A descent theorem in type theory

Egbert Rijke

September 26th, 2013

The descent property for model toposes (Rezk)

Let M be a model category, let | be a small category and
X : 1 — M be a functor with X := hocolim;(X).

» Given a morphism f : A — X in M we can define Y : =M
by Y (i) := X(i) xg’? A. Then the canonical morphism Y — A
is a weak equivalence.

» Given Y : | — M and a cartesian transformation a: Y — X,
the canonical morphism Y (i) — X(i) xf—< Y is a weak
equivalence.

Another way of looking at this is that there is an equivalence

“cartesian transformations to X" =~ “morphisms into X"

The goal is to give a translation of the descent property into type
theory.

» To simplify matters a bit: we take diagrams over graphs.

> So this is just the first step towards a more general theorem.
We get to see what's possible.

» Graphs are not restricted in homotopy level the way categories
(currently) are.

» We can directly give definitions of cartesian transformations
and attempt a proof of a direct translation of the descent
property. However, this is not as easy as it sounds.

> Instead, we make use of the virtues of dependent type theory

» Functions into the colimit are equivalently described by
families over the colimit.

» Likewise, cartesian transformations of diagrams are
equivalently described by certain families of diagrams.
We just have to figure out which ones!

Overview of the rest of the talk

» First we give a bit of theory of graphs in type theory.
» Then we describe colimits as higher inductive types.

» And finally we head for the descent theorem.

Graphs and their families and morphisms
> A graph is a pair (I'g, 1) where

o : Type the type of vertices
M:To—Tg— Type the type of edges

» A family of graphs A over I is a pair (Ag, A1) where

Ag:To— Type
Av Tl oy T giry (i) Ao(i) = Ao(j) — Type.

» A graph morphism f : A — T is a pair (fy, f1) where

fo: Ao — g
fi: H{u,v:Ao} Al(u’ V) - rl(fb(u)’ fb(v))

Sums and fibers of graphs

> Suppose A is a family of graphs over I'. Define the graph
2(I, A) by
£(T, Ao = X1y Aoli)
(M A, x), Uy y)) = Z(q:rl(i,j)) Ai(q,x,y).
There's a graph morphism 71 : (I, A) — T for the projection.
» Suppose f : A — I is a morphism of graphs. Define the
family fibs over I' by
(fibr)o(i) == fibg (1)
(flbf)l(q7 <U, Oé), <V7 /8>) = ﬁbfl(u,v)(<a717 B71>*(q))

The object classifier of Graphs

» The object classifier for graphs U is defined by

Ug := Type
Ui(X,Y) =X = Y — Type

» Therefore a family of graphs over I is exactly a morphism
I — U of graphs.

Theorem
For any graph I there is an equivalence

(Z(A:Graph) A— r) ~F—=U

Diagrams over graphs

Definition
A diagram D over [is a pair (Dg, D1) where

Do : ro — Type
Dy : Ti jiro) I (g:ri (i) Do(i) = Do(i)-

As with families of graphs, we have the notion of a total space of a
diagram: it is the graph of its elements.

Definition
When Dis a diagram over I, define fl‘ D by
(JrD)o = Z(i:l‘o) Do(i)
(frD)1(<l7 U>, <ja V>) = Z(q:rl(i,j)) Dl(q7 U) = V.

Families of diagrams and their sums

» If D is a diagram over I, a family E of diagrams over D is a
diagram over [D

» Thus a family E of diagrams over D consists of

Eo: I1{iryy Do(i) — Type
E1({(g. p)): Eo(u) — Eo(v)

for every (q,p) : (/- D) u), (j, v)).
» When E is a diagram over D, we define the diagram X (D, E)
over I by

(X(D, E))o(7) * 2= (u:py(iy) Eolu)
(2(D, E))1(q,{u,2)) : (D1(q, u), Ex(q, u, D1(q, u), reﬂD1(q,u)7 z))

A classifier for diagrams

Definition
We define the graph U™ by
Ug” := Type
Ur(X,Y) =X -Y.

» So diagrams over [are precisely morphisms ' — U™

» A family of diagrams over D is a morphism [D — U~.

Likewise we can define U and U~.
» U classifies all the graph morphisms.
» morphisms into U™ correspond to left fibrations of graphs.

» morphisms into U are the contravariant diagrams; U*
classifies the right fibrations of graphs.

» U= classifies the cartesian transformations.

Fibrations

Definition
A left (edge) fibration of graphs is a morphism f : A — T if for
every u: g, j:Tgand q:T1(f(u),)), the type

leftl-iftings(uvj‘/ q) = Z(V:Ao) Z(PiAl(UN)) Z(/jfo(v):n B*(fl(p)) =4q
is contractible.

Theorem
Write leftFib(I) := > (A .Graph) 2_(r:a—r) iSLeftFib(f). Then there
is an equivalence

leftFib(l) ~T — U~

Equifibered families of diagrams

» For a diagram D over I, define the type of equifibered families
over D to be
equiFib(D) := [-D — U=,

Theorem

A diagram E : leftFib([D) over [D is an equifibered precisely
when the square

22 uno(iy) Eolt) —— 2 (v.po(y) EolV)

| [P

Do(j)

is always a pullback.

Colimits as higher inductive types

Let D be a diagram over I'. Define colim(D) to be the higher
inductive type with basic constructors

o : [I1i.rgy Do(i) — colim(D)
a1+ [y g (i) Hiwoo(iy) @0(Di(g, v)) = ao(u)

The induction principle for colim(D) is that for any family
P : colim(D) — Type, if there are

Ao : H{i:ro} H(u:DO(i)) P(OZO(X))
A1 T girey Higeraiyy Hw:po(iyy @1(a5 4),(Ao(Di(a, 1)) = Ao(u)

then there is a section f :] ,.coim(p)) P(x) satisfying

f(ao(u)) = Ao(u) for each u : Do(i)
f(a1(g,u)) = Ai(q,u) foreach q:T1(i,j) and u: Do(i).

The universal property of colimits

Theorem
For any family P : colim(D) — Type, the type [] ,.com(p)) P(x) is
equivalent to the type of pairs (Ao, A1) where

Ao : Tiirey Hiw:no(iy) Plao(x))
A1 = i oy gy Hiwpoiy) @2(a; 1) (Ao(Dr(q, u))) = Ao(u).
This equivalence is given by Af.(f o ag,aps o ay).

Corollary

For any type X, the type colim(D) — X is equivalent to the type
of pairs (Ao, A1) where

Ao Ilirey Do(i) = X
A i giroy Higrig) Hwo(y Ao(Pi(g, 1)) = Ao(u).

This equivalence is given by Af.(f o ag,aps o aq).

The descent theorem

Theorem
For any diagram D there is an equivalence

equiFib(D) ~ colim(D) — Type.

Theorem
There is an equivalence

colim(Z(D, E)) = Z(W:colim(D)) CO|Im(E)(W)

