Towards a constructive view at simplicial sets

(work in progress)

Hugo Herbelin

26 September 2013

Conference on Type Theory, Homotopy Theory and Univalent Foundations

Barcelona
The standard definitions of semi-simplicial and simplicial sets

A simplicial set is a presheaf on the simplex category made of order-preserving maps over non-empty finite ordinals.

A semi-simplicial set is a presheaf on the category of order-preserving injective maps over non-empty finite ordinals.
Part I

A dependently-typed inductively-generated construction of simplicial sets
Awodey-Lumsdaine’s dependently-typed inductively-generated construction of *semi*-simplicial sets

\[
Y_0 : \text{Type} \\
Y_1 : \Pi a b : Y_0. \text{Type} \\
Y_2 : \Pi a b c : Y_0. \Pi x : Y_1(a, b). \Pi y : Y_1(a, c). \Pi z : Y_1(b, c). \text{Type}
\]
Awodey-Lumsdaine’s dependently-typed inductively-generated construction of semi-simplicial sets: an effective construction

[HH 2013] gives a precise dependently-typed inductively-generated construction of (augmented) semi-simplicial sets. We give here a variant for (non-augmented) semi-simplicial sets independently due to Voevodsky.

Let’s rephrase the types of the $Y_i$’s as follows:

\begin{align*}
Y_0 : T_0 & \triangleq \text{Type} \\
Y_1 : T_1 & \triangleq \Pi \{a : Y_0, b : Y_0\}. \text{Type} \\
Y_2 : T_2 & \triangleq \Pi [\Sigma \{a : Y_0, b : Y_0, c : Y_0\}. (x : Y_1(a, b), y : Y_1(a, c), z : Y_1(b, c))]. \text{Type} \\
\vdots
\end{align*}

and let’s set

\[ sst_n \triangleq (T_0, T_1, \ldots, T_n) \]

The construction is then shown on next slide
Awodey-Lumsdaine’s dependently-typed inductively-generated construction of semi-simplicial sets: the construction

\[ \text{sst}_n : \text{Type}_2 \]
\[ \triangleq \text{Type}_1 \]
\[ \triangleq \Sigma X : \text{sst}_n. F^{n,n+1}(X) \rightarrow \text{Type}_1 \]

\[ F^{n,k} \]
\[ F^0,k \]
\[ F^{n+1,k} \]

\[ (X : \text{sst}_n) \]
\[ X \]
\[ (X, Y) \]

\[ \triangleq [k] \rightarrow X \]
\[ \triangleq \Sigma x : F^{n,k}(X). \Pi \sigma \in [n + 1] \hookrightarrow [k]. Y(d^{n,n+1,k}_{\sigma}(x)) \]

\[ d^{n,j,k}_{\sigma} \]
\[ d^{0,j,k}_{\sigma} \]
\[ d^{n+1,j,k}_{\sigma} \]

\[ (X : \text{sst}_n) (x : F^{n,k}(X)) \]
\[ X x \]
\[ (X, Y) (x, y) \]

\[ \triangleq x \circ \sigma \]
\[ \triangleq (d^{n,j,k}_{\sigma}(X)(x), \lambda \sigma' \in [n + 1] \hookrightarrow [j]. \text{subst} \alpha^{n,n+1,j,k}_{\sigma,\sigma'} \text{ in } y(\sigma \circ \sigma')) \]

\[ \alpha^{n,i,j,k}_{\sigma}[j] \hookrightarrow [k], \sigma'[i] \hookrightarrow [j] \]
\[ \alpha^{0,i,j,k}_{\sigma,\sigma'} \]
\[ \alpha^{n+1,i,j,k}_{\sigma,\sigma'} \]
\[ \alpha^{n,i,j,k}_{\sigma,\sigma'} \]

\[ (X : \text{sst}_n) (x : F^{n,k}(X)) \]
\[ \text{unit unit} \]
\[ (X, Y) (x, y) \]

\[ \triangleq d^{n,i,k}_{\sigma\circ\sigma'}(x) = (d^{m,i,j}_{\sigma'} \circ d^{m,j,k}_{\sigma})(x) \]
\[ \triangleq \text{refl} \]
\[ \triangleq (\alpha^{n,i,j,k}_{\sigma,\sigma'}(x), \ldots \text{ a proof using assoc. of } \circ \text{ and strictness of } = \ldots) \]
Awodey-Lumsdaine’s dependently-typed inductively-generated construction of semi-simplicial sets: comments

Note 1: [HH2013]’s construction for augmented semi-simplicial sets is based on atomic face maps $d_i$ rather than on “long-range” face maps.

Note 2: The construction scales to semi-simplicial objects at arbitrary types if strict equality is available in the logic (in concurrency with a univalent equality).

Note 3: Products and exponentials can be defined recursively (no proof yet that they coincide to the categorical constructions though).
Awodey-Lumsdaine’s dependently-typed inductively-generated construction of semi-simplicial sets

What we learned so far: the well-founded structure of semi-simplicial sets can be exploited to provide with a recursive definition of them.

Can we do the same for simplicial sets?
Dependently-typed inductively-generated construction of simplicial sets

Yes, it is possible (though no properties of the correctness of the construction have been proved yet): inject degeneracies on the fly by replacing \( Y(x) \) in \( F^{n+1,k} \) above by

\[
\hat{Y} \quad (x : F^{n,n+1}(X)) : \text{Type}_1
\]

\[
\hat{Y} \quad x \quad \triangleq Y(x) \lor \Sigma(p, \sigma, y). \Pi(q, \delta). \text{connect}^{n,p,q}(X)(\sigma)(y)(x)(\delta)
\]

these are the added degenerate simplices
one for each non-trivial \( \sigma \in [n + 1] \to [p + 1] \) and \( y \in F^{p,p+1}(X) \)
i.e. \( y \) non-degenerate at some level \( p \)

For each extra degenerate simplex \( s_{\sigma}(y) \),
and for each face map \( \delta \in [n + 1] \leftrightarrow [q + 1] \) coming out of it,
a simplicial equation canonically expressing \( d_{\delta}(s_{\sigma}(y)) \) in term of some \( s_{\sigma'}(d_{\delta'}(y)) \) has to hold

(this latter equation is expressed by the recursively-defined predicate \text{connect})
Part II

Injecting degeneracies in the context of the presheaf definition
Key lemma:

Let

$$(X, d, s)$$ be a simplicial set

and

$$|X_n| \triangleq \{x \in X_n|n = 0 \lor \forall i \forall x' : X_{n-1}.s_i^{n-1}(x') \neq x\}$$

be the subset of non-degenerate simplices of $X_n$.

Then, for all $x \in X_n$, there is

a unique $p \leq n$,

a unique $\sigma_{i_0} \circ \ldots \circ \sigma_{i_{p-1}} \in [n] \xrightarrow{s} [n - p]$

and a unique $x' \in |X_{n-p}|$ such that $x = s_{i_{p-1}}^{n-1}(\ldots s_{i_0}^{n-p}(x')\ldots)$.
A constructive definition of simplicial sets

(extension with degeneracies)

For \( n \) given, let \( Y_i \) be a finite family of sets indices over \( 0 \leq i \leq n \).

We define the extension of \( Y_n \) with degeneracies from \((Y_i)_{0 \leq i < n}\) to be the set

\[
\hat{Y}_n \triangleq \{ (\sigma, y) | \sigma \in [n] \xrightarrow{s} [m] \land y \in Y_m \}.
\]

The case \( n = m \) gives an embedding of \( Y_n \) into \( \hat{Y}_n \). When \( n > m \), this gives as many copies of \( Y_m \) into \( \hat{Y}_n \) as there are surjections from \([n]\) to \([m]\). We call such embeddings degeneracies.

Degeneracy maps can be defined over the \( \hat{Y}_n \)'s by composition of atomic degeneracy maps \( \tilde{s}^n_i \), which themselves go from \( \hat{Y}_n \) to \( \hat{Y}_{n+1} \). The atomic degeneracy map \( \tilde{s}^n_i \) is defined by:

\[
\tilde{s}^n_i (\sigma, y) \triangleq (\sigma \circ \sigma^n_i, y)
\]

where \( \sigma \) ranges over \([n] \xrightarrow{s} [n - p]\) and \( y \) over \( Y_{n-p} \).
A constructive definition of simplicial sets

(extension of face maps to degeneracies)

Let us assume in addition that $d_{\delta}^{n,m}$ is a family of maps from $Y_n$ to $\hat{Y}_m$ indexed over $\delta \in [m] \hookrightarrow [n]$. We define the extension of $d_{\delta}^{n,m}$ from $\hat{Y}_n$ to $\hat{Y}_m$ to be the function $\hat{d}_{\delta}^{n,m}$ recursively defined by well-founded induction on $n$ by the clause

$$\hat{d}_{\delta}^{n,m}(\sigma, y) \triangleq (\sigma', d_{\delta'}^{p,q}(y))$$

where

- $y \in Y_p$ and $\sigma \in [n] \to [p]$
- $q$ and $\sigma' \in [m] \to [q]$ and $\delta' \in [q] \hookrightarrow [p]$ are unique such that $\sigma \circ \delta = \delta' \circ \sigma'$
A constructive definition of simplicial sets

(main definition)

A constructive simplicial set is given by

- a family $Y_n$ of pure simplices,
- a family of face maps $d^{n,p}_\delta$ from $Y_n$ to $\hat{Y}_p$, with $\delta$ ranging over $[p] \hookrightarrow [n]$,

satisfying for all $\delta' \in [m] \hookrightarrow [p]$ the following family of equations:

$$\hat{d}^{p,m}_{\delta'} \circ d^{n,p}_\delta = d^{n,m}_{\delta \circ \delta'}$$
A constructive definition of simplicial sets  
(further work)

We can define morphisms as families of maps from $X_n$ to $\hat{Y}_n$ that commute with the $d_{\sigma,m}^n$ and $\hat{d}_{\sigma,m}^n$ when canonically extended into maps from $\hat{X}_n$ to $\hat{Y}_n$.

We conjecture to have an equivalence of categories between such constructive simplicial sets and (ordinary) simplicial sets.

Constructively defining exponential is tricky but we believe it is feasible, though it requires to modify the above definition of morphisms.