Native implementation of Higher Inductive Types (HITs) in Coq

Bruno Barras

INRIA Saclay - Île de France

September 24, 2013
From the developer perspective

From Intentional Type Theory, 2 incompatibles extensions:

- Dependent functional programming: UIP or K (set theoretic model)
- HoTT: Univalence

We’d better avoid splitting the community by having HITs independent from the K/Univalence choice. theory.

- We expect HITs + K to be consistent.
HITs + K = quotients

In a proof-irrelevant setting, HITs can be seen as a way to implement quotients in Type Theory.

```
Inductive Z_2Z :=
| O
| S (_,:nat)
| mod2 : O = S (S O).
```
Overview

Introduction

How to model HITs in a proof assistant
 Axiomatization
 Private inductive types
 Native implementation

Introducing a subset of HITs
 Examples
 Typing rules: points
 Typing rules: paths
 What about recursive HITs?

Metatheory
Axiomatization

- Each notion (type/intro/elim) is introduced by a new constant.
- Computation rules are represented by paths!

\[
\text{Axiom } S_1 : \text{Type}. \\
\text{Axiom } \text{base} : S_1. \\
\text{Axiom } \text{loop} : \text{base} = \text{base}. \\
\text{Axiom } S_1_\text{rect} : \forall (P:S_1 \rightarrow \text{Type}) \\
\quad (f:P \text{ base}) \\
\quad (g:\text{transp} P \text{ loop} f = f) \\
\quad (c:S_1), P c. \\
\text{Axiom } S_1_\text{rect}_\text{eq} : \forall P f g, \\
\quad S_1_\text{rect} P f g \text{ base} = f.
\]
Axiomatization: pros and cons

Pros:
- Simple
- Safe (besides typos)

Cons:
- Definitional equality is not modified
 - Computational interpretation is lost
 - Makes path expressions more complex:

\[
\text{Axiom } S1_\text{rect}_eq2 : \text{forall } P \ f \ g, \\
\text{apD} \ (S1_\text{rect} \ P \ f \ g) \ \text{loop} = \\
\text{ap} \ (\text{transp} \ \text{loop}) \ (S1_\text{rect}_eq \ P \ f \ g) @ \\
g @ \\
!(S1_\text{rect}_eq \ P \ f \ g)
\]

instead of
\[
\text{apD} \ (S1_\text{rect} \ P \ f \ g) \ \text{loop} = g
\]
Private inductive types

Proposed by Licata for Agda, adapted to Coq by Bertot.

Idea: restrict the use of the eliminator:

Module Circle.
Local Inductive S1 : Type :=
 | base : S1.
Axiom loop : base = base.

Definition S1_rect (P:S1->Type)
 (b : P base) (l : loop # b = b)
 : forall (x:S1), P x
 := fun x => match x with base => b end.

Axiom S1_rect_beta_loop : forall (P : S1 -> Type)
 (b : P base) (l : loop # b = b),
 apD (S1_rect P b l) loop = l.
End Circle.

From now on, match e with base => f end is not allowed,
we must use S1_rect.
Private inductive types: pros and cons

Pros:

- Definitional equality for points

Cons:

- Consistency relies on the library writer.
- No definitional equality for paths.
- In Coq: eliminator does not depend on path argument (Bordg)

\[S1\text{_rect} \, P \, f \, g \, c \, \text{and} \, S1\text{_rect} \, P \, f \, g' \, c \, \text{both convertible to} \, \text{match} \, c \, \text{with base} \Rightarrow f \, \text{end} \]
Attempt to fix the issue

Bertot suggested:

Definition S1_rect (P : S1 -> Type)
 (b : P base) (l : loop # b = b)
 : forall (x:S1), P x
 := fun x => match x with base => fun _ => b end l.

Seems to work!
Native implementation

- Modify the theory implemented
- With fixed new primitive constants and definitional equalities.
Native implementation: pros and cons

Pros:
- Faithfully encode the desired types (no cheating).
- Consistency is warranted by the meta-theoretical properties of the new formalism.

Cons:
- A lot of implementation work.
Overview

Introduction

How to model HITs in a proof assistant
 Axiomatization
 Private inductive types
 Native implementation

Introducing a subset of HITs
 Examples
 Typing rules: points
 Typing rules: paths
 What about recursive HITs?

Metatheory
A limited subset of Higher-Inductive Types

Design proposed by Lumsdaine and Schulman:
- Only point and path constructors.
- Point constructors cannot refer to path constructors.
- Path constructors are homogeneous equalities.
- The usual strict positivity condition applies.
Examples: the circle

```
Inductive S1 : Type :=
  | base : S1
with paths :=
  | loop : base = base.
```

2 induction schemes are generated:

- **S1_rect** : \(\forall P (f:P \text{ base}) (g:\text{transp} P f \text{ loop} = \text{loop}) (c:S1), P c\)

- **S1_rect2** :
 \(\forall P f g (c1 c2:S1) (e:c1=c2), \text{transp} P (S1_\text{rect} P f g c1) e = S1_\text{rect} P f g c2\)

 Not convertible to \(\text{apD} (S1_\text{rect} P f g) e\).
Suspension

The following definition of the sphere is not accepted:

```
Inductive S2 : Type :=
   | base2 : S2
with paths :=
   | surf2 : (@idpath _ base2) = (@idpath _ base2).
```

But we can define the suspension of X:

```
Inductive Susp (X : Type) : Type :=
   | north : Susp X
   | south : Susp X
with paths :=
   | merid (x:X) : north = south.
```

and define the sphere as the suspension of the circle.
Truncation

prop-truncation:

\[
\text{Inductive } \text{prop_tr} (X:\text{Type}) : \text{Type} := \\
\quad | \text{proj} : X \to \text{prop_tr} X \\
\text{with paths := } \\
\quad | \text{contr} (y \ y' : \text{prop_tr} X) : y = y'.
\]

But set-truncation requires more work (hub/spoke trick):

\[
\text{Inductive } \text{set_tr} X : \text{Type} := \\
\quad | \text{truncn} : X \to \text{set_tr} X \\
\quad | \text{hub} : (\text{Circle} \to \text{set_tr} X) \to \text{set_tr} X \\
\text{with paths := } \\
\quad | \text{spoke} (l : \text{Circle} \to \text{set_tr} X) \ (s : \text{Circle}) : \\
\quad \ (\text{hub} \ l) = (l \ s).
\]
General case

The constraints lead to a most general HIT (we forget parameters):

\[
\text{Inductive } I : A \rightarrow \text{Type} :=
\]
\[
c : \forall (y : C_1), (\forall i : C_2 \ y \rightarrow I(fc y i)) \rightarrow I(gc y)
\]
\[
\text{with paths :=}
\]
\[
d : \forall (z : D_1) (z' : \forall i : D_2 \ z \rightarrow I(fd z i)),
\]
\[
b_1(z, z', c) = b_2(z, z', c) :> I(gd z).
\]

where \(b_1\) and \(b_2\) are applicative terms using \(c\) and \(z'\).

This is the analogous of what \(W\)-types are for inductive types.

Terminology:

- \(I\) is recursive if \(C_2\) is not empty for some \(y : C_1\).
- \(I\) is half-recursive if \(D_2\) is not empty for some \(z : D_1\).
Formation rule

Positivity condition applies.

Restriction for path constructors:

- Can have point arguments, but not paths
- Conclusion is an equation which handsides have a limited syntax
- The equation must relate two points with same indices
Introduction rules

No surprises: introduces point and path constructors with the type declared.
Elimination rules

In Coq, the primitive notion is not an elimination constant, but a pattern-matching operator, and a (guarded) fixpoint operator for recursive types. For non-recursive types, the pattern-matching operator and the usual eliminator coincide.
Pattern-matching and half-recursive types

For half-recursive HITs, we need to refer to the image of the elimination rule for the recursive arguments (e.g. prop-truncation):

\[
\text{Inductive } \text{prop_tr} \ (X : \text{Type}) \ : \ \text{Type} \ := \\
\quad \mid \text{proj} : X \to \text{prop_tr} \ X \\
\text{with } \text{paths} \ := \\
\quad \mid \text{contr} \ (y \ y' : \text{prop_tr} \ X) : y = y'.
\]

has the following eliminator:

\[
\text{prop_tr_rect} : \\
\quad \text{forall} \ (X : \text{Type}) \ (P : \text{prop_tr} \ X \to \text{Type}) , \\
\quad (\text{forall} \ x : X, P \ (\text{proj} \ x)) \to \\
\quad (\text{forall} \ (y : \text{prop_tr} \ X) \ (h : P \ y) \\
\quad \quad (y' : \text{prop_tr} \ X) \ (h0 : P \ y'), \\
\quad \quad \text{transp} \ P \ (\text{contr} \ y \ y') \ h = h0) \to \\
\quad \text{forall} \ i : \text{prop_tr} \ X, P \ i
\]
The fixmatch operator

`prop_tr_rect` is defined as

```
prop_tr_rect =
  fun (X : Type) (P : prop_tr X -> Type)
    (f : forall x : X, P (proj x))
    (g : forall (y : prop_tr X) (h : P y)
      (y' : prop_tr X) (h0 : P y'),
      transp P (contr y y') h = h0) (p : prop_tr X) =>
    fixmatch {h} p return (P p) with
    | proj x => f x
    | contr y y' => g y (h y) y' (h y')
  end
```

Note: `fixmatch` is just the concrete syntax for introducing the name `h` in path branches.
Typing rules: fixmatch

\[\vdash P : \Pi a : A. I a \rightarrow \text{Type} \]
\[\vdash t : I a \]
\[y y' \vdash f : P () (c y y') \]
\[(h : \Pi a : A. \Pi t : I a. P a t) z z' \vdash g : \text{transp } P u' (d z z') = v' \]

\[
\text{fixmatch } \{h\} t \text{ with } c y y' \Rightarrow f \mid d z z' \Rightarrow g \text{ end : } P a t
\]

where \(u' \) and \(v' \) are \(u \) and \(v \) with \(c \) replaced by \(f \) and \(z' \) replaced by \(\lambda i.h(z' i) \).

The \(\nu \)-reduction is defined as usual:

\[
\text{fixmatch}\{h\}c b b' \text{ with } c z z' \Rightarrow f(z, z') \mid \ldots \text{ end}
\]
reduces to \(f(b, b') \).
Path eliminator

fixmatch is extended to paths (and used in the S1_rect2 generated principle).

\[
\Gamma \vdash P : \Pi a : A. I a \rightarrow \text{Type} \\
\Gamma \vdash e : t_1 = t_2 :> I a \\
\Gamma \vdash f : P () (c y y') \\
(h : \Pi a : A. \Pi t : I a. P a t) z z' \vdash g : \text{transp } P u' (d z z') = v'
\]

\[
\Gamma \vdash \text{fixmatch } \{h\} e \text{ with } c y y' \Rightarrow f \mid d z z' \Rightarrow g \ \text{end} \\
: \text{transp } P \ \text{fixmatch } \{h\} t_1 \text{ with...end } e \\
= \text{fixmatch } \{h\} t_2 \text{ with...end }
\]
Reduction rules of the path eliminator

Reduction rules:
fixmatch\{h\}d(a) \text{ with } ... \mid d(z) \Rightarrow g(z,h) \text{ end} \text{ reduces to}
g(a,\text{fun } y \ x \Rightarrow \text{fixmatch}\{h\}x \text{ with } ... \mid d(z) \Rightarrow g(z,h) \text{ end}

We also have a rule for reflexivity:
fixmatch\{h\}r(x) \text{ with } ... \mid d(z) \Rightarrow g(z,h) \text{ end} \text{ reduces to}
r(\text{fixmatch}\{h\}x \text{ with } ... \mid d(z) \Rightarrow g(z,h) \text{ end})
(a bit more tricky than this!)

However, we have not managed to express a rule when the path is a composition.
Path constructor properties

Using \textit{both} reduction rules, we have a closed proof of

\[\text{apD (S1_rect P f g) loop = g} \]

- Generalizes to all HITs
- Equality does not hold definitionally, the lhs is stuck

This fulfills the requirements for proving e.g. \(\pi_1(S^1) = \mathbb{Z} \) (assuming univalence).
Recursive HITs

In Coq, the usual primitive recursor is not a primitive notion. Rather it results from pattern-matching (case-analysis) and a fixpoint operator (recursion).

More convenient for deep recursion:

```coq
Fixpoint mod2 (n:nat) : nat :=
    match n with
    | O | S O => n
    | S (S n') => mod2 n'
    end.
```

Not acceptable to give that up!
Without deep pattern-matching, one uses a “pipe-line” (this idea generalizes to arbitrary inductive types, cf Gimenez).
Recursive HITs

Does it transport to HITs?

```coq
Inductive Z_2Z :=
| O | S (_:nat)
| mod2 : O = S (S O).
```

```coq
Definition mod2_body (f:Z_2Z->Z_2Z) (n:Z_2Z) : Z_2Z :=
match n with
| O => O
| S k => match k with
  | O => (S O)
  | S n' => f n'
  | mod2 => _ : f (S O) = (S O)
end
| mod2 => _ : f O = O
end.
```

Unfortunately not, currently.
Overview

Introduction

How to model HITs in a proof assistant
 Axiomatization
 Private inductive types
 Native implementation

Introducing a subset of HITs
 Examples
 Typing rules: points
 Typing rules: paths
 What about recursive HITs ?

Metatheory
Syntactic metatheory

- Confluence
 Definitional equality decided by common reduct.

- Subject-Reduction
 “Well-typed programs can’t go wrong”

- Strong normalization
 decidability + “Proof terms don’t hide anything”

- Canonicty
 Proof in normal form begin with an introduction.

Canonicity does not hold.
Canonicity

Canonicity is a global result: lack of it in one type (except types with only weak eliminations) pervades all types.

Sources of non-canonicity:

- \equiv_{Type}: univalence
- $\equiv_{\Pi x:A. B}$: functional extensionality
- \equiv_I: path constructors
- in all cases: groupoid ops

But J only deals with reflexivity, not even composition.

To make it worse path composition is derived from J.
Conclusions

J under fire
 - J should be decomposed (as suggested by Coquand’s models)

Implementation:
 - Recursive types not well-supported (set-truncation, quotients)