Conformal Geometry and Geometric PDE´s

Sign in
Intensive Research Programme (IRP)
From May 01, 2013
to July 31, 2013

Introduction

The particular interest of Geometric Analysis seems to lie in a combination of its relation to the physical world and the way it lies at the intersection of so many branches of Mathematics (Riemannian/Conformal/Complex/Algebraic Geometry, Calculus of Variations, and PDE’s), or even Physics.

Conformal geometry is the study of the set of angle-preserving (conformal) transformations on a space. While in two dimensions, this is precisely the geometry of Riemann surfaces, in dimensions three and above the answer opens up many new different subjects, leading to the very wide field that is conformal geometry (Yamabe-type problems, non-local or non-linear conformally covariant operators, Poincaré-Einstein metrics and its relation to the AdS/CFT correspondence in Physics, and many more).

On the other hand, in CR geometry there are formal similarities with conformal geometry. The analysis of these operators is closely connected with the geometry of the pseudoconvex manifolds which they may bound, hence of interest in several complex variables.

Another classical topic in Geometric Analysis is the study of variational problems related to the area functional. In this sense, the global theory of minimal and constant mean curvature surfaces in homogeneous three-manifolds,
and more generally in Riemannian and sub-Riemannian manifolds, represents today a tremendously active field of new discoveries and challenges.  Applications of minimal surfaces to other subjects include low dimensional topology, general relativity and materials science. Closely related to this topic appears the isoperimetric problem that connects Geometric Analysis with Geometric Measure Theory.

While all these seem to be almost unrelated topics, it is precisely the interaction between them that nurtures the development of such a fundamental branch of mathematics that is Geometrical analysis.

Organizing Committee

Sun-Yung Alice Chang, Princeton University

Maria del Mar González, Universitat Politècnica de Catalunya

Robin Graham, University of Washington

Francisco Martín, Universidad de Granada

Paul Yang, Princeton University

INVOICE/PAYMENT INFORMATION

IF YOUR INSTITUTION COVERS YOUR REGISTRATION FEE: Please note that, in case your institution is paying for the registration via bank transfer, you will have to indicate your institution details and choose “Transfer” as the payment method at the end of the process.

UPF | UB | UPC | UAB

*If the paying institution is the UPF / UB/ UPC / UAB, after registering, please send an email to comptabilitat@crm.cat with your name and the institution internal reference number that we will need to issue the electronic invoice. Please, send us the Project code covering the registration if needed.

Paying by credit card

IF YOU PAY VIA CREDIT CARD but you need to provide the invoice to your institution to be reimbursed, please note that we will also need you to send an email to comptabilitat@crm.cat providing the internal reference number given by your institution and the code of the Project covering the registration (if necessary).

LODGING INFORMATION

ON-CAMPUS AND BELLATERRA

BARCELONA AND OFF-CAMPUS 

 

For inquiries about this event please contact the Scientific Events Coordinator Ms. Núria Hernández at nhernandez@crm.cat​​

 

scam warning

We are aware of a number of current scams targeting participants at CRM activities concerning registration or accommodation bookings. If you are approached by a third party (eg travellerpoint.org, Conference Committee, Global Travel Experts or Royal Visit) asking for booking or payment details, please ignore them.

Please remember:
i) CRM never uses third parties to do our administration for events: messages will come directly from CRM staff
ii) CRM will never ask participants for credit card or bank details
iii) If you have any doubt about an email you receive please get in touch