
A Bayesian approach to mesoscale patterns: disentangling nestedness, modularity and
in-block nestedness
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Complex networks often simultaneously exhibit modu-
larity –densely connected communities– and nestedness,
where interactions form hierarchical subsets. Although
prevalent across ecological, economic, and social sys-
tems, these architectures have long been considered in-
compatible [1] because competitive dynamics that foster
modularity appear to contradict the cooperative mech-
anisms underlying nestedness. Current methodologi-
cal limitations exacerbate this tension: global nested-
ness measures disregard community structure, whereas
community-detection algorithms assume intra-block ho-
mogeneity. Consequently, existing techniques systemati-
cally miss architectures that are both modular and hier-
archically nested.

The concept of in-block nestedness (IBN) was recently
introduced to reconcile this apparent incompatibility by
quantifying nested organization confined within modules
[2]. Detection of IBN, however, still relies on determin-
istic optimization heuristics [3] whose statistical mean-
ing remains unclear, providing no assessment of uncer-
tainty. Moreover, no generative model capable of produc-
ing—and rigorously inferring—IBN structures has been
proposed thus far.

Here, we close this gap by formulating the Bayesian
Nested Block Model (BNBM), the first probabilistic
model jointly capturing modular and nested architec-
tures. BNBM extends stochastic block models by em-
bedding a latent hierarchical inclusion process inside each
block. Each block α is characterized by a nested connec-
tivity pattern parameterized by a continuous shape pa-
rameter ξα, while structural variability arises from two
noise processes: intra-block perturbations pα, which ran-
domly relocate internal links, and global inter-block noise
µ, redistributing links across blocks. The latent configu-
ration of the model includes block memberships z, node
orderings within blocks π, nestedness profiles ξ, both
noise levels (p, µ), and the number of blocks B. Given pa-
rameters θ = {z, π, ξ, p, µ,B}, the model specifies edge-
probability matrices Pij(θ), allowing calculation of the
network likelihood:

L(A | θ) =
∏
i,j

Pij(θ)
Aij [1− Pij(θ)]

1−Aij .

Inference is fully Bayesian and performed through hy-

brid Markov-chain Monte Carlo (MCMC), sampling the
posterior distribution P (θ | A) to quantify uncertainty
in block structure, nestedness, and model parameters.
The MCMC algorithm iteratively updates parameters via
symmetric Gaussian perturbations, random node permu-
tations, and structural block moves including merging,
splitting, and node reassignment using Gibbs sampling.
Model selection is based on the Bayesian Minimum

Description Length (MDL). Figure 1 shows MDL differ-
ences between inferred and true structures across syn-
thetic benchmarks, highlighting critical thresholds in
noise parameters beyond which structural recovery be-
comes ambiguous. We record the minimal-MDL solution
from posterior sampling as a representative configura-
tion, while posterior predictive checks confirm that in-
ferred models accurately reproduce structural patterns.
Synthetic benchmarks demonstrate BNBM accurately re-
covers modular-nested structures even under significant
noise.
When applied to empirical networks, our model also

consistently uncovers clear modular-nested structures,
demonstrating its robustness beyond synthetic cases.
Crucially, the Bayesian MDL criterion effectively bal-
ances complexity and fit even in realistic scenarios, pro-
viding stable and interpretable results. Posterior pre-
dictive checks confirm that inferred structures capture
essential empirical patterns.
Our unified Bayesian approach thus significantly ad-

vances understanding of multiscale organization in com-
plex networks, offering a principled statistical framework
for capturing coexistence of modularity and nestedness.

∗ hdelosrios@uoc.edu
[1] M. Palazzi, J. Borge-Holthoefer, C. Tessone, and A. Solé-
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FIG. 1. MDL differences across synthetic benchmarks, illustrating recoverability limits under varying intra-block noise (p) and
inter-block noise (µ). Red dashed lines indicate perfect recovery (∆MDL = 0).
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