a pair $\langle D_0, D_1 \rangle$ where

$$egin{aligned} D_0: \Gamma_0 &
ightarrow \mathsf{Type} \ D_1: \prod_{(i,j:\Gamma_0)} \prod_{(q:\Gamma_1(i,j))} D_0(i) &
ightarrow D_0(j). \end{aligned}$$

As with families of graphs, we have the notion of a total space of a diagram: it is the graph of its elements.

Definition

When D is a diagram over Γ , define $\int_{\Gamma} D$ by

$$\begin{aligned} (\textstyle \int_{\Gamma} D)_0 &:= \textstyle \sum_{(i:\Gamma_0)} D_0(i) \\ (\textstyle \int_{\Gamma} D)_1(\langle i,u\rangle, \langle j,v\rangle) &:= \textstyle \sum_{(q:\Gamma_1(i,j))} D_1(q,u) = v. \end{aligned}$$

Families of diagrams and their sums

- ▶ If D is a diagram over Γ , a family E of diagrams over D is a diagram over $\int_{\Gamma} D$.
- ▶ Thus a family *E* of diagrams over *D* consists of

$$E_0\colon \prod_{\{i:\Gamma_0\}} D_0(i) o \mathsf{Type}$$
 $E_1(\langle q,p
angle)\colon E_0(u) o E_0(v)$

for every $\langle q, p \rangle : (\int_{\Gamma} D)_1(\langle i, u \rangle, \langle j, v \rangle).$

▶ When E is a diagram over D, we define the diagram $\Sigma(D, E)$ over Γ by

$$\begin{split} &(\Sigma(D,E))_0(i): \sum_{(u:D_0(i))} E_0(u) \\ &(\Sigma(D,E))_1(q,\langle u,z\rangle): \langle D_1(q,u), E_1(q,u,D_1(q,u), \mathsf{refl}_{D_1(q,u)},z) \rangle \end{split}$$

A classifier for diagrams

Definition

We define the graph U^{\rightarrow} by

$$\mathsf{U}_0^{
ightarrow} :\equiv \mathsf{Type}$$
 $\mathsf{U}_1^{
ightarrow}(X,Y) :\equiv X
ightarrow Y.$

- ▶ So diagrams over Γ are precisely morphisms $\Gamma \to U^{\to}$.
- ▶ A family of diagrams over D is a morphism $\int_{\Gamma} D \to U^{\to}$.

Likewise we can define U^{\leftarrow} and U^{\sim} .

- U classifies all the graph morphisms.
- morphisms into U[→] correspond to left fibrations of graphs.
- ▶ morphisms into U[←] are the contravariant diagrams; U[←] classifies the right fibrations of graphs.
- ▶ U[~] classifies the cartesian transformations.

Fibrations

Definition

A left (edge) fibration of graphs is a morphism $f: \Delta \to \Gamma$ if for every $u: \Delta_0$, $j: \Gamma_0$ and $q: \Gamma_1(f_0(u), j)$, the type

leftLiftings
$$(u, j, q) :\equiv \sum_{(v:\Delta_0)} \sum_{(p:\Delta_1(u,v))} \sum_{(\beta:f_0(v)=j)} \beta_*(f_1(p)) = q$$

is contractible.

Theorem

Write
$$\mathsf{leftFib}(\Gamma) :\equiv \sum_{(\Delta:\mathsf{Graph})} \sum_{(f:\Delta \to \Gamma)} \mathsf{isLeftFib}(f)$$
. Then there is an equivalence $\mathsf{leftFib}(\Gamma) \simeq \Gamma \to \mathsf{U}^{\to}$.

Equifibered families of diagrams

▶ For a diagram D over Γ , define the type of equifibered families over D to be

equiFib
$$(D) :\equiv \int_{\Gamma} D \to \mathsf{U}^{\simeq}$$
.

Theorem

A diagram E: leftFib($\int_{\Gamma} D$) over $\int_{\Gamma} D$ is an equifibered precisely when the square

$$\sum_{\substack{(u:D_0(i))\\ \text{pr}_1 \\ D_0(i)}} E_0(u) \xrightarrow{} \sum_{\substack{(v:D_0(j))\\ \text{pr}_1}} E_0(v) \\
\downarrow^{\text{pr}_1} \\
D_0(i) \xrightarrow{} D_1(q) \xrightarrow{} D_0(j)$$

is always a pullback.

Colimits as higher inductive types

Let D be a diagram over Γ . Define $\operatorname{colim}(D)$ to be the higher inductive type with basic constructors

$$\alpha_0: \prod_{\{i:\Gamma_0\}} D_0(i) \to \operatorname{colim}(D)$$

$$\alpha_1: \prod_{\{i,j:\Gamma_0\}} \prod_{(q:\Gamma_1(i,j))} \prod_{(u:D_0(i))} \alpha_0(D_1(q,u)) = \alpha_0(u)$$

The induction principle for colim(D) is that for any family $P : colim(D) \rightarrow Type$, if there are

$$A_0: \prod_{\{i:\Gamma_0\}} \prod_{(u:D_0(i))} P(\alpha_0(x))$$

$$A_1:\prod_{\{i,j:\Gamma_0\}}\prod_{(q:\Gamma_1(i,j))}\prod_{(u:D_0(i))}\alpha_1(q,u)_*(A_0(D_1(q,u)))=A_0(u)$$

then there is a section $f:\prod_{(x:colim(D))} P(x)$ satisfying

$$f(\alpha_0(u)) \equiv A_0(u)$$
 for each $u: D_0(i)$
 $f(\alpha_1(q,u)) = A_1(q,u)$ for each $q: \Gamma_1(i,j)$ and $u: D_0(i)$.

The universal property of colimits

Theorem

For any family $P: \operatorname{colim}(D) \to \operatorname{Type}$, the type $\prod_{(x:\operatorname{colim}(D))} P(x)$ is equivalent to the type of pairs $\langle A_0, A_1 \rangle$ where

$$A_0: \prod_{\{i:\Gamma_0\}} \prod_{(u:D_0(i))} P(\alpha_0(x))$$

$$A_1: \textstyle \prod_{\{i,j: \Gamma_0\}} \textstyle \prod_{(q: \Gamma_1(i,j))} \textstyle \prod_{(u: D_0(i))} \alpha_1(q,u)_* (A_0(D_1(q,u))) = A_0(u).$$

This equivalence is given by λf . $\langle f \circ \alpha_0, \mathsf{ap}_f \circ \alpha_1 \rangle$.

Corollary

For any type X, the type $\operatorname{colim}(D) \to X$ is equivalent to the type of pairs $\langle A_0, A_1 \rangle$ where

$$A_0:\prod_{\{i:\Gamma_0\}}D_0(i)\to X$$

$$A_1: \prod_{\{i,j:\Gamma_0\}} \prod_{(q:\Gamma_1(i,j))} \prod_{(u:D_0(i))} A_0(D_1(q,u)) = A_0(u).$$

This equivalence is given by λf . $\langle f \circ \alpha_0, \mathsf{ap}_f \circ \alpha_1 \rangle$.

The descent theorem

Theorem

For any diagram D there is an equivalence

$$\operatorname{\sf equiFib}(D) \simeq \operatorname{\sf colim}(D) \to \operatorname{\sf Type}.$$

Theorem

There is an equivalence

$$\mathsf{colim}(\Sigma(D, E)) \simeq \sum_{(w:\mathsf{colim}(D))} \mathsf{colim}(E)(w)$$