Unimodular triangulation and Ehrhart non-positivity for s-lecture hall simplices

Jhon Bladimir Caicedo Portilla Universität Osnabrück

Abstract

Given a sequence of positive integers $s = (s_1, \ldots, s_n)$, the s-lecture hall simplex is defined as:

$$\mathcal{P}_n^s := \left\{ \boldsymbol{x} \in \mathbb{R}^n : 0 \le \frac{x_1}{s_1} \le \dots \le \frac{x_n}{s_n} \le 1 \right\}.$$

Introduced by Savage and Schuster [SS12], s-lecture hall simplices have been widely studied in discrete geometry and combinatorics.

A central question in discrete geometry is whether \mathcal{P}_n^s admits a unimodular triangulation, i.e., a triangulation into lattice simplices of unit volume. It is conjectured that \mathcal{P}_n^s admits a unimodular triangulation for every s [HOT16, Conj. 5.2]. While some progress has been made toward resolving this conjecture, significant gaps remain. In particular, [HOT16, Thm. 3.3] proves that \mathcal{P}_n^s admits a unimodular triangulation if $s_{i+1} = k_i s_i$ for some $k_i \geq 1$, and [BS20, Cor. 3.5] shows the existence of regular-unimodular triangulations when $0 \leq s_{i+1} - s_i \leq 1$. In this talk, I present a significant extension of these results by establishing a more general (and recursive) criterion for the existence of unimodular triangulations of \mathcal{P}_n^s : Let $s = (s_1, \ldots, s_{n-1})$ and $s_n = k s_{n-1} + \varepsilon$ with $k \geq 1$ and $\varepsilon \in \{0, 1\}$. If \mathcal{P}_{n-1}^s admits a unimodular triangulation, then $\mathcal{P}_n^{(s, s_n)}$ also admits one.

Another central topic in discrete geometry is Ehrhart theory, which studies the Ehrhart polynomial $\mathcal{L}_{\mathsf{P}}(t)$ of a lattice polytope P. A polytope is said to be Ehrhart positive if all coefficients of $\mathcal{L}_{\mathsf{P}}(t)$ are nonnegative. It is known that there exist sequences s such that \mathcal{P}_n^s is not Ehrhart positive. More precisely, Liu and Solus showed that certain s-lecture hall simplices are not Ehrhart positive for some specific s [LS19]. Motivated by this, Olsen [Ols19, Question 6.8] asked for conditions on s that determine whether \mathcal{P}_n^s is Ehrhart positive or not. In this talk, I show that for sequences of the form $s = (a, ..., a, a+1) \in \mathbb{Z}^n$ with $a \in \mathbb{Z}^+$ and n > 4, the simplex \mathcal{P}_n^s is not Ehrhart positive when a is large enough. This is unexpected, given the similarities to (a unimodular transform of) the dilated standard simplex, which is known to be Ehrhart positive. Moreover, since these sequences s are weakly increasing, their lecture hall simplices admit regular unimodular triangulations [BS20].

This is joint work with Martina Juhnke and Germain Poullot.

References

- [BS20] P. Brändén and L. Solus. "Some algebraic properties of lecture hall polytopes". In: Proceedings of the 32nd International Conference on "Formal Power Series and Algebraic Combinatorics". Séminaire Lotharingien de Combinatoire, 84B.25, 2020. URL: https://www.mat.univie.ac.at/~slc/wpapers/FPSAC2020/25.html.
- [HOT16] T. Hibi, MC. Olsen, and A. Tsuchiya. "Gorenstein properties and integer decomposition properties of lecture hall polytopes". In: (2016). arXiv: 1608.03934 [math.CO]. URL: https://arxiv.org/abs/1608.03934.
- [LS19] F. Liu and L. Solus. "On the Relationship Between Ehrhart Unimodality and Ehrhart Positivity". In: *Annals of Combinatorics* 23 (2019), pp. 347-365. DOI: https://doi.org/10.1007/s00026-019-00429-8. URL: https://link.springer.com/article/10.1007/s00026-019-00429-8.

- [Ols19] MC. Olsen. "Polyhedral geometry for lecture hall partitions". In: Algebraic and Geometric Combinatorics on Lattice Polytopes, Proceedings of the Summer Workshop on Lattice Polytopes. World Scientific Publishing Co, 2019, pp. 330–353. DOI: https://doi.org/10.1142/9789811200489_0021. URL: https://www.worldscientific.com/doi/abs/10.1142/9789811200489_0021.
- [SS12] C. D. Savage and M. J. Schuster. "Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences". In: *Journal of Combinatorial Theory, Series A* 119.4 (2012), pp. 850-870. ISSN: 0097-3165. DOI: https://doi.org/10.1016/j.jcta. 2011.12.005. URL: https://www.sciencedirect.com/science/article/pii/S0097316511002044.