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The descent property for model toposes (Rezk)

Let M be a model category, let I be a small category and
X : I→M be a functor with X̄ :≡ hocolimI(X ).

I Given a morphism f : A→ X̄ in M we can define Y : I→M
by Y (i) :≡ X (i)×h

X̄
A. Then the canonical morphism Ȳ → A

is a weak equivalence.

I Given Y : I→M and a cartesian transformation α : Y → X ,
the canonical morphism Y (i)→ X (i)×h

X̄
Ȳ is a weak

equivalence.

Another way of looking at this is that there is an equivalence

“cartesian transformations to X” ' “morphisms into X̄”



The goal is to give a translation of the descent property into type
theory.

I To simplify matters a bit: we take diagrams over graphs.
I So this is just the first step towards a more general theorem.

We get to see what’s possible.
I Graphs are not restricted in homotopy level the way categories

(currently) are.

I We can directly give definitions of cartesian transformations
and attempt a proof of a direct translation of the descent
property. However, this is not as easy as it sounds.

I Instead, we make use of the virtues of dependent type theory
I Functions into the colimit are equivalently described by

families over the colimit.
I Likewise, cartesian transformations of diagrams are

equivalently described by certain families of diagrams.
We just have to figure out which ones!



Overview of the rest of the talk

I First we give a bit of theory of graphs in type theory.

I Then we describe colimits as higher inductive types.

I And finally we head for the descent theorem.



Graphs and their families and morphisms

I A graph is a pair 〈Γ0, Γ1〉 where

Γ0 : Type the type of vertices

Γ1 : Γ0 → Γ0 → Type the type of edges

I A family of graphs A over Γ is a pair 〈A0,A1〉 where

A0 : Γ0 → Type

A1 :
∏
{i ,j :Γ0}

∏
(q:Γ1(i ,j)) A0(i)→ A0(j)→ Type.

I A graph morphism f : ∆→ Γ is a pair 〈f0, f1〉 where

f0 : ∆0 → Γ0

f1 :
∏
{u,v :∆0}∆1(u, v)→ Γ1(f0(u), f0(v)).



Sums and fibers of graphs

I Suppose A is a family of graphs over Γ. Define the graph
Σ(Γ,A) by

Σ(Γ,A)0 :≡
∑

(i :Γ0) A0(i)

Σ(Γ,A)1(〈i , x〉, 〈j , y〉) :≡
∑

(q:Γ1(i ,j)) A1(q, x , y).

There’s a graph morphism π1 : Σ(Γ,A)→ Γ for the projection.

I Suppose f : ∆→ Γ is a morphism of graphs. Define the
family fibf over Γ by

(fibf )0(i) :≡ fibf0(i)

(fibf )1(q, 〈u, α〉, 〈v , β〉) :≡ fibf1(u,v)(〈α−1, β−1〉∗(q))



The object classifier of Graphs

I The object classifier for graphs U is defined by

U0 :≡ Type

U1(X ,Y ) :≡ X → Y → Type

I Therefore a family of graphs over Γ is exactly a morphism
Γ→ U of graphs.

Theorem
For any graph Γ there is an equivalence(∑

(∆:Graph) ∆→ Γ
)
' Γ→ U



Diagrams over graphs

Definition
A diagram D over Γ is a pair 〈D0,D1〉 where

D0 : Γ0 → Type

D1 :
∏

(i ,j :Γ0)

∏
(q:Γ1(i ,j)) D0(i)→ D0(j).

As with families of graphs, we have the notion of a total space of a
diagram: it is the graph of its elements.

Definition
When D is a diagram over Γ, define

∫
Γ D by

(
∫

ΓD)0 :≡
∑

(i :Γ0) D0(i)

(
∫

ΓD)1(〈i , u〉, 〈j , v〉) :≡
∑

(q:Γ1(i ,j)) D1(q, u) = v .



Families of diagrams and their sums

I If D is a diagram over Γ, a family E of diagrams over D is a
diagram over

∫
Γ D.

I Thus a family E of diagrams over D consists of

E0:
∏
{i :Γ0}D0(i)→ Type

E1(〈q, p〉): E0(u)→ E0(v)

for every 〈q, p〉 : (
∫

Γ D)1(〈i , u〉, 〈j , v〉).

I When E is a diagram over D, we define the diagram Σ(D,E )
over Γ by

(Σ(D,E ))0(i) :
∑

(u:D0(i)) E0(u)

(Σ(D,E ))1(q, 〈u, z〉) : 〈D1(q, u),E1(q, u,D1(q, u), reflD1(q,u), z)〉



A classifier for diagrams

Definition
We define the graph U→ by

U→0 :≡ Type

U→1 (X ,Y ) :≡ X → Y .

I So diagrams over Γ are precisely morphisms Γ→ U→.

I A family of diagrams over D is a morphism
∫

Γ D → U→.

Likewise we can define U← and U'.

I U classifies all the graph morphisms.

I morphisms into U→ correspond to left fibrations of graphs.

I morphisms into U← are the contravariant diagrams; U←

classifies the right fibrations of graphs.

I U' classifies the cartesian transformations.



Fibrations

Definition
A left (edge) fibration of graphs is a morphism f : ∆→ Γ if for
every u : ∆0, j : Γ0 and q : Γ1(f0(u), j), the type

leftLiftings(u, j , q) :≡
∑

(v :∆0)

∑
(p:∆1(u,v))

∑
(β:f0(v)=j) β∗(f1(p)) = q

is contractible.

Theorem
Write leftFib(Γ) :≡

∑
(∆:Graph)

∑
(f :∆→Γ) isLeftFib(f ). Then there

is an equivalence
leftFib(Γ) ' Γ→ U→.



Equifibered families of diagrams

I For a diagram D over Γ, define the type of equifibered families
over D to be

equiFib(D) :≡
∫

ΓD → U'.

Theorem
A diagram E : leftFib(

∫
Γ D) over

∫
Γ D is an equifibered precisely

when the square

∑
(u:D0(i)) E0(u)

∑
(v :D0(j)) E0(v)

D0(i) D0(j)

pr1 pr1

D1(q)

is always a pullback.



Colimits as higher inductive types

Let D be a diagram over Γ. Define colim(D) to be the higher
inductive type with basic constructors

α0 :
∏
{i :Γ0}D0(i)→ colim(D)

α1 :
∏
{i ,j :Γ0}

∏
(q:Γ1(i ,j))

∏
(u:D0(i)) α0(D1(q, u)) = α0(u)

The induction principle for colim(D) is that for any family
P : colim(D)→ Type, if there are

A0 :
∏
{i :Γ0}

∏
(u:D0(i)) P(α0(x))

A1 :
∏
{i ,j :Γ0}

∏
(q:Γ1(i ,j))

∏
(u:D0(i)) α1(q, u)∗(A0(D1(q, u))) = A0(u)

then there is a section f :
∏

(x :colim(D)) P(x) satisfying

f (α0(u)) ≡ A0(u) for each u : D0(i)

f (α1(q, u)) = A1(q, u) for each q : Γ1(i , j) and u : D0(i).



The universal property of colimits

Theorem
For any family P : colim(D)→ Type, the type

∏
(x :colim(D)) P(x) is

equivalent to the type of pairs 〈A0,A1〉 where

A0 :
∏
{i :Γ0}

∏
(u:D0(i)) P(α0(x))

A1 :
∏
{i ,j :Γ0}

∏
(q:Γ1(i ,j))

∏
(u:D0(i)) α1(q, u)∗(A0(D1(q, u))) = A0(u).

This equivalence is given by λf . 〈f ◦ α0, apf ◦ α1〉.

Corollary

For any type X , the type colim(D)→ X is equivalent to the type
of pairs 〈A0,A1〉 where

A0 :
∏
{i :Γ0}D0(i)→ X

A1 :
∏
{i ,j :Γ0}

∏
(q:Γ1(i ,j))

∏
(u:D0(i)) A0(D1(q, u)) = A0(u).

This equivalence is given by λf . 〈f ◦ α0, apf ◦ α1〉.



The descent theorem

Theorem
For any diagram D there is an equivalence

equiFib(D) ' colim(D)→ Type.

Theorem
There is an equivalence

colim(Σ(D,E )) '
∑

(w :colim(D)) colim(E )(w)


