Navigate Up
Sign In
  • CRM
  • CRM
  • CRM

A complete list of publications may be found through the CV link or through 
Google Scholar or Researcher ID pages.

Selected recent publications that may interest any sensible reader include …

MacDevette, M. M.; Myers, T. G, Nanofluids: An innovative phase change material for cold storage systems?
International Journal of Heat and Mass Transfer, 92, 2016 
DOI: 10.1016/j.ijheatmasstransfer.2015.08.060  

Font, F.; Myers, T. G.; Mitchell, S. L. A mathematical model for nanoparticle melting with density change
Microfluidics and Nanofluidics, 18, 2015
DOI: 10.1007/s10404-014-1423-x  

Cregan, V.; Myers, T. G., Modelling the efficiency of a nanofluid direct absorption solar collector
International Journal of Heat and Mass Transfer, 90, 2015 
DOI: 10.1016/j.ijheatmasstransfer.2015.06.055  

MacDevette M., Myers T.G., Wetton B.R. Boundary layer analysis and heat transfer of a nanofluid. Microfluidics and Nanofluidics, 2014 DOI 10.1007/s10404-013-1319-1.

Font F., Myers T.G. Spherically symmetric nanoparticle melting with a variable phase change temperature. J. Nanoparticle Res. 2013, 15:2086
DOI 10.1007/s11051-013-2086-3

Cummings L.J., Low J., Myers T.G. Influence of electric field gradient on a stretched nematic sheet.
Euro. J. Appl. Math. 2013,  available on Cambridge Journals Online, CJO2013, doi:10.1017/S095679251300034X

Myers T.G., MacDevette M.M. and Ribera H. A time dependent model to determine the thermal
conductivity of a nanofluid. J. Nanoparticle Res. 15:1775 2013, DOI 10.1007/s11051-013-1775-2

Myers T.G., Low J. Modelling the solidification of a power-law fluid flowing through a narrow pipe. Int. J. Thermal Sci., 2013,

Font F., Mitchell S.L., Myers T.G. One-dimensional solidification of supercooled melts. Int. J.  Heat  Mass Trans. 62, 411-421, 2013.

Myers T.G., S.L. Mitchell. A mathematical analysis of the motion of an in-flight soccer ball.
Sports Engineering, 1-13, 2013. DOI 10.1007/s12283-012-0105-8

Myers T.G. , Mitchell S.L., Font. F. Energy conservation in the one-phase supercooled Stefan problem
Int. Comm. Heat  Mass Trans. 39, 2012

MacDevette M.M., Myers T.G.. Contact melting of a three-dimensional phase change material on a flat substrate. Int. J. Heat  Mass Trans., 55, 2012

Mitchell S.L., Myers T.G. Application of Heat Balance Integral Methods to One-Dimensional Phase Change Problems. Int. J. Diff. Eqs, 2012. doi:10.1155/2012/187902

Myers, T.G. Why are slip lengths so large in carbon nanotubes? Microfluidics and Nanofluidics 10(5) 1141-1145, 2011, 
 DOI: 10.1007/s10404-010-0752-7


Mitchell S.L. & Myers T.G. The application of standard and refined heat balance integral methods to one-dimensional Stefan problems. SIAM Review 2010 DOI: 10.1137/080733036
Myers T.G. Optimal exponent heat balance and refined integral methods applied to Stefan problems.Int. J. Heat & Mass Trans.53(5-6),  
 1119-1127, 2010  DOI: 10.1016/j.ijheatmasstransfer.2009.10.045
Myers T.G. & Charpin J.P.F. A mathematical model of the Leidenfrost effect on an axisymmetric droplet. Phys. Fluids. 21(9), 2009, 
 DOI: 10.1063/1.3155185
Myers T.G. Optimizing the exponent in the Heat Balance and Refined Integral Methods. Int. Commun. Heat Mass Transf. 2008, 
 DOI: 10.1016/j.icheatmasstransfer. 2008.10.013.
Charpin J.P.F., Lombe M., Myers T.G. Spin coating of non-Newtonian fluids with a moving front. Phys Rev E76, 2007 
 DOI: 10.1103/PhysRevE.76.016312.
Balmforth N., Ghadge S. & Myers T.G. Surface tension driven fingering of a viscoplastic film. J. non-Newtonian Fluid Mech., 142: 143 – 149, 2007. DOI:10.1016/j.jnnfm.2006.07.011.
Myers T.G. The application of non-Newtonian models to thin film flow. Physical Rev. E, 72: 066302-1-11, 2005. DOI: 10.1103/PhysRevE.72.066302
Myers T.G. & Charpin J.P.F A mathematical model for atmospheric ice accretion and water flow on a cold surface. Int. J. Heat & Mass Trans. 47: 5483-5500, 2004. 
DOI: 10.1016/j.ijheatmasstransfer.2004.06.037.
Myers T.G., Charpin J.P.F. & Chapman S.J. The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface. Physics of Fluids 14(8) pp2788-2803 2002. DOI: 10.1063/1.1488599.