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Q Critical exponents
@ Order parameter: 3
@ Average cluster size: ~
@ Characteristic cluster size & cluster no. density: o, 7 & G

e Scaling relations

@ Average cluster size

@ Correlation length ¢

@ Mass of percolating cluster for p > pc
e Finite-size scaling

@ Average cluster size

@ Cluster number density

@ Finite-size scaling: Warning

e Self-similarity, fixed points & the correlation length



Critical exponents Order parameter: 3

Average cluster

Characteristic cluster size & cluster no. density: o, 7 & G

The critical exponent 3 characterises the abrupt pick-up of the
order parameter
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Critical exponents

Order parameter: 3
Average cluster size: ~y
Characteristic cluster size & cluster no. density: o, 7 & G

The critical exponent ~ characterises the divergence of the
average cluster size:

6 x(p) < |p—pc|7 forp — pe.
v=43/18 ford = 2
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Critical exponents
P Order parameter

Average clus

Characteristic cluster S|ze & cluster no. density: o, 7 & G

The critical exponent o characterises the divergence of the
characteristic cluster size:

-1/0

S¢(p) o [p — Pe forp — pe.

The critical exponent 7 and the scaling function G enter into the
scaling ansatz of the cluster number density

n(s,p) x s "G(s/s¢) forp — pc,s> 1.
Generally, in dimensions greater that one:

(s.p) s7 forl<s<s;e
P decays rapidly fors > s;.



Average cluster size
Correlation length &
Mass of percolating cluster for p Pc

Scaling relations
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. . Average cluster size
Scaling relations ; N
Correlation length &

Mass of percolating cluster for p

Scaling relation: = 37,

Bethe lattice: y=1 ;0 =3 ;7=3.
d=1 y=1;0=1;7=2.

43 36., _ _ 187
d:2 ")/ E'U —1,7'——1

Using P (p) + > o ; SN(S,p) = p, one can derive another
Scaling relation: 3 = 2.

Bethe lattice: 3=1 ;0=13% ;7=3.
d=1 8=0,0=1;7=2

: 5 36 187
d:2 .ﬁ:%,azﬁ,’r:w

Hence, there are only two independent critical exponents
among 3,~,o0 and .



Average cluster size
Correlation length &
Mass of percolating cluster for p Pc

Scaling relations

The linear scale ¢ of the characteristic cluster size s¢ ¢P,
Because s — oo for p — pc, so does &:
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forp — pc.
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Average cluster size
Correlation length &
Mass of percolating cluster for p Pc

Scaling relations

S¢ X ¢P.  where D is fractal dimension of percolating cluster
¢ = characteristic length scale
= typical radius of largest finite cluster (definition for all p)

For p > pc, the percolating infinite cluster is excluded.

@ Finite clusters reside inside holes of percolating cluster

@ ¢ = typical radius of the largest holes in percolating cluster
At p = pc where £ = c:

@ Finite clusters of all sizes

@ Holes of all sizes in the percolating cluster



Average cluster size

Scaling relations .
9 Correlation length &
Pc

Mass of percolating cluster for p

Introduced two new critical exponents: D and v.
However, we can derive further two scaling relations:

SgO(fD
o |p—pc| P forp — pe
K\P—pcl_l/" forp — pc
Scaling relation: D = X
Bethe lattice: D=4 ;0 =3 ;v = 3.
d=1 D=1:0=1:v=1.
. o1, _36. ,_ 4
d:2 .D:m,a—ﬁ,y—§.



Average cluster size

Scaling relations . .
9 Correlation length &

Mass of percolating cluster forp > p¢

Is the percolating cluster fractal?

@ When p = p¢, the correlation length £ = c.
Percolating cluster is fractal on all length scales /.

@ When p # pc, the correlation length £ < oc.
Percolating cluster is fractal on length scales ¢ < &.
Percolating cluster is uniform on length scales ¢ > &.




Average cluster size
Correlation length &
Mass of percolating cluster forp > p¢

Scaling relations

Consider a window of size ¢ in an infinite lattice.
Let M (p; ¢) denote the mass of percolating infinite cluster in
window of size ¢ at occupation probability p.
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Average cluster size
Correlation length &
Mass of percolating cluster forp > p¢

Scaling relations

Poo(p) = im Pog (p;€) =0 for p < pe.
10 —
Moo (pc;g) X fD,D <d
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Average cluster size
Correlation length &
Mass of percolating cluster forp > p¢

Scaling relations

Mass of perc. cluster in window of size ¢ when p >p; = { < oc:
(® for ¢ < ¢ - looks fractal
M., _ d¢D _ ¢D-d 4d ;
(&, 0) (€/&)"¢ 13 14 for £ > ¢ - looks homogenous
density volume

No. boxes of size &; Mass within a box of size &.
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Average cluster size

Scaling relations . .
9 Correlation length &

Mass of percolating cluster forp > p¢

(£,0) = Poo(p; )01 mass = density - volume
= Poo(p)® when £>> ¢
=(p— pc)ﬂgd
o £P/v

Scaling relation: D —d = —3/v.

d=1 D= 1 =0 ;v=1.
d:2 D:%ﬁ:e’s—G,y:%
Bethe lattice: D=4 ;8=1 ;v = 3.
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Scaling relations
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Average cluster size
&
Mass of percolating cluster forp > pc

¢b—d for¢ < ¢

P-4 fore>¢

o Pp=pc+0.01
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Average cluster size
Cluster number density
Finite-size scaling: Warning

Finite-size scaling

Percolation is defined on an infinite lattice L = co.
However, we cannot simulate L = oo.
oL>¢ ©)
To all intents & purposes such systems appear to be co.
We have clusters of all sizes up to ¢ in linear size.
& is an (inherent) upper cut-off scale set by p.
oLk ®
Such systems are finite.
We have clusters of all sizes up to L in linear size.
L is an (external) upper cut-off scale set by the system.
This is a finite-size effect .
Atp =pc, E =ocosoL <« £ FORANY L.
Divergences of quantities such as y are capped.
However, we can exploit the finiteness of the lattice at p = p¢
where necessarily L < ¢ to extract critical exponents.



Average cluster size
Cluster number density

Finite-size scaling

Finite-size scaling: Warning

Consider an infinite lattice L = oo.
For p close to p, £ o< |p — pe| ™ = |p — pe| o £71/7.

x(P) o< [p — pe| " o €77 forp — pe

Now consider finite lattice L < oo:

/v forL> ¢
L) =
x(piL) {U/V forL < ¢

Atp = pc, £ = o0, S0 L « £ for ALL system sizes L.

Hence, we expect finite-size scaling x(pe; L) oc L7/,
Extract v/v by measuring scaling of x(pc; L) with system size L.



Average cluster size
Cluster number density
Finite-size scaling: Warning

Finite-size scaling
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Average cluster size
Cluster number density

Finite-size scaling
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Average cluster size
Cluster number density
Finite-size scaling: Warning

Finite-size scaling

Consider an infinite lattice L = oo.

n(s,p) < s "G (s/s¢) forp — pe,s > 1
Sf(p) x |p — pc|_1/(7 X fl/(mj) X fD forp — pc

Now consider finite lattice L < oo:

s77G (s/€P) forL> &, p— pe,s>1
s77G(s/LP)  forL< & p —pe,s>1

n(s,p;L) = {

Atp =pc, { = 00,50 L < ¢ for ALL system sizes L.
Hence, we expect finite-size scaling n(s,p; L) < s77G (s/LP).
Extract 7 and D by data collapse, plotting s™n(s, p; L) vs. s/LP.



Average cluster size
Cluster number density

Finite-size scalin
9 Finite-size scaling: Warning
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Average cluster size
Cluster number density

Finite-size scaling

Finite-size scaling: Warning
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Average cluster size
Cluster number density

Finite-size scalin
9 Finite-size scaling: Warning

Using 7 = 187/91 & D = 91/48 Vi
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Average cluster size
Cluster number density
Finite-size scaling: Warning

Finite-size scaling

At p = p¢, the correlation length ¢ = oo, i.e., ALWAYS L < &.
Measure critical exponents by investigating how the quantities
scale with system size at p = pe.

L> ¢ L <K& L> ¢
e Crossover >k phenomena
0 Pc 1




Self-similarity, fixed points & the correlation length

3

0 atp = 0. Empty lattice. Trivially self-similar.

oo at p = pc.Density at critical value pc. Non-trivially self-similar.
0 atp = 1. Fully occupied lattice. Trivially self-similar.

¢ :Fluctuations away from the trivially self-similar configurations.
Self-similarity can be identified with fixed points of a rescaling

transformation which reduces length scales by a factor b > 1.
Assume ¢ < oo:

£ E/bs /b2 s E/b3 s e lim £/b" =0
Py >Py; > P; > Py > nILmoopg:O
Py <Py <P < Pf<ceeee nILmooprTzl



Self-similarity, fixed points & the correlation length
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Self-similarity, fixed points & the correlation length

The solutions to the fixed points equation

0 associatedwithp=0orp=1
00 associated with p = pc.

§=€/b©£={

Fixed points p* = 0 and p* = 1 are stable fixed points.
Fixed point p* = pc is an unstable fixed point.

At p = pc, the system is delicately poised in a non-trivial
self-similar state between two trivially self-similar states.




Self-similarity, fixed points & the correlation length

Thank you for listening!

For a comprehensive introduction to percolation, please see
K. Christensen and N.R. Moloney, Complexity and Criticality,
Imperial College Press (2005), Chapter 1.

Access to animations, please visit
www.complexityandcriticality.com
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