Single-species non-reciprocal phase transitions: phenomenology, renormalization group and entropy production

AdriàGarcés, 1, 2, * Matthias Carosi, 3, † Ot Garcés, 1, 2, ‡ and Demian Levis 1, 2, §

¹ Computing and Understanding Collective Action (CUCA) Lab, Condensed Matter Physics Department, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain
² University of Barcelona Institute of Complex Systems (UBICS), Martí i Franquès 1, E08028 Barcelona, Spain
³ Physik Department T70, James-Franck-Straße, Technische Universität München, 85748 Garching, Germany
(Dated: July 8, 2025)

Abstract: Non-reciprocal interactions are typically present in a large number of out-of-equilibrium systems, such as active matter, social and ecological. They are believed to be responsible for non-equilibrium phase transitions and still leave open fundamental questions of major interest. We introduce a generalization of the Ising model that includes non-reciprocal interactions based on vision-cones. The model exhibits rich phenomena such as the coexistence of a first order and a second order phase transition, as well as metastability. We compare analytical results obtained from both a mean-field approximation and performing dynamic renormalization group transformations with simulations in a d=2 square lattice, highlighting the impact of non-reciprocity on the universality class of the 2D Ising model. Finally, we study the breakdown of detailed balance by studying entropy production of the coarse grained description of the model.

^{*} adria.garces@ub.edu

[†] matthias.carosi@tum.de

 $^{^{\}ddagger}$ ot.garces@ub.edu

[§] levis@ub.edu