Cloud Formation and Dynamics: a Field-Theoretic Approach

Alexandra Sorinca¹, Tobias Sparmann³, Michael te Vrugt⁴, Rosalba Garcia-Millan¹, Gunnar Pruessner², and Peter Spichtinger³

¹Department of Mathematics, King's College London, UK
²Department of Mathematics, Imperial College London, UK
³Institute for Atmospheric Physics, Johannes-Gutenberg-University Mainz, Germany
⁴Institute of Physics, Johannes-Gutenberg-University Mainz, Germany

The formation of clouds and their dynamics are highly complex processes occurring in atmospheric physics. A cloud is made of water droplets and vapour, whose interplay through condensation, evaporation and sedimentation determines the cloud's evolution. In this project, we employ a novel combination of the Doi-Peliti and Martin-Siggia-Rose (MSR) field-theoretic frameworks to model cloud formation processes [1] [2]. Our approach offers a complete analytical formulation for interacting particle systems with time-evolving background fields. Its application to cloud microphysics represents a new perspective in atmospheric science, where most current models rely heavily on numerical simulations and large usage of data [3].

In our initial simplified model, we describe cloud formation using a Master Equation to a coupled Langevin equation: the former governing droplet formation as a discrete stochastic process, and the latter describing vapour dynamics as a continuous background field. These processes are mutually coupled through feedback. We cast these dynamics into a combined Doi-Peliti and MSR action. We analytically characterise statistical properties of the water droplets such as its expected number, fluctuations, and its correlation with the vapour field in a perturbation expansion about weak coupling. The results of this perturbative approach are supported numerically using Monte Carlo simulations. Our theoretical approach can be applied to other systems where particle-field interactions play an important role. This is the case, for instance, in the formation of amyloid aggregates that cause Alzheimer's disease [4] [5].

References

- [1] Uwe C Täuber. Critical dynamics: a field theory approach to equilibrium and non-equilibrium scaling behavior. Cambridge University Press, 2014.
- [2] Benjamin Walter, Gunnar Pruessner, and Guillaume Salbreux. Field theory of survival probabilities, extreme values, first-passage times, and mean span of non-markovian stochastic processes. *Physical Review Research*, 4(4):043197, 2022.
- [3] Hugh Morrison, Marcus van Lier-Walqui, Ann M Fridlind, Wojciech W Grabowski, Jerry Y Harrington, Corinna Hoose, Alexei Korolev, Matthew R Kumjian, Jason A Milbrandt, Hanna Pawlowska, et al. Confronting the challenge of modeling cloud and precipitation microphysics. *Journal of advances in modeling earth systems*, 12(8):e2019MS001689, 2020.
- [4] Tuomas PJ Knowles, Michele Vendruscolo, and Christopher M Dobson. The amyloid state and its association with protein misfolding diseases. *Nature reviews Molecular cell biology*, 15(6):384–396, 2014.
- [5] Tuomas PJ Knowles, Christopher A Waudby, Glyn L Devlin, Samuel IA Cohen, Adriano Aguzzi, Michele Vendruscolo, Eugene M Terentjev, Mark E Welland, and Christopher M Dobson. An analytical solution to the kinetics of breakable filament assembly. Science, 326(5959):1533–1537, 2009.