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In network science, the concept of centrality refers to
the importance of its constituent elements within the net-
work. Since what is important usually depends on the
problem at hand, many centrality measures exist. Among
them, the concept of shortest path betweenness stands
out as one of the most commonly used metrics in recent
literature. It quantifies how often a node or link acts
as a bridge along the shortest paths between all pairs
of nodes, thereby capturing its importance in facilitat-
ing efficient communication or flow through the network.
Formally, the shortest path betweenness centrality of a
node v, CB(v), is defined as:

CB(v) =
∑

s̸=v ̸=t∈V

σst(v)

σst
(1)

where σst is the number of shortest paths from node s
to t and σst(v) is the amount of shortest paths from s to
t that passing through v.

This concept has been broadly used in transport net-
works to estimate traffic and network load, interpreting
the number of shortest paths through a vertex as an ap-
proximation to the frequency of use of that node . Using
this framework, it is well-known that the nodes of largest
betweenness will be the first to show congestion, and the
critical traffic rate determining the onset of the conges-
tion transition, λc, is related to Bmax as λc ∼ 1

Bmax
[1, 2].

Despite this, in some cases, other factors besides dis-
tance may also influence routing and decision-making.
Pedestrian mobility is a paradigmatic example of this
behaviour, where the most popular path may be influ-
enced by the presence of safer, accessible, or pleasurable
detours. Indeed, [3] found deviations on average close to
10-15% in distance relative to the optimal in pedestrian
paths in Boston and San Francisco, and [4] showed that a
major number of the studied vehicle routes did not follow
the shortest path.

In our work, we extend the shortest path betweenness
metric to account for these deviations, considering all
quasi-shortest simple paths that fall within a given toler-
ance, ε, of the shortest distance (δPs,t ≤ (1+ε)δ∗st). Conse-
quently, we investigate the relevance and behaviour of an
understudied metric, the Quasi-Shortest Path Between-
ness (QSP-BW), and explore its potential with a focus
on traffic congestion dynamics.

We define the QSP-BW as:

CQSP
B (v, ε) =

∑
s̸=v ̸=t∈V

σε
st(v)

σε
st

, (2)

where σε
st is the number of quasi-shortest paths between

s and t and σε
st(v) corresponds to the number of those

which pass through v as in Eq. (1). To compute the
quasi-shortest paths involved in Eq. (2), we employed a
modified version of Yen’s K-shortest paths algorithm [5].

By analyzing both spatially embedded and non-spatial
networks, we observed that the number of quasi-shortest
paths grows exponentially with the tolerance parameter,
following the relation σϵ

st = eγδ
∗
stε. We validated this as-

sumption analytically in the case of Erdős–Rényi graphs.
Using this exponential growth model, we derived an ana-
lytical approximation for the QSP-BW of a planar graph
in the limit of high node density, effectively treating the
graph as a continuous 2D plane. Specifically, we com-
puted the QSP-BW for a disk of radius R. As shown in
Fig. 1 a and b, the radial profile of the QSP-BW remains
qualitatively unchanged: it peaks at the center of the
disk and decreases toward the boundary. However, the
overall magnitude of betweenness increases with the tol-
erance. This result implies that in planar, homogeneous
graphs, adding tolerance to routing increases overall traf-
fic load, as vehicles use a greater extent of the network
to reach their destinations. Additionally, despite adding
tolerance, congestion will still emerge at the center at
even lower input rates.

Consequently, reductions in betweenness, and thus
traffic load, due to increased tolerance are primarily lim-
ited to networks with uneven structures or scenarios
where certain roads, such as high-capacity routes, are
significantly faster than the rest. As a simple illustrative
example, we added a ring road to a Delaunay triangu-
lation graph with a homogeneous spatial distribution of
nodes, Fig. 1 c. The links in the ring had twice the
speed of those in the rest of the graph. In this con-
figuration, the nodes with the highest betweenness were
located along the ring. However, when tolerance was in-
troduced, the betweenness of the ring decreased, while
it increased across the rest of the network, Fig. 1 d-f.
This result suggests that, in such cases, adding tolerance
redistributes the load away from the main high-capacity
routes and onto the broader network, which, at the same
time, might not be prepared to receive larger traffic loads.

Future work will focus on computing quasi-shortest
path betweenness in real-world networks, identifying the
onset of the transition, and exploring its implications for
the Macroscopic Fundamental Diagram of traffic flow.
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FIG. 1: (a) Monte Carlo integration of the QSP-BW with tolerance ε = 0.3 and γ = 10 in a disk of radius R = 1.
(b) Radial profile of the QSP-BW in the disk for different tolerance levels. (c) Toy model consisting of a Delaunay

network with an added ring road. (d–f) Comparison of shortest path (SP) and quasi-shortest path (QSP)
betweenness for tolerances of 10%, 20%, and 30%, respectively, in 1000 different spatial configurations of the graph
in (c). Ring nodes (highlighted in orange) show a decrease in betweenness, while non-ring nodes exhibit an increase

as tolerance increases.
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