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Shellability is a desirable property in combinatorial topology. It is a way to build a regular cell
complex cell by cell, e.g. a polytopal complex, ensuring that the topology of cell complex stays
controlled after a new cell has been added. The order in which the cells are glued together
is called a shelling. We show that the boundary of one-point compactifications of unbounded
polyhedra are shellable. Due to the polyhedral nature of tropical hypersurfaces we apply this
result to show that tropical hypersurfaces are shellable.

Shellability of bounded polyehdra has previously been studied by Brugisser and Mani who
showed that the boundary of a bounded polyhedron is shellable. Moreover, for any two facets
H1, Hy of a bounded polyhedron there exists a shelling such that H; comes first and Ho last.

Before we explain our setup, note that we choose min as tropical addition. We define a
tropical hypersurface defined by a tropical polynomial F' as the orthogonal projection of the
codimension-1-skeleton of the unbounded polyhedron

D(F) = {(z,5) €R xR |s< F(z)} .

In general, the challenge to define shellability for unbounded polyhedra as well as tropical
hypersurfaces arises from their non-compactness as the notion of shellability applies to regular
complexes. We consider two different compactifications.

We begin with a one-point compactification.

Theorem 1. The one-point compactification of a tropical hypersurfaces is shellable.

To show the theorem above we embed D(F') in a suitable projective space. This allows us to
view the polyhedron as a polytope D(F') with an additional facet at infinity. We pick a suitable
shelling of the boundary of D(F') which induces a shelling of the one point compactification of
D(F).

Second, we consider tropical hypersurfaces defined by tropical homogeneous polynomials,
i.e., for every A € R and # € R? the tropical polynomial F satisfies F(\1 + z) = F(x) + AL.
This kind of tropical hypersurface is embedded in the tropical torus R¢/R1. One of its natural
compactifications is the max-tropical projective space

TP = (RU{—oop)"\ {-o01}) /RL .
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FIGURE 1. A tropical hyperplane arrangement in the planar tropical torus R? /R1
(left) and the max-tropical projective plane TP? with four tropical hyperplanes.
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We restrict ourselves to the case of tropical hyperplane arrangements, e.g., the union of tropical
hyperplanes which are tropical hypersurfaces defined by tropical linear forms. A tropical hyper-
plane arrangement has full support if all coefficients of the respective linear forms are finite. See
figure |1 for an example of a tropical hyperplane arrangement in R?/R1 and its compactification
in TP=.

A tropical hyperplane arrangement subdivides the tropical torus Rd/ R1 into a polyhedral
complex, called the covector decomposition.

Theorem 2. The compactification of the covector decomposition in TP is combinatorially
equivalent to the Schlegel diagram of D(F') based at the facet at infinity

Moreover, from there we conclude the following.

Theorem 3. The maz-tropical compactification of a min-tropical hyperplane arrangement is
shellable.

Last, by translating our setup into the language of discrete Morse theory we can conclude
from the results above that tight spans of regular subdivisions are contractible.

This is joint work with George Balla and Michael Joswig and can be found on the arXiv under
the following link: https://arxiv.org/abs/2506.07241.
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