Critical Phenomena and Percolation Theory: III

Kim Christensen

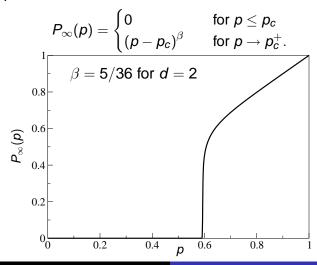
Complexity & Networks Group Imperial College London

Joint CRM-Imperial College School and Workshop
Complex Systems
Barcelona
8-13 April 2013

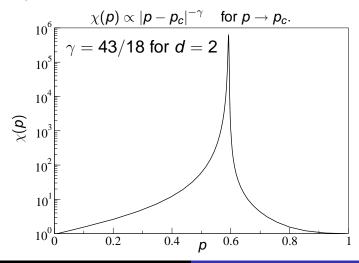
Outline

- Critical exponents
 - Order parameter: β
 - Average cluster size: γ
 - Characteristic cluster size & cluster no. density: $\sigma, \tau \& \mathcal{G}$
- Scaling relations
 - Average cluster size
 - Correlation length ξ
 - Mass of percolating cluster for p > p_c
- Finite-size scaling
 - Average cluster size
 - Cluster number density
 - Finite-size scaling: Warning
- Self-similarity, fixed points & the correlation length

The critical exponent β characterises the abrupt pick-up of the order parameter



The critical exponent γ characterises the divergence of the average cluster size:



The critical exponent σ characterises the divergence of the characteristic cluster size:

$$s_{\xi}(p) \propto |p-p_c|^{-1/\sigma}$$
 for $p \to p_c$.

The critical exponent τ and the scaling function $\mathcal G$ enter into the scaling ansatz of the cluster number density

$$n(s,p) \propto s^{-\tau} \mathcal{G}\left(s/s_{\xi}
ight) \quad \text{for } p o p_c, s \gg 1.$$

Generally, in dimensions greater that one:

$$n(s,p) \propto egin{cases} s^{- au} & ext{for } 1 \ll s \ll s_{\xi} \ ext{decays rapidly} & ext{for } s \gg s_{\xi}. \end{cases}$$

$$\chi(p) = \frac{\sum_{s=1}^{\infty} s^{2} n(s, p)}{\sum_{s=1}^{\infty} s n(s, p)} \propto \sum_{s=1}^{\infty} s^{2} n(s, p)$$

$$\approx \sum_{s=1}^{\infty} s^{2-\tau} \mathcal{G}(s/s_{\xi})$$

$$\approx \int_{1}^{\infty} s^{2-\tau} \mathcal{G}(s/s_{\xi}) ds$$

$$= \int_{1/s_{\xi}}^{\infty} (us_{\xi})^{2-\tau} \mathcal{G}(u) s_{\xi} du \qquad \text{with } u = s/s_{\xi}; ds = s_{\xi} du$$

$$= s_{\xi}^{3-\tau} \int_{1/s_{\xi}}^{\infty} u^{2-\tau} \mathcal{G}(u) du$$

$$\to s_{\xi}^{3-\tau} \int_{0}^{\infty} u^{2-\tau} \mathcal{G}(u) du \qquad \text{for } p \to p_{c}$$

$$\propto |p - p_{c}|^{-\frac{3-\tau}{\sigma}} = |p - p_{c}|^{-\gamma} \qquad \text{for } p \to p_{c}.$$

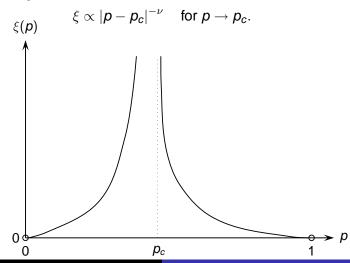
Scaling relation:
$$\gamma = \frac{3-\tau}{\sigma}$$
.
Bethe lattice: $\gamma = 1$; $\sigma = \frac{1}{2}$; $\tau = \frac{5}{2}$.
 $d = 1$: $\gamma = 1$; $\sigma = 1$; $\tau = 2$.
 $d = 2$: $\gamma = \frac{43}{18}$; $\sigma = \frac{36}{91}$; $\tau = \frac{187}{91}$.

Using
$$P_{\infty}(p) + \sum_{s=1}^{\infty} sn(s,p) = p$$
, one can derive another Scaling relation: $\beta = \frac{\tau-2}{\sigma}$.

Bethe lattice:
$$\beta = 1$$
 ; $\sigma = \frac{1}{2}$; $\tau = \frac{5}{2}$. $d = 1$: $\beta = 0$; $\sigma = 1$; $\tau = 2$. $d = 2$: $\beta = \frac{5}{36}$; $\sigma = \frac{36}{91}$; $\tau = \frac{187}{91}$.

Hence, there are only two independent critical exponents among β, γ, σ and τ .

The linear scale ξ of the characteristic cluster size $s_{\xi} \propto \xi^{D}$. Because $s_{\xi} \to \infty$ for $p \to p_{c}$, so does ξ :



- $s_{\xi} \propto \xi^{D}$, where *D* is fractal dimension of percolating cluster $\xi = \text{characteristic length scale}$
- = typical radius of largest <u>finite</u> cluster (definition for all *p*)

For $p > p_c$, the percolating infinite cluster is <u>excluded</u>.

- Finite clusters reside inside holes of percolating cluster
- ullet $\xi=$ typical radius of the largest holes in percolating cluster

At $p = p_c$ where $\xi = \infty$:

- Finite clusters of <u>all</u> sizes
- Holes of <u>all</u> sizes in the percolating cluster

Introduced two new critical exponents: D and ν . However, we can derive further two scaling relations:

$$egin{aligned} \mathbf{s}_{\xi} &\propto \mathbf{\xi}^D \ &\propto \left| p - p_c
ight|^{-
u D} & ext{for } p
ightarrow p_c \ &\propto \left| p - p_c
ight|^{-1/\sigma} & ext{for } p
ightarrow p_c \end{aligned}$$

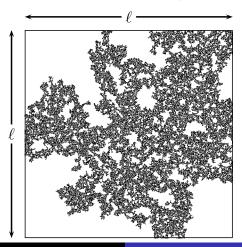
Scaling relation:
$$D = \frac{1}{\sigma \nu}$$

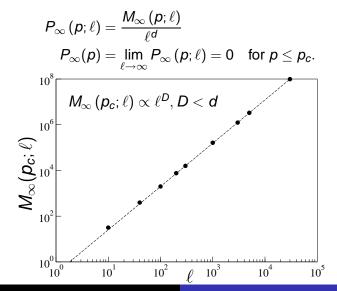
Bethe lattice: $D = 4$; $\sigma = \frac{1}{2}$; $\nu = \frac{1}{2}$. $d = 1$: $D = 1$; $\sigma = 1$; $\nu = 1$. $d = 2$: $D = \frac{91}{48}$; $\sigma = \frac{36}{91}$; $\nu = \frac{4}{3}$.

Is the percolating cluster fractal?

- When $p = p_c$, the correlation length $\xi = \infty$. Percolating cluster is fractal on all length scales ℓ .
- When $p \neq p_c$, the correlation length $\xi < \infty$. Percolating cluster is fractal on length scales $\ell \ll \xi$. Percolating cluster is uniform on length scales $\ell \gg \xi$.

Consider a window of size ℓ in an infinite lattice. Let $M_{\infty}(p;\ell)$ denote the mass of percolating infinite cluster in window of size ℓ at occupation probability p.

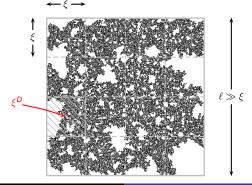




Mass of perc. cluster in window of size ℓ when $p > p_c \Rightarrow \xi < \infty$:

$$M_{\infty}(\xi,\ell) = \begin{cases} \ell^{D} & \text{for } \ell \ll \xi \text{ - looks fractal} \\ (\ell/\xi)^{d} \xi^{D} = \underbrace{\xi^{D-d}}_{\text{density volume}} & \ell^{d} & \text{for } \ell \gg \xi \text{ - looks homogenous} \end{cases}$$

No. boxes of size ξ ; Mass within a box of size ξ .



when $\ell \gg \xi$

$$egin{aligned} M_{\infty}(\xi,\ell) &= P_{\infty}(p;\ell)\ell^d & ext{mass} = ext{density} \cdot ext{volume} \ &= P_{\infty}(p)\ell^d & ext{when } \ell \gg \xi \ &= (p-p_c)^{eta}\ell^d \ &\propto \xi^{-eta/
u}\ell^d \end{aligned}$$

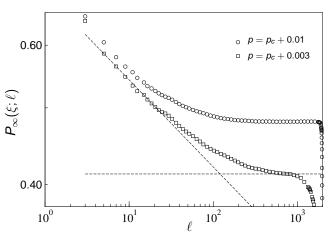
Scaling relation: $D - d = -\beta/\nu$.

$$d = 1$$
 : $D = 1$; $\beta = 0$; $\nu = 1$.

$$d=2$$
 : $D=\frac{91}{48}$; $\beta=\frac{5}{36}$; $\nu=\frac{4}{3}$.

Bethe lattice:
$$D=4$$
; $\beta=1$; $\nu=\frac{1}{2}$.

$$P_{\infty}(\xi,\ell) = rac{M_{\infty}(\xi,\ell)}{\ell^d} = egin{cases} \ell^{D-d} & ext{ for } \ell \ll \xi \\ \xi^{D-d} & ext{ for } \ell \gg \xi \end{cases}$$



Percolation is defined on an infinite lattice $L = \infty$. However, we cannot simulate $L = \infty$.

- $L \gg \xi$ $\stackrel{\bigcirc}{\odot}$ To all intents & purposes such systems appear to be ∞ . We have clusters of all sizes up to ξ in linear size. ξ is an (inherent) upper cut-off scale set by p.
- L « ξ ^(*)
 Such systems are finite.
 We have clusters of all sizes up to L in linear size.
 L is an (external) upper cut-off scale set by the system.
 This is a finite-size effect.

At $p=p_c$, $\xi=\infty$ so $L\ll \xi$ FOR ANY L. Divergences of quantities such as χ are capped. However, we can exploit the finiteness of the lattice at $p=p_c$ where necessarily $L\ll \xi$ to extract critical exponents. Consider an infinite lattice $L = \infty$.

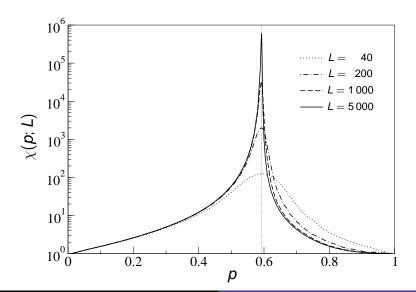
For
$$p$$
 close to p_c , $\xi \propto |p - p_c|^{-\nu} \Rightarrow |p - p_c| \propto \xi^{-1/\nu}$.

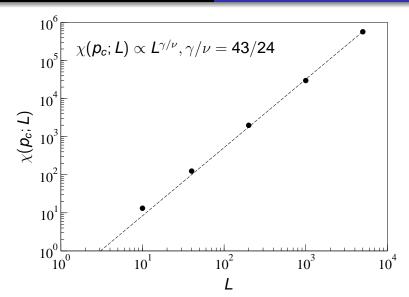
$$\chi(p) \propto |p - p_c|^{-\gamma} \propto \xi^{\gamma/\nu}$$
 for $p \to p_c$

Now consider finite lattice $L < \infty$:

$$\chi(\rho; L) = \begin{cases} \xi^{\gamma/\nu} & \text{for } L \gg \xi \\ L^{\gamma/\nu} & \text{for } L \ll \xi \end{cases}$$

At $p=p_c$, $\xi=\infty$, so $L\ll \xi$ for ALL system sizes L. Hence, we expect finite-size scaling $\chi(p_c;L)\propto L^{\gamma/\nu}$. Extract γ/ν by measuring scaling of $\chi(p_c;L)$ with system size L.





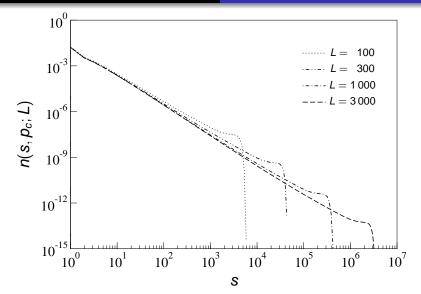
Consider an infinite lattice $L = \infty$.

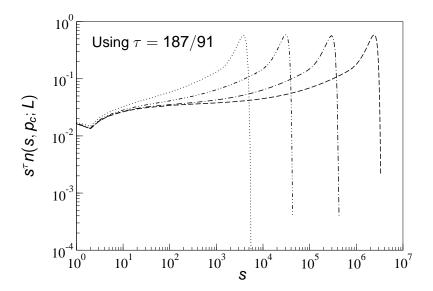
$$egin{aligned} n(s,p) \propto s^{- au} \mathcal{G}\left(s/s_{\xi}
ight) & ext{for } p
ightarrow p_{c}, s \gg 1 \ s_{\xi}(p) \propto |p-p_{c}|^{-1/\sigma} \propto \xi^{1/(\sigma
u)} \propto \xi^{D} & ext{for } p
ightarrow p_{c} \end{aligned}$$

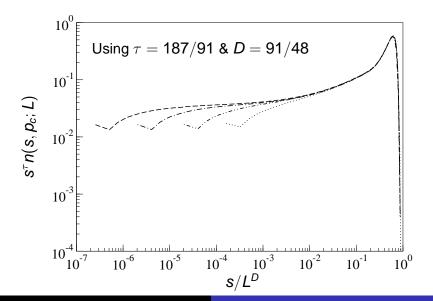
Now consider finite lattice $L < \infty$:

$$n(s, p; L) = \begin{cases} s^{-\tau} \mathcal{G} \left(s/\xi^D \right) & \text{for } L \gg \xi, \, p \to p_c, \, s \gg 1 \\ s^{-\tau} \tilde{\mathcal{G}} \left(s/L^D \right) & \text{for } L \ll \xi, \, p \to p_c, \, s \gg 1 \end{cases}$$

At $p = p_c$, $\xi = \infty$, so $L \ll \xi$ for ALL system sizes L. Hence, we expect finite-size scaling $n(s, p; L) \propto s^{-\tau} \tilde{\mathcal{G}}(s/L^D)$. Extract τ and D by data collapse, plotting $s^{\tau} n(s, p; L)$ vs. s/L^D .







At $p = p_c$, the correlation length $\xi = \infty$, i.e., ALWAYS $L \ll \xi$. Measure critical exponents by investigating how the quantities scale with system size at $p = p_c$.

$$L\gg \xi$$
 $L\ll \xi$ $L\gg \xi$ ρ_c

ξ

0 at p = 0. Empty lattice. Trivially self-similar.

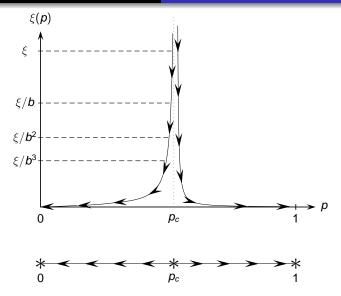
 ∞ at $p = p_c$. Density at critical value p_c . Non-trivially self-similar.

0 at p = 1. Fully occupied lattice. Trivially self-similar.

 ξ :Fluctuations away from the trivially self-similar configurations. Self-similarity can be identified with fixed points of a rescaling transformation which reduces length scales by a factor b>1. Assume $\xi<\infty$:

$$\xi \mapsto \xi/b \mapsto \xi/b^{2} \mapsto \xi/b^{3} \mapsto \cdots \qquad \lim_{n \to \infty} \xi/b^{n} = 0$$
 $p_{1}^{-} > p_{2}^{-} > p_{3}^{-} > p_{4}^{-} > \cdots \qquad \lim_{n \to \infty} p_{n}^{-} = 0$
 $p_{1}^{+} < p_{2}^{+} < p_{3}^{+} < p_{4}^{+} < \cdots \qquad \lim_{n \to \infty} p_{n}^{+} = 1$

Self-similarity, fixed points & the correlation length



The solutions to the fixed points equation

$$\xi = \xi/b \Leftrightarrow \xi = egin{cases} 0 & \text{associated with } p = 0 \text{ or } p = 1 \ \infty & \text{associated with } p = p_c. \end{cases}$$

Fixed points $p^* = 0$ and $p^* = 1$ are stable fixed points. Fixed point $p^* = p_c$ is an unstable fixed point.

At $p = p_c$, the system is delicately poised in a non-trivial self-similar state between two trivially self-similar states.

Thank you for listening!

For a comprehensive introduction to percolation, please see K. Christensen and N.R. Moloney, *Complexity and Criticality*, Imperial College Press (2005), Chapter 1.

Access to animations, please visit www.complexityandcriticality.com.