
Native implementation of Higher Inductive
Types (HITs) in Coq

Bruno Barras

INRIA Saclay - Île de France

September 24, 2013

1 / 32

From the developer perspective

From Intentional Type Theory, 2 incompatibles extensions:
I Dependent functional programming: UIP or K (set theoretic

model)
I HoTT: Univalence

We’d better avoid splitting the comunity by having HITs
independent from the K/Univalence choice. theory.

I We expect HITs + K to be consistent.

2 / 32

HITs + K = quotients

In a proof-irrelevant setting, HITs can be seen as a way to
implement quotients in Type Theory.

Inductive Z_2Z :=
| O
| S (_:nat)
| mod2 : O = S (S O).

3 / 32

Overview

Introduction

How to model HITs in a proof assistant
Axiomatization
Private inductive types
Native implementation

Introducing a subset of HITs
Examples
Typing rules: points
Typing rules: paths
What about recursive HITs ?

Metatheory

4 / 32

Axiomatization

I Each notion (type/intro/elim) is introduced by a new
constant.

I Computation rules are represented by paths!

Axiom S1 : Type.
Axiom base : S1.
Axiom loop : base = base.
Axiom S1_rect : forall (P:S1->Type)

(f:P base)
(g:transp P loop f = f)
(c:S1), P c.

Axiom S1_rect_eq : forall P f g,
S1_rect P f g base = f.

5 / 32

Axiomatization: pros and cons

Pros:
I Simple
I Safe (besides typos)

Cons:
I Definitional equality is not modified

I Computational interpretation is lost
I Makes path expressions more complex:

Axiom S1_rect_eq2 : forall P f g,
apD (S1_rect P f g) loop =
ap (transp loop) (S1_rect_eq P f g) @
g @
!(S1_rect_eq P f g)

instead of
apD (S1_rect P f g) loop = g

6 / 32

Private inductive types
Proposed by Licata for Agda, adapted to Coq by Bertot.

Idea: restrict the use of the eliminator:

Module Circle.
Local Inductive S1 : Type :=
| base : S1.
Axiom loop : base = base.

Definition S1_rect (P:S1->Type)
(b : P base) (l : loop # b = b)
: forall (x:S1), P x
:= fun x => match x with base => b end.

Axiom S1_rect_beta_loop : forall (P : S1 -> Type)
(b : P base) (l : loop # b = b),
apD (S1_rect P b l) loop = l.

End Circle.

From now on, match e with base =>f end is not allowed,
we must use S1_rect.

7 / 32

Private inductive types: pros and cons

Pros:
I Definitional equality for points

Cons:
I Consistency relies on the library writer.
I No definitional equality for paths.
I In Coq: eliminator does not depend on path argument

(Bordg)
S1_rect P f g c and S1_rect P f g’ c both
convertible to match c with base =>f end

8 / 32

Attempt to fix the issue

Bertot suggested:

Definition S1_rect (P : S1 -> Type)
(b : P base) (l : loop # b = b)
: forall (x:S1), P x
:= fun x => match x with base => fun _ => b end l.

Seems to work!

9 / 32

Native implementation

I Modify the theory implemented
I With fixed new primitive constants and definitional

equalities.

10 / 32

Native implementation: pros and cons

Pros:
I Faithfully encode the desired types (no cheating).
I Consistency is warranted by the meta-theoretical

properties of the new formalism.

Cons:
I A lot of implementation work.

11 / 32

Overview

Introduction

How to model HITs in a proof assistant
Axiomatization
Private inductive types
Native implementation

Introducing a subset of HITs
Examples
Typing rules: points
Typing rules: paths
What about recursive HITs ?

Metatheory

12 / 32

A limited subset of Higher-Inductive Types

Design proposed by Lumsdaine and Schulman:
I Only point and path constructors.
I Point constructors cannot refer to path constructors.
I Path constructors are homogeneous equalities.
I The usual strict positivity condition applies.

13 / 32

Examples: the circle

Inductive S1 : Type :=
| base : S1

with paths :=
| loop : base = base.

2 induction schemes are generated:
I S1 rect : forall P (f:P base)
(g:transp P f loop = loop) (c:S1), P c

I S1 rect2 :
forall P f g (c1 c2:S1) (e:c1=c2),
transp P (S1 rect P f g c1) e =
S1 rect P f g c2
Not convertible to apD (S1_rect P f g) e.

14 / 32

Suspension

The following definition of the sphere is not accepted:

Inductive S2 : Type :=
| base2 : S2

with paths :=
| surf2 : (@idpath _ base2) = (@idpath _ base2).

But we can define the suspension of X:

Inductive Susp (X : Type) : Type :=
| north : Susp X
| south : Susp X

with paths :=
| merid (x:X) : north = south.

and define the sphere as the suspension of the circle.

15 / 32

Truncation

prop-truncation:

Inductive prop_tr (X:Type) : Type :=
| proj : X -> prop_tr X

with paths :=
| contr (y y’ : prop_tr X) : y=y’.

But set-truncation requires more work (hub/spoke trick):

Inductive set_tr X : Type :=
| truncn : X -> set_tr X
| hub : (Circle -> set_tr X) -> set_tr X

with paths :=
| spoke (l : Circle -> set_tr X) (s : Circle) :

(hub l) = (l s).

16 / 32

General case

The constraints lead to a most general HIT (we forget
parameters):

Inductive I : A -> Type :=
c : forall (y:C1), (forall i:C2 y-> I(fc y i)) ->

I (gc y)
with paths :=

d : forall (z:D1) (z’:forall i:D2 z-> I(fd z i)),
b1(z,z’,c) = b2(z,z’,c) :> I (gd z).

where b1 and b2 are applicative terms using c and z′.

This is the analogous of what W-types are for inductive types.

Terminology:
I I is recursive if C2 is not empty for some y:C1.
I I is half-recursive if D2 is not empty for some z:D1.

17 / 32

Formation rule

Positivity condition applies.

Restriction for path constructors:
I Can have point arguments, but not paths
I Conclusion is an equation which handsides have a limited

syntax
I The equation must relate two points with same indices

18 / 32

Introduction rules

No surprises: introduces point and path constructors with the
type declared.

19 / 32

Elimination rules

In Coq, the primitive notion is not an elimination constant, but a
pattern-matching operator, and a (guarded) fixpoint operator for
recursive types.
For non-recursive types, the pattern-matching operator and the
usual eliminator coincide.

20 / 32

Pattern-matching and half-recursive types

For half-recursive HITs, we need to refer to the image of the
elimination rule for the recursive arguments (e.g.
prop-truncation):

Inductive prop_tr (X:Type) : Type :=
| proj : X -> prop_tr X

with paths :=
| contr (y y’ : prop_tr X) : y=y’.

has the following eliminator:

prop_tr_rect :
forall (X : Type) (P : prop_tr X -> Type),
(forall x : X, P (proj x)) ->
(forall (y : prop_tr X) (h : P y)

(y’ : prop_tr X) (h0 : P y’),
transp P (contr y y’) h = h0) ->

forall i : prop_tr X, P i

21 / 32

The fixmatch operator

prop tr rect is defined as

prop_tr_rect =
fun (X : Type) (P : prop_tr X -> Type)
(f : forall x : X, P (proj x))
(g : forall (y : prop_tr X) (h : P y)

(y’ : prop_tr X) (h0 : P y’),
transp P (contr y y’) h = h0) (p : prop_tr X) =>

fixmatch {h} p return (P p) with
| proj x => f x
| contr y y’ => g y (h y) y’ (h y’)
end

Note: fixmatch is just the concrete syntax for introducing the
name h in path branches.

22 / 32

Typing rules: fixmatch

` P : Πa :A. I a → Type
` t : I a

y y′ ` f : P () (c y y′)
(h : Πa :A.Πt : I a.P a t) z z′ ` g : transp P u′ (d z z′) = v′

fixmatch {h} t with c y y′ ⇒ f | d z z′ ⇒ g end : P a t

where u′ and v′ are u and v with c replaced by f and z′ replaced
by λi.h (z′ i).

The ι-reduction is defined as usual:
fixmatch{h}c b b’ with c z z’ =>f(z,z’) | ... end

reduces to f(b,b’).

23 / 32

Path eliminator

fixmatch is extended to paths (and used in the S1 rect2
generated principle).

` P : Πa :A. I a → Type
` e : t1 = t2 :> I a

y y′ ` f : P () (c y y′)
(h : Πa :A.Πt : I a.P a t) z z′ ` g : transp P u′ (d z z′) = v′

` fixmatch {h} e with c y y′ ⇒ f | d z z′ ⇒ g end
: transp P fixmatch {h} t1 with...end e

= fixmatch {h} t2 with...end

24 / 32

Reduction rules of the path eliminator

Reduction rules:
fixmatch{h}d(a) with ... | d(z) =>g(z,h) end reduces
to
g(a,fun y x =>fixmatch{h}x with ... | d(z) =>g(z,h) end

We also have a rule for reflexivity:
fixmatch{h}r(x) with ... | d(z) =>g(z,h) end reduces
to r(fixmatch{h}x with ... | d(z) =>g(z,h) end)

(a bit more tricky than this!)

However, we have not managed to express a rule when the
path is a composition.

25 / 32

Path constructor properties

Using both reduction rules, we have a closed proof of

apD (S1_rect P f g) loop = g

I Generalizes to all HITs
I Equality does not hold definitionally, the lhs is stuck

This fulfills the requirements for proving e.g. π1(S1) = Z
(assuming univalence).

26 / 32

Recursive HITs

In Coq, the usual primitive recursor is not a primitive notion.
Rather it results from pattern-matching (case-analysis) and a
fixpoint operator (recursion).
More convenient for deep recursion:

Fixpoint mod2 (n:nat) : nat :=
match n with
| O | S O => n
| S (S n’) => mod2 n’
end.

Not acceptable to give that up!
Without deep pattern-matching, one uses a “pipe-line” (this
idea generalizes to arbitrary inductive types, cf Gimenez).

27 / 32

Recursive HITs

Does it transport to HITs?

Inductive Z_2Z :=
| O
| S (_:nat)
| mod2 : O = S (S O).

Definition mod2_body (f:Z_2Z->Z_2Z) (n:Z_2Z) : Z_2Z :=
match n with
| O => O
| S k => match k with

| O => (S O)
| S n’ => f n’
| mod2 => _ : f (S O) = (S O)
end

| mod2 => _ : f O = O
end.

Unfortunately not, currently.

28 / 32

Overview

Introduction

How to model HITs in a proof assistant
Axiomatization
Private inductive types
Native implementation

Introducing a subset of HITs
Examples
Typing rules: points
Typing rules: paths
What about recursive HITs ?

Metatheory

29 / 32

Syntactic metatheory

I Confluence
Definitional equality decided by common reduct.

I Subject-Reduction
“Well-typed programs can’t go wrong”

I Strong normalization
decidability + “Proof terms don’t hide anything”

I Canonicty
Proof in normal form begin with an introduction.

Canonicity does not hold.

30 / 32

Canonicity

Canonicity is a global result: lack of it in one type (except types
with only weak eliminations) pervades all types.
Sources of non-canonicity:

I =Type: univalence
I =Πx:A.B : functional extensionality
I =I : path constructors
I in all cases: groupoid ops

But J only deals with reflexivity, not even composition.

To make it worse path composition is derived from J.

31 / 32

Conclusions

J under fire
I J should be decomposed (as suggested by Coquand’s

models)

Implementation:
I Recursive types not well-supported (set-truncation,

quotients)

32 / 32

	Introduction
	How to model HITs in a proof assistant
	Axiomatization
	Private inductive types
	Native implementation

	Introducing a subset of HITs
	Examples
	Typing rules: points
	Typing rules: paths
	What about recursive HITs ?

	Metatheory

