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The random recurrent neural network model introduced by Sompolinsky, Crisanti, and

Sommers (SCS) nearly four decades ago [1] has become a paradigmatic framework for study-

ing complex dynamics in random recurrent networks. In its original, balanced-coupling for-

mulation, the model exhibits two phases: a quiescent regime, where all activity ceases, and

a regime of ongoing irregular collective activity, termed asynchronous chaos (AC), in which

state variables fluctuate strongly in time and across units but average to zero across the

network. Building on recent work, we analyze an extension of the SCS model that breaks

the positive/negative balance, producing a richer phase diagram. In addition to the classi-

cal quiescent and AC phases, two novel regimes emerge, marked by spontaneous symmetry

breaking. In the persistent-activity (PA) phase, each unit settles into a distinct, stable acti-

vation state. In the synchronous-chaotic (SC) phase, dynamics remain irregular and chaotic

but fluctuate around a nonzero mean, generating sustained long-time autocorrelations.

In particular, we define the generalized Sompolinsky–Crisanti–Sommers (SCS) model [2]

by considering a large recurrent network of N neurons. The state of neuron i ∈ {1, . . . , N}

is described by a continuous variable xi(t) ∈ [−1, 1], whose dynamics evolves according to

the set of differential equations:

∂txi(t) = −xi(t) + ϕ

(
N∑
j=1

Wijxj(t)

)
(1)

where ϕ(x) is a nonlinear gain function, here chosen to be tanh(x), and Wij are quenched

synaptic weights drawn independently from a Gaussian ensemble with mean Wij = J0/N

and variance W 2
ij − (J0/N)2 = J2/N , where · denotes the average over quenched disorder.

The phase diagram is characterized with two order parameters: the mean activity M̂ and

the second moment q̂. Both parameters can be computed in the microscopic picture:

M̂ =
1

N

∑
i

1

T

∫ T

0

dt xi(t) ; q̂ =
1

N

∑
i

1

T

∫ T

0

dt x2
i (t) ; Ĉ(τ) =

1

N

∑
i

1

T

∫ T

0

dt xi(t)xi(t+τ)

(2)

averaged over the quenched disordered matrix W and for large enough number of units N

and time window T .

In the thermodynamic limit N → ∞, the system is assumed to be self-averaging and can

therefore be described by a representative neuron subject to an effective stochastic process.
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In this way, following the dynamical mean-field (DMF) framework, originally introduced in

[1] and later extended via path-integral method the dynamics of this representative unit are

governed by the following stochastic DMF equation :

∂tx(t) = −x(t) + ϕ (gJ0M(t) + gJ η(t)) (3)

where η(t) is a Gaussian process with ⟨η(t)⟩ = 0 and ⟨η(t)η(s)⟩ = C(t, s), encoding the in-

fluence of the network on a single focus unit and the mean activity M(t) and autocorrelation

C(t, s) are fixed by imposing self-consistency:

M(t) = ⟨x(t)⟩, C(t, s) = ⟨x(t)x(s)⟩, (4)

with averages ⟨·⟩ taken over realizations of the effective Gaussian noise, η(t).

Based on this dynamical mean-field formalism, complemented by extensive numerical sim-

ulations, we show how structural disorder gives rise to symmetry and ergodicity breaking.

Remarkably, the resulting phase diagram closely mirrors that of the Sherrington–Kirkpatrick

spin-glass model, with the onset of the SC phase coinciding with the transition associated

with replica-symmetry breaking. All key features of spin glasses, including ergodicity break-

ing, have clear counterparts in this recurrent network context, highlighting a unified perspec-

tive on complexity in disordered systems. These findings provide a theoretical foundation

for understanding how high-dimensional chaos and ergodicity breaking can support robust,

flexible computation in recurrent networks, offering insights relevant to both biological and

artificial systems.
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FIG. 1. Phase diagram and representative trajectories of the random recurrent network model.

Panel A: Phase diagram in the (J0/J, 1/gJ) plane, from DMF analyses and confirmed by sim-

ulations. Four dynamical regimes are shown with their order parameters: quiescent (Q) M̂ = 0,

q̂ = 0; persistent activity (PA) M̂ ̸= 0, q̂ = 0; asynchronous chaos (AC) M̂ = 0, q̂ ̸= 0, with

vanishing long-lag correlations; and synchronous chaos (SC) M̂ ̸= 0, q̂ ̸= 0, with persistent corre-

lations. Markers indicate the parameter choices for panels (B)–(D). Panels B-C: Representative

trajectories from simulations of the microscopic dynamics, Eq.(1), with N = 2000 neurons. For

each regime, we show: the eigenvalue spectrum of the synaptic matrix; the time evolution of indi-

vidual unit dynamics xi(t) along with the population mean M̂ (blue line); and the autocorrelation

function Ĉ(τ) as a function of lag time τ along with M̂2 (dashed, blue line).
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