ORDER POLYTOPES OF CROWN POSETS

Order polytopes were introduced by Richard P. Stanley in 1986 as a geometric representation of partially ordered sets (posets). They play a significant role in combinatorial geometry, optimization, and algebraic combinatorics. The zigzag (or the fence) poset Z_n on [n] is defined by the cover relations $1 \prec 2 \succ 3 \prec \cdots \succ n-1 \prec n$ if n is even and $1 \prec 2 \succ 3 \prec \cdots \prec n-1 \succ n$ if n is odd, and it has been extensively studied in the literature, but the same cannot be said about the crown poset. The crown poset C_{2n} on [2n] is defined by the cover relations $1 \prec 2 \succ 3 \prec \cdots \succ 2n-1 \prec 2n \succ 1$, that is, it corresponds to the zigzag poset Z_{2n} with the extra order relation $2n \succ 1$.

In this project we study the order polytope of the crown poset C_{2n} . The crown poset C_{2n} is the poset of proper faces of a polygon with n vertices.

We start by studying the f-vector of $\mathcal{O}(\mathcal{C}_{2n})$ and provide an explicit formula for each of its entries. These formulas are obtained by using the well-known connection between faces of the order polytope and the so called connected and compatible partitions of the underlying poset. We count these partitions using elementary combinatorial methods.

Theorem. For all $k \geq 0$,

$$f_k(\mathcal{O}(\mathcal{C}_{2n})) = \delta_k + \sum_{i=2}^{2n} \sum_{m=1}^{\lfloor i/2 \rfloor} \frac{2n}{i} \binom{i}{2m} \binom{n+m-1}{i-1} \binom{2m}{i-k}$$

where

$$\delta_k = \begin{cases} 2, & \text{if } k = 0, \\ 1, & \text{if } k = 1, \\ 0, & \text{if } k > 1. \end{cases}$$

We also investigate the Ehrhart polynomial of $\mathcal{O}(\mathcal{C}_{2n})$. We provide a recursive formula for the order polynomial of \mathcal{C}_{2n} in terms of order polynomials of zigzags, which gives a recursive expression for the Ehrhart polynomial of $\mathcal{O}(\mathcal{C}_{2n})$. This provides a counterpart to the formulas found in the zigzag case by Petersen–Zhuang (2025). This also allows us to simplify the computation for the linear coefficient of $\Omega_{\mathcal{C}_{2n}}(t)$ made by Ferroni–Morales–Panova (2025).

Theorem.

$$\begin{split} \Omega_{\mathcal{C}_{2n}}(t) &= \Omega_{\mathcal{C}_{2n}}(t-1) + n \cdot \Omega_{Z_{2n-1}}(t-1) + \Omega_{Z_{2n-3}}(t) + \sum_{1 \leq i < j \leq n} \Omega_{Z_{2(n-j+i)-1}}(t-1) \cdot \Omega_{Z_{2(j-i)-1}}(t) \\ &= \Omega_{\mathcal{C}_{2n}}(-t) - n \cdot \Omega_{Z_{2n-1}}(-t) + t \cdot \Omega_{Z_{2n-3}}(t) - \sum_{\substack{1 \leq i < j \leq n \\ (i,j) \neq (1,n)}} \Omega_{Z_{2(n-j+i)-1}}(-t) \cdot \Omega_{Z_{2(j-i)-1}}(t) \end{split}$$

We finish by studying the h^* -polynomial of $\mathcal{O}(\mathcal{C}_{2n})$. We give a new combinatorial interpretation of its coefficients in terms of a new permutation statistic that we call *cyclic swap* and discuss some combinatorial properties of this statistic. This provides a circular version of a result for the zigzag poset studied by Coons–Sullivant (2023).

Theorem. For any $n \geq 1$,

$$h^*(\mathcal{O}(\mathcal{C}_{2n}))(t) = \sum_{\sigma \in \mathrm{CA}_{2n}} t^{\mathrm{cswap}(\sigma)}.$$