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Abstract

Given a sequence of positive integers s = (s1, . . . , sn), the s-lecture hall simplex is defined
as:

Ps
n :=

{
x ∈ Rn : 0 ≤ x1

s1
≤ · · · ≤ xn

sn
≤ 1

}
.

Introduced by Savage and Schuster [SS12], s-lecture hall simplices have been widely studied
in discrete geometry and combinatorics.

A central question in discrete geometry is whether Ps
n admits a unimodular triangulation,

i.e., a triangulation into lattice simplices of unit volume. It is conjectured that Ps
n admits

a unimodular triangulation for every s [HOT16, Conj. 5.2]. While some progress has been
made toward resolving this conjecture, significant gaps remain. In particular, [HOT16, Thm.
3.3] proves that Ps

n admits a unimodular triangulation if si+1 = kisi for some ki ≥ 1, and
[BS20, Cor. 3.5] shows the existence of regular-unimodular triangulations when 0 ≤ si+1 −
si ≤ 1. In this talk, I present a significant extension of these results by establishing a more
general (and recursive) criterion for the existence of unimodular triangulations of Ps

n: Let
s = (s1, . . . , sn−1) and sn = k sn−1 + ε with k ≥ 1 and ε ∈ {0, 1}. If Ps

n−1 admits a

unimodular triangulation, then P(s,sn)
n also admits one.

Another central topic in discrete geometry is Ehrhart theory, which studies the Ehrhart
polynomial LP(t) of a lattice polytope P. A polytope is said to be Ehrhart positive if all
coefficients of LP(t) are nonnegative. It is known that there exist sequences s such that Ps

n

is not Ehrhart positive. More precisely, Liu and Solus showed that certain s-lecture hall
simplices are not Ehrhart positive for some specific s [LS19]. Motivated by this, Olsen [Ols19,
Question 6.8] asked for conditions on s that determine whether Ps

n is Ehrhart positive or not.
In this talk, I show that for sequences of the form s = (a, ..., a, a+ 1) ∈ Zn with a ∈ Z+ and
n > 4, the simplex Ps

n is not Ehrhart positive when a is large enough. This is unexpected,
given the similarities to (a unimodular transform of) the dilated standard simplex, which is
known to be Ehrhart positive. Moreover, since these sequences s are weakly increasing, their
lecture hall simplices admit regular unimodular triangulations [BS20].

This is joint work with Martina Juhnke and Germain Poullot.
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