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Figure 1: Subdividing the three-simplex into four identical rhombic pyramids.

This work studies the expressivity of ReLU neural networks with a focus
on their depth. Functions represented by ReLU networks are continuous and
piecewise linear (CPWL), and every such function on Rn can be computed by
a ReLU network [1]. This naturally leads to the complexity-theoretic question:
what is the minimal depth needed to represent CPWL functions? An important
CPWL function for understanding neural network depth is the function

MAXn(x) = MAXn(x1, . . . , xn) = max{x1, . . . , xn}.

Wang and Sun [3] showed that every function in CPWLn can be written as a
linear combination of MAXn+1 functions applied to some affine functions. As
observed by Arora, Basu, Mianjy, and Mukherjee [1], this fact implies that

CPWLn ⊆ ReLUn,⌈log2(n+1)⌉ .

In words, every CPWL function on Rn can be represented with ⌈log2(n+ 1)⌉
hidden layers by implementing it in a binary tree manner. Hertrich, Basu, Di
Summa, and Skutella [2] conjectured that the ⌈log2(n)⌉ upper bound on the
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required number of hidden layers for MAXn is sharp. This conjecture led to a
sequence of works that proved it in a variety of special cases.

Our main result is that the conjecture is false. More precisely, we prove that
the maximum of n numbers can be computed with ⌈log3(n − 2)⌉ + 1 hidden
layers.

Theorem 1. For n ≥ 1, we have MAX3n+2 ∈ ReLUn+1.

By the discussion above, this implies that every CPWL function defined on
Rn can be represented with ⌈log3(n− 1)⌉+ 1 hidden layers.

Theorem 2. For n ≥ 3, we have CPWLn = ReLUn,⌈log3(n−1)⌉+1.

It is noteworthy that Theorem 1 already improves the depth complexity of
MAX5.

Proposition 3. The minimum number of hidden layers needed for computing
MAX5 is exactly two.

The proof of our result is short and elementary. However, it hides a beautiful
geometric intuition that guided our search for the construction and that may be
useful to further improve the current upper or lower bounds.

The geometric intuition is based on relations between neural networks and
geometry. We use such geometrical notions as valuation and full additivity of
the identity map.

We explain the geometric intuition behind our construction of the two-hidden-
layer ReLU neural network for MAX5. Geometrically, we subdivide ∆4 to four
pieces, each in P2. This subdivision leads to the two-hidden-layer ReLU network
for MAX5. This is a nice 3D puzzle, and an illustration of the solution is given
in Figure 1.
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