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Goals

Short term:

I To describe Hott conceptually.

Mid term:

I To explore new directions in Hott.

Long term:

I To contribute to the development of a large scale
formalization of mathematics



Axiomatic Homotopy Theory

Henry Whitehead (1950):

The ultimate aim of algebraic homotopy is to construct a purely
algebraic theory, which is equivalent to homotopy theory in the
same sort of way that analytic is equivalent to pure projective
geometry.

An axiomatization should be useful for thinking and computing.

The main axiomatisations of homotopy theory.:

I Quillen: Homotopical algebra (1967)

I Lurie: Higher topos theory (2008)



Other axiomatizations

I Gabriel, Zisman: Calculus of fractions and homotopy theory
(1967)

I Ken Brown: Abstract Homotopy Theory an Generalised
Sheaf Cohomology (1973)

I Heller: Homotopy theories (1988)

I Baues: Algebraic homotopy (1989).



Criteria

Baues (1989) suggests two criteria for an axiom system:

I The axioms should be su�ciently strong to permit the basic
constructions of homotopy theory;

I The axioms should be as weak (and as simple) as possible, so
that the constructions of homotopy theory are available in as
many contexts as possible.

In the case of homotopy type theory, we may add the desiderata:

I It should give a notion of elementary higher topos.



The emergence of Homotopy Type Theory

Type theory:

I Martin-Löf: Intuitionistic Theory of Types (1971, 1975, 1984)

I Coqand, Huet: The Calculus of Constructions (1988)

Homotopy Type Theory:

I Hofmann, Streicher: The groupoid interpretation of type
theory (1995)

I Awodey, Warren: Homotopy theoretic models of identity
types (2006⇠2007)

I Voevodsky: Notes on type systems (2006⇠2009)



Category theory as a bridge

Category theory

pp ,,Type theory
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Homotopy theory

mm

There is no category theory in the book:

HOMOTOPY TYPE THEORY

Univalent Foundations of Mathematics



Category Theory and Type Theory

I Lawvere: Equality in hyperdoctrines and comprehension
schema as an adjoint functor (1968)

I Benabou: Des catégories fibrés (1980)

I Hyland, Johnstone and Pitts: Tripos theory (1980)

I Seely: Lccc and type theory (1984)

I Curien: Substitution up to isomorphism (1990)

I Streicher: Semantics of Type Theory (1991)

I Jacobs: Categorical Logic and Type Theory (1999)

I Curien, Garner, Hofmann: Revisiting the categorical
interpretation of dependant type theory (2013)



Overview of the talk

tribe

**tt
⇡ · tribe

))

h · tribe
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typos

✏✏
univalent typos

✏✏
elementary higher topos?



Squarable maps

We say that an object X in a category C is squarable if the
cartesian product A⇥ X exists for every object A 2 C.

We say that a map p : X ! B is squarable if the object (X , p) of
the category C/B is squarable. This means that the pullback
square

A⇥
B

X

p1

✏✏

p2 // X

p

✏✏
A

f // B

exists for every map f : A ! B . The projection p1 : A⇥
B

X ! B
is the base change of the map p : X ! B along f : A ! B .



Tribe

Definition
A tribe is a category C equipped with a class of maps F ✓ C
satisfying the following conditions:

I F is closed under composition and contains the isomorphisms;

I every map in F is squarable and F is closed under base
changes;

I C has a terminal object ? and every map X ! ? belongs to F .

A map in F is a fibration or a family of the tribe.



Remarks on the notion of tribes

I Martin Hyland is using the notion in his work.

I Paige North is using the notion to construct models of type
theory.

I For the relation between tribes and comprehension categories
see a forthcoming paper of Lumsdaine and Warren: An
overlooked coherence construction for dependant type theory.



Tribes abound

I A category with finite products is a tribe, if the fibrations are
the projections;

I A category with finite limits is a tribe, if every map is a
fibration;

I The category of small groupoids Grpd is a tribe if the
fibrations are the Grothendieck fibrations;

I The category of Kan complexes Kan is a tribe, if the
fibrations are the Kan fibrations.

I The syntactic category of type theory is a tribe, if the
fibrations are the maps isomorphic to the display maps.



A type E is an object of a tribe C. Notation:

` E : type

A term of type E is a map a : ? ! E . Notation:

` a : E

The fiber E (a) of a fibration p : E ! A at a point a : A is defined
by the pullback square

E (a)

✏✏

// E

p

✏✏
? a // A.



Dependant types and contexts

A fibration p : E ! A should be regarded as an internal family

(E (x) : x 2 A)

of objects parametrized by the codomain of p.

The family is called a dependant type E (x) in context x : A,

x : A ` E (x) : type

A term t(x) of type E (x) in context x : A is a section t of the
fibration p : E ! A,

x : A ` t(x) : E (x)



The local category of C(A)

The local category of C at A 2 C is the full subcategory C(A) of
C/A whose objects (X , p) are the fibrations p : X ! A with
codomain A.

An object of C(A) is a dependant types in context A.

The category C(A) is a tribe, where a map f : (X , p) ! (Y , q) is a
fibration if the underlying map f : X ! Y in C is a fibration.

We have C(?) = C.



Morphisms of tribes

Definition
A morphism of tribes F : C ! D is a functor which

I takes fibrations to fibrations;

I preserves base changes of fibrations;

I preserves terminal objects.

The tribes form a 2-category in which a 2-cell is a natural
transformation.



For example, the base change functor

f ? : C(B) ! C(A)

is a morphism of tribes for any map f : A ! B in a tribe C.

For every fibration Y ! B and every term a : A we have

f ?(Y )(a) = Y (f (a)).

Hence the functor f ? is a change of parameters.



Extension of context

In particular, the base change functor i
A

: C ! C(A) along the map
A ! ? is a morphism of tribes. By definition,
i
A

(X ) = X
A

= (A⇥ X , p1).

The object X
A

= i
A

(X ) 2 C(A) is the constant family

x : A ` X : type

with value X .

The functor i
A

: C ! C(A) is expressed by the following deduction
rule:

` X : type

x : A ` X : type.



Push-forward and sum

To every fibration f : A ! B in tribe C is associated a summation
functor ⌃

f

: C(A) ! C(B) defined by putting ⌃
f

(X , p) = (X , fp).

⌃
f

(X )(b) =
X

f (a)=b

X (a)

The functor ⌃
f

is left adjoint to the functor f ?.

In particular, the forgetful functor C(A) ! C is a summation
functor,

⌃
A

: C(A) ! C.

The domain of a fibration p : X ! A is its total space,

X =
X

a:A

X (a).



Display maps

In type theory, the projection

X

a:A

X (a) ! A

associated to a dependant type a : A ` E (a) : type is called a
display map.

The display map of a dependant type (X , p) 2 C(A) is the fibration
p : X ! A.



Polynomial rings

Recall that a polynomial ring K [x ] is obtained by freely adding to a
commutative ring K a new element x .

The freeness of the extension i : K ! K [x ] means that

for every homomorphism of commutative rings f : K ! R and
every element r 2 R there exists a unique homomorphism
g : K [x ] ! R such that gi = f and g(x) = r ,

K
i //

f

''

K [x ]

g

✏✏
R

The element x 2 K [x ] is generic.



Generic term

The base change functor i : C ! C(A) is a morphism of tribes.
Recall that i(X ) = X

A

= (A⇥ X , p1).

The diagonal �
A

is a term of type i(A) in C(A).

A⇥ A

p1

✏✏
A.

�
A

[[

Theorem
The extension i : C ! C(A) is obtained by freely adding a term �

A

of type A to the tribe C.

Thus, C(A) = C[�
A

]. The term �
A

: i(A) is generic.



Variables=generic terms

For example, the terms x , y and z figuring in the context of a type
declaration

x : A, y : B , z : C ` E (x , y , z) : type

are distinct and generic. This defines a fibration E ! A⇥ B ⇥ C .

Equivalently, this defines an object

(E , p) 2 C(A⇥ B ⇥ C ) = C[x , y , z ]



Products along a map

Let f : A ! B be a squarable map in a category C and let
E = (E , p) 2 C/A.

We say that an object ⇧
f

(E ) 2 C/B equipped with a map
✏ : ⇧

f

(E )⇥
B

A ! E is the product of E along f ,

E

✏✏

⇧
f

(E )

✏✏
A

f //// B

if the map g 7! ✏(g ⇥
B

A) is a bijection

Hom
B

(X ,⇧
f

(E )) ' Hom
A

(f ?(X ),E )

for every object X 2 C/B .

The map ✏ : ⇧
f

(E )⇥
B

A ! E is called the evaluation.



⇧-tribes

Definition
We say that a tribe C is ⇧-closed, and that it is a ⇧-tribe, if every
fibration E ! A has a product along every fibration f : A ! B ,
and if the structure map ⇧

f

(E ) ! B is a fibration,

E

✏✏

⇧
f

(E )

✏✏
A

f //// B .

Formally,
⇧
f

(E )(b) =
Y

f (a)=b

E (a)

for b : B .



⇧-tribes abound

I A locally cartesian closed category, if every map is a fibration;

I A cartesian closed category, if the fibrations are the
projections;

I (Hofmann-Streicher) The category of small groupoids Grpd, if
the fibrations are the Grothendieck fibrations;

I (Streicher, Voevodsky) The category of Kan complexes Kan if
the fibrations are the Kan fibrations;

I (Gambino-Garner) The syntactic category of type theory, if
the fibrations are the maps isomorphic to display maps.



If C is a ⇧-tribe, then so is the tribe C(A) for every object A 2 C.

The base change functor f ? : C(B) ! C(A) has a right adjoint

⇧
f

: C(A) ! C(B)

for every fibration f : A ! B . Moreover, ⇧
f

is a morphisms of
tribes (it takes fibrations to fibrations).

In particular, the functor i
A

: C ! C(A) has a right adjoint

⇧
A

: C(A) ! C

for every objet A,

⇧
A

(X , p) =
Y

a:A

X (a)



A ⇧-tribe C is cartesian closed:

[A,B] = ⇧
A

(i
A

(B))

where i
A

: C ! C(A) is the base change functor.

Theorem
A tribe C = (C,F) is ⇧-closed if and only if the following two
conditions are satisfied:

I the category C(A) is cartesian closed for every object A 2 C
and the local exponential functor [X ,�]

A

: C(A) ! C(A)
preserves fibrations for every object X 2 C(A);

I the base-change functor f ? : C(B) ! C(A) is cartesian closed
for every map f : A ! B.



⇧-functors

Definition
A morphism of tribes F : C ! D between ⇧-tribes is ⇧-closed if it
preserves the products ⇧

f

(X ).

The ⇧-tribes form a 2-category in which 1-cell is a ⇧-closed
morphism and a 2-cell is a natural isomorphism.



Examples of ⇧-closed morphisms

The base change functor f ? : C(B) ! C(A) is a ⇧-closed morphism
for any map f : A ! B in a ⇧-tribe C.

The Yoneda functor y : C ! Ĉ = [Cop, Set] is a ⇧-closed morphism
for any small ⇧-tribe C.



Generic term

If A is an object of a ⇧-tribe C, then the base change functor
i : C ! C(A) is a ⇧-closed morphism.

Theorem
The extension i : C ! C(A) is obtained by freely adding a term x

A

of type A to the ⇧-tribe C.

Thus, C(A) = C[x
A

] in the 2-category of ⇧-tribes.

The term x
A

: i(A) is generic.



Generic map

Let A and B be two objects of ⇧-tribe C and let i : C ! C([A,B])
be the base change functor.

If ✏ : [A,B]⇥ A ! B is the evaluation, then the map

hp1, ✏i : [A,B]⇥ A ! [A,B]⇥ B

is a map g : i(A) ! i(B).

Theorem
The extension i : C ! C([A,B]) is obtained by freely adding a map
g : A ! B to the ⇧-tribe C.

Thus, C([A,B]) = C[g ] in the 2-category of ⇧-tribes.

The map g : i(A) ! i(B) is generic



Polynomial functors
Let C be a ⇧-tribe.

A polynomial P = (s, f , t) : A ! B is a triple of maps

E 0

s

��

f // E
t

��
A B

where f and t are fibrations.

The polynomial functor P : C(A) ! C(B) is defined to be the
composite

C(E 0)
⇧
f // C(E )

⌃
t

##
C(A)

s

?
;;

C(B)



E 0

s

��

f // E
t

��
A B

We have
P(X )(b) =

X

t(k)=b

Y

f (e0)=e

X (s(e 0))

for every X 2 C(A).

Polynomial functors are closed under composition.

A polynomial monad (P , µ, ⌘) is a polynomial P : A ! A equipped
with a monad structure µ : P � P ! P and ⌘ : I

A

! P .

Martin Hyland has a Dialectica interpretation in type theory which
is using polynomials.



Type theory and homotopical algebra

Awodey and Warren:

Martin-Löf type theory can be interpreted in a model category:

I types are interpreted as fibrant objects;

I display maps are interpreted as fibrations;

I the identity type Id
A

! A⇥ A is a path object for A;

I the reflexivity term r : A ! Id
A

is an acyclic cofibration.

Id
A

✏✏
A

r

==

h1
A

,1
A

i
// A⇥ A



The relation u t f

Recall that a map u : A ! B in a category C is said to have the
left lifting property with respect to a map f : X ! Y ,

if every commutative square

A

u

✏✏

a // X

f

✏✏
B

b // Y

has a diagonal filler d : B ! X , du = a and fd = b.

Notation: u t f

For a class of maps S ✓ C, let us put

tS = {u 2 C : 8f 2 S u t f }



Homotopical tribes

We say that a map in a tribe C = (C,F) is anodyne if it belongs
to the class tF .

Definition
We say that a tribe C is homotopical and that it is a h-tribe, if
the following two conditions are satisfied

I every map f : A ! B admits a factorization f = pu with u an
anodyne map and p a fibration;

I the base change of an anodyne map along a fibration is
anodyne.

Remark: The first condition implies the second when C is a ⇧-tribe.

If C is a h-tribe, then so is the tribe C(A) for every object A 2 C.



Examples of h-tribes

I (Hofmann-Steicher) The category of groupoids Grpd, if the
fibrations are the Grothendieck fibrations; the anodyne maps
are the monic categorical equivalences.

I (Awodey-Warren-Voevodsky) The category of Kan complexes
Kan, if the fibrations are the Kan fibrations; the anodyne
maps are the monic homotopy equivalences.

I (Gambino-Garner) The syntactic category of type theory, if a
fibration is a map isomorphic to a display map.



Path object

Let C be a h-tribe.

A path object for an object A 2 C is a factorisation of the
diagonal � : A ! A⇥ A as an anodyne map � : A ! PA followed
by a fibration (@0, @1) : PA ! A⇥ A,

PA

(@0,@1)

✏✏
A

�

==

� // A⇥ A.



Mapping path object and factorization

In a h-tribe, the factorization of a map f : A ! B as an anodyne
map u : A ! E followed by a fibration p : E ! B can be
constructed from a path object (PB ,�, @0, @1) for B .

By construction, the object E is the mapping path object P(f )
defined by the pullback square

P(f )

p1

✏✏

p2 // PB

@0
✏✏

A
f // B .

We have u = h1
A

,�f i and p = @1p2.



Identity type

In Martin-Löf type theory, there is a type constructor which
associates to every type A a dependant type

x :A, y :A ` Id
A

(x , y) : type

called the identity type of A together with a term

x :A ` r(x) : Id
A

(x , x)

called the reflexivity term.

A term p : Id
A

(x , y) is regarded as a proof that x = y .

The reflexivity term r(x) : Id
A

(x , x) is the proof that x = x .



Identity type as a path object

Equivalently, for every A 2 C there is a diagram

Id
A

h@0,@1i

✏✏
A

�

==

� // A⇥ A

with h@0, @1i the display map

X

x :A,y :A

Id
A

(x , y) ! A⇥ A



The J-rule

Awodey and Warren:

The reflexivity term r : A ! Id
A

is anodyne by the J-rule:

If p : E ! Id
A

is a fibration, then every commutative square

A

r

✏✏

u // E

p

✏✏
Id

A

Id
A

has a diagonal filler d = J(u),

A

r

✏✏

u // E

p

✏✏
Id

A

d

==

Id
A



Homotopy between two maps

Let C be a h-tribe.

A homotopy h : f  g between two maps f , g : A ! X in C is a
map h : A ! PX such that @0h = f and @1h = g ,

X

A

g //

f

//

h // PX
@0

==

@1

!!
X

Type theorists regard h as a proof that f = g ,

A ` h : Id
X

(f , g).

Two maps f , g : A ! X are homotopic, f ⇠ g , if there exists a
homotopy h : f  g .



The homotopy category

Let C be a h-tribe.

Theorem
The homotopy relation f ⇠ g is a congruence on the arrows of C.

The homotopy category Ho(C) is the quotient category C/ ⇠.

A map f : X ! Y in C is called a homotopy equivalence if it is
invertible in Ho(C).

An object X is contractible if the map X ! ? is a homotopy
equivalence.

Every anodyne map is a homotopy equivalence.



h-functors

Definition
We say that a morphism of tribes F : C ! D between h-tribes is a
h-morphism if it preserves the homotopy relation:
f ⇠ g ) F (f ) ⇠ F (g).

The h-tribes form a 2-category in which a 1-cell is h-morphism and
a 2-cell is a natural transformation.

For example, the base change functor u? : C(B) ! C(A) is a
h-morphism for any map u : A ! B in a h-tribe C.

A h-morphism F : C ! D induces a functor

Ho(F ) : Ho(C) ! Ho(D).



Generic terms

If A is an object of a h-tribe C, then the base change functor
i
A

: C ! C(A) is a h-functor.

Theorem
The extension i

A

: C ! C(A) is obtained by freely adding a term x
A

of type A to the h-tribe C.

Thus, C(A) = C[x
A

] in the 2-category of h-tribes.



Weak equivalences

Let C be a h-tribe.

We say that a map f : (X , p) ! (Y , q) in C/A is a weak
equivalence if the underlying map f : X ! Y in C is a homotopy
equivalence.

For every object (X , p) 2 C/A there is a weak equivalence

(X , p) ! (X , p)

with codomain an object of C(A),

X //

p

��

X

p

✏✏
A.

The object (X , p) is a fibrant replacement of (X , p).



Let C be a h-tribe.

Theorem
If W

A

is the class of weak equivalences in C/A, then the inclusion
C(A) ! C/A induces an equivalence of categories,

Ho(C(A)) ! W�1
A

(C/A).

Theorem
The functor Ho(f ?) : Ho(C(B)) ! Ho(C(A)) has a left adjoint

⌃̃
f

: Ho(C(A)) ! Ho(C(B)).

for any map f : A ! B. Moreover, the functor ⌃̃
f

is conservative
and the adjunction ⌃̃

f

` Ho(f ?) is an equivalence of categories if f
is a homotopy equivalence.



Homotopy initial objects

Let C be a h-tribe.

An object J 2 C is homotopy initial if every fibration p : E ! J
has a section � : J ! E ,

E

p

✏✏
J.

�

]]

A homotopy initial object J is initial in the homotopy category
Ho(C): for every object X , there is a (homotopy unique) map
J ! X ,

J ⇥ X

p1

✏✏

p2 // X

J

�

[[



Homotopy coproducts

The homotopy coproduct of two objects A and B is an object C
equipped with a pair of maps i , j : A,B ! C which is homotopy
initial in the category of pairs of maps f , g : A,B ! E .

The initially means that for every pair f , g : A,B ! E and every
fibration p : E ! C such that pf = i and pg = j , there exists a
section � : C ! E such that �i = f and �j = g ,

E

p

✏✏
A,B

i , j

//

f , g

<<

C .

�

]]

A homotopy coproduct i , j : A,B ! C is a coproduct in the
homotopy category Ho(C).



Homotopy natural number object
A homotopy natural number object (N, s, 0) is homotopy initial
in the category of triples (X , f , a), where f is an endomorphism of
an object X and where a : X .

The initially means that if a fibration p : X ! N is a map of triples
(X , f , a) ! (N, s, 0), then p has a section � : N ! X which is a
map of triples (N, s, 0) ! (X , f , a),

X

f

⌥⌥

p

✏✏

?

a

??

0 ��
N

s

YY

�

\\



Inductive types

Recall that a P-algebra for an endo-functor P : C ! C is a pair
(X ,↵), where X 2 C and ↵ : P(X ) ! X is a map in C (no
condition on the action ↵ is required).

Definition
An inductive type* is defined to be a homotopy initial object
(W ,w) in the category of P-algebras, where P is a polynomial
endo-functor of C.

The initially means that if a fibration p : X ! W is a map of
P-algebras (X ,↵) ! (W ,w), then p has a section � : W ! X
which is a map of P-algebras.

(*)(Awodey, Gambino and Sojakova):Inductive types in homotopy
type theory.



n-types

Let C be a h-tribe.

Definition
We say that an object A 2 C is a proposition if the diagonal
A ! A⇥ A is a homotopy equivalence.

More generally, the fibration h@0, @1i : PA ! A⇥ A defines an
object P(A) of C(A⇥ A).

Definition
We say that A is

I a 0-type if P(A) is a proposition;

I a (n + 1)-type if P(A) is a n-type.



Typos

Definition
We say that a h-tribe C is a typos* if it is a ⇧-tribe and the
product functor ⇧

f

: C(A) ! C(B) preserves the homotopy relation
for every fibration f : A ! B .

If C is a typos, then so is the tribe C(A) for any object A 2 C.

(?) Plural: typoi



Examples of typoi

Theorem
(Hofmann and Streicher) The category of small groupoids is a
typos if the fibrations are the Grothendieck fibrations.

Theorem
(Awodey-Warren-Voevodsky) The category of Kan complexes is
a typos if the fibrations are the Kan fibrations.

Theorem
(Gambino-Garner) The syntactic category of type theory is a
typos if the fibrations are the maps isomorphic to display maps.



Theorem
(Lamarche) The category of small categories Cat is a typos,
where a fibration is a Grothendieck bifibration.

Recall that the category of simplicial sheaves in a Grothendieck
topos admits a Quillen model structure (the so-called Joyal model
structure)* in which the weak equivalences are defined internally.

Theorem
The category of fibrant simplicial sheaves with respect to the Joyal
model structure is a typos,

(*)Letter to Grothendieck (1984).



From typoi to hyperdoctrines

Let C be a typos.

If f : A ! B is a map in a typos C, then the functor

Ho(f ?) : Ho(C(B)) ! Ho(C(A))

has both a left adjoint ⌃̃
f

and a right adjoint ⇧̃
f

.

The functor A 7! Ho(C(A)) has the structure of a hyper-doctrine
in the sense of Lawvere!

In particular, the homotopy category Ho(C(A)) is cartesian closed
for every object A 2 C.



Morphisms of typoi

Definition
A morphism of typoi F : C ! D is a morphism of tribes which
preserves

I the internal products ⇧
f

(X );

I the homotopy relation.

The typoi form a 2-category in which a 2-cell is a natural
isomorphism.

For example, the base change functor f ? : C(B) ! C(A) is a
morphism of typoi for any map f : A ! B in a typos C.



Homotopical presheaves

Let C be a typos.

We call a presheaf F : Cop ! Set homotopical if it respects the
homotopy relation: f ⇠ g ) F (f ) = F (g).

A homotopical presheaf is the same thing as a presheaf
F : Ho(C)op ! Set.

We say that a homotopical presheaf F is homotopically
representable if the functor F : Ho(C)op ! Set is representable.



Cribles

Let C be a typos. Recall that a crible S ✓ C is a set S of objects
of C such that the implication A 2 S ) A0 2 S is true for every
morphism A0 ! A in C.

A crible S defines a presheaf F
S

: Cop ! Set if we put

F
S

(A) =

(
1 if A 2 S

; otherwise

The presheaf F
S

is homotopical. We say that S is homotopically
representable if the resulting presheaf F

S

: Ho(C) ! Set is
homotopically representable.

Every object E representing F
S

is a proposition (ie the map E ! ?
is monic in the homotopy category).



IsContr(X )

For every X 2 C, the set

S = {A 2 C : X
A

is contractible}

is a crible. The crible is homotopically representable by the object

IsContr(X ) =
X

x :X

Y

y :X

Id
X

(x , y)

If X = (X , p) 2 C(B), then IsContr(X ) 2 C(B).



IsProp(X )

For every X 2 C, the set

S = {A 2 C : X
A

is a proposition }

is a crible. The crible is homotopically representable by the object

IsProp(X ) =
Y

x :X

Y

y :X

Id
X

(x , y)

If X = (X , p) 2 C(B), then IsProp(X ) 2 C(B).



Is(0,X )

For every X 2 C, the set

S = {A 2 C : X
A

is a 0�object}

is a crible. The crible is homotopically representable by the object

Is(0,X ) =
Y

x :X

Y

y :X

IsProp(Id
X

(x , y))

If X = (X , p) 2 C(B), then Is(0,X ) 2 C(B).



Is(n,X )

By recursion on n � 0.

For every X 2 C, the set

S = {A 2 C : X
A

is a (n + 1)�object}

is a crible. The crible is homotopically representable by the object

Is(n + 1,X ) =
Y

x :X

Y

y :X

Is(n, (Id
X

(x , y))

If X = (X , p) 2 C(B), then Is(n,X ) 2 C(B).



IsEq(f )

If f : X ! Y is a map in C, then the set

S = {A 2 C : f
A

: X
A

! Y
A

is an equivalence}

is a crible. The crible is homotopically representable by the object

IsEq(f ) =
Y

X

IsContr(X )

where X = (X , f ) is a fibrant replacement of (X , f ) 2 C(Y ).

If f : (X , p) ! (Y , q) is a map in C(B), then IsEq(f ) 2 C(B).



Eq(X ,Y )

If X and Y are two objects of C and i : C ! C([X ,Y ]) is the base
change functor, then we have a generic map g : i(X ) ! i(Y ).

The presheaf F : C([X ,Y ])op ! Set defined by putting

F (A) =

(
1, if g

A

: i(X )
A

! i(Y )
A

is an equivalence

; otherwise

is homotopical and representable by the object
Eq(X ,Y ) = IsEq(g) 2 C([X ,Y ]).



Univalent fibration

For every fibration X ! A there is a fibration

hs, ti : Eq
A

(X ) ! A⇥ A,

which classifies the homotopy equivalences X (a) ! X (b) between
the fibers of X 2 C(A). We have

Eq
A

(X )(a, b) = Eq(X (a),X (b))

for a : A and b : A.

By construction, Eq
A

(X ) = Eq(p?1(X ), p?2(X )) in C(A⇥ A), where
p
i

: A⇥ A ! A is a projection.



Univalent fibration

Definition
A fibration X ! A is univalent if the unit map u : A ! Eq

A

(X ) is
a homotopy equivalence.

In which case the fibrations

hs, ti : Eq
A

(X ) ! A⇥ A h@0, @1i : PA ! A⇥ A

are homotopically equivalent:

A

�
✏✏

u // Eq
A

(X )

hs,ti
✏✏

PA

;;

h@0,@1i
// A⇥ A



Small fibrations and universe

If C = (C,F) is a typos, we shall say that a class of maps F 0 ✓ F
is a class of small fibrations if the pair (C,F 0) is a typos.

A small fibration q : U 0 ! U is universal if for every small
fibration p : X ! A there exists a cartesian square:

X //

p

✏✏

U 0

q

✏✏
A // U.

A universe is the codomain of a universal small fibration U 0 ! U.

Martin-Löf axiom: There is a universe U.



Univalent typos

Definition
We say that a typos equipped with a universe U is univalent if the
universal fibration U 0 ! U is univalent.

Theorem
(Voevodsky) The category of Kan complexes Kan has the
structure of a univalent typos in which the fibrations are the Kan
fibrations.

The theorem was recently extended by Shulman to the category of
simplicial objects in the category of presheaves over an elegant
Reedy category.



Exercise

Define the notion of higher inductive type in a univalent typos.

Hints: see the n-Lab.

Remark: the notion of higher inductive type should be simpler in a
typos having an interval.



Loose ends

I Introduce a notion of interval in a typos (Warren)

I Introduce a notion of cofibration in a typos (Lumsdaine)

I Define a general notion of higher inductive types

I Define an elementary notion of higher topos (Shulman)



I thank you for your attention!


