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Coherent structures in turbulent flows

@ Rotating vortices : Saturn’s hexagon,

@ Kirman vortex street :

© Leapfrogging of two coaxial rings :
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Structure

@ Generalities on Euler equations.

@ Vortex patch problem.

© Point vortex system.

@ Desingularization of rigid configuration.

@ Desingularization of non-rigid periodic motion.
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Euler equations 1755

Otv+(v-V)v+Vp=0, x€eRY t>0
divv =0,
Vlt:0 = V0.

@ Velocity field : (t,x) € [0, T] xR — v = (v,..,v¥) e RY
@ The operator v-V is defined by

d
V-V:Zvjé)j.
j=1

@ The pressure p is a scalar satisfying the elliptic equation :
—Ap=div(v-Vv).

@ Kato : For vg € H®,s > %—i—l there is a unique maximal solution
v e C([0, T*), H?).
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Vorticity formulation in 2d '

@ The vorticity w = 0; V2 — 15 v! satisfies

drw+v-Vw=0, t>0,xecR?
(E)S v=vVty
W|t:0:W0

@ Biot-Savart law. Stream function v is defined by
_ 1
00 =87 w =5 [ log(lx—yDe(t.y)dy
T JR2

and

1 (x=n" L.
v(t,x) = o /1;2 Xy w(t,y)dy, x— =ix

@ Characteristic method : w(t,x) = wo(¢~*(t,x)) with ¢ being the flow map
{ Aep(t,x) = v(t,6(t,x))
#(0,x) = x.
@ Conservation laws : since ¢(t) preserves Lebesgue measure, then
Vp e [Lool, Ve >0 [w(t)llie = lwollir
@ Classical solutions are global.
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Yudovich solutions '

@ Yudovich (1963) : If wp € L* N L then (E) has a unique global solution
we L®(Ry; YN L) and

w(t,x) = w0(¢71(tvx))

@ The flow ¢ is uniquely defined and continuous in (t,x). For each t, ¢(t) is a

homeomorphism preserving Lebesgue measure. It is a diffeomorphism for classical
solutions.

—at
@ In general, ¢(t) € C° , degenerate regularity with t.

@ Less information can be said about the boundary regularity.
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Vortex patch problem

@ A patch is wg =1p, with D a bounded domain.

w(t)=1p,, D: = ¢(t, D).

Contour dynamics problem : What about the regularity of the boundary ?

If s € T — vo(s) is a parametrization of 9Dy, then ~:(s) = ¢(t,y0(s)) is a
parametrization of 0D, called Lagrangian parametrization,

Oeye = v(t,t)

Let s € [0,27] — z:(s) be any smooth parametrization of JD, then
(Beze(s) = v(t,2e(s))) - 7i(ze(s)) =0

@ Contour dynamics equation (Deem Zabusky 1978) :

1
Otye(s) = —5 oo Iog’fyt(s)—z|dz

1 27 ’ / /
— 727/ Iog|7t(5)*’7t(5 )|85/’Yt(5 )ds
™ Jo

We have assumed that the initial domain D is simply connected.
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@ Persistance regularity. Chemin(1993), Bertozzi-Constantin (1993).
oDe C*""=vt>0 0D;eCt.

@ The cases C! and Lip are open even locally in time.

@ Other contributions : Bertozzi, Constantin, Cordoba, Danchin, Depauw, Dutrifoy,
Gamblin-Saint-Raymond, Gancedo,Garnet, Kiselev, Luo, Elgindi, H., Cantero,
Mateu, Orobitg, Verdera,...
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Conservation laws

@ Recall
Otw+v-Vw =0,

1
vex) = o [ D) e y)dy,

T om Jpe [x—yP?

@ Mass conservation :
m(t) :/ w(t, x)dx = m(0)
]RZ
Indeed,
m'(t) = / Orw(t,x)dx = —/ div (v(t,x)w(t,x))dx =0
R2 R2
@ First moments :
£(0) = [ xalt.x)ax = £(0)
RZ
Indeed,

(1) = _/R2 xdiv (v(t,x)w(t,x))dx

L
:/ v(t,x)w(t,x)dx:i// (=0t (t, %)) dxdy = 0
R? 21 Jre Jr2 |x—y|?



@ Second Order moment :
:/ |x|2w(t, x)dx = 1(0)
RZ

Indeed,

_/ x| div (u(t,x)w(t,x))dx

/]RZ/]RZ Ix — y\2 w(t,y)w(t,x))dxdy

—y)*
w(t,y)w(t,x))dxdy =0
/R/R |X y|2 (t,y)(t, X)) dxdly
@ Kinetic energy
0= [ Mex)Pd=E0)
2 g2

@ Modified kinetic energy : Ay =w

Enm(t) = —% /Rz D(t,x)w(t, x)dx = Em(0)
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Point vortex system
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Dynamics of isolated vortices

° @
¢ a

@ Assume that

. . 1 [ (x=y)"
wltx) = et v=2 v w(tx)=g- [ T ekEy)dy
k=1 k=1
then
Otwi+v-Vw, =0
@ Define

~j(t) = ./R? wj(t,x)dx =~;(0), z(t)= ’Ylj/]R? xw;(t,x)dx
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@ Differentiating in time

. 1 . 1
zj(t) = 5 Jes xdiv (v(t,x)wj(t,x))dx = 7—1/R v(t, x)wj(t,x))dx

’YJ 2 / vie(t, x)wj(t, x))dx

@ If the vorticity wy is concentrated around its center z, then

1
i (X —2k)

vk (x) =~ Zm’x € supp wj

@ Thus we get the approximation

Y () —z)*

z(t)=) 3 ==
™ \Zj — Z)
oyt |zj |
_ Tk
2m L7 — 7,
ki
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@ Helmholtz (1856) : If wy = Zj"’zlfyjazj, zj € R?,4; € R* then formally

N
w(t,x) = Z’Vjézj(t%
Jj=1

with

dz() 1 e

— A ) J = 17 (] N
dt 2im zj—z
T

@ Kirchhoff (1876) : the system is Hamiltonian with

dz(t)
Ry

X 1
=idzH, H(Z17~~ZN):—; E Vi vk log|zj — zk|
1<jZk<N

@ H, I= Z’yj|zj|2 and Z’yjzj are three independent first integrals in involution.
J J
@ Grobli (1877)-Poincaré (1893) : this system is integrable for N < 3.

@ If all the 7; have the same sign then there is no collision in finite time and the
points remain in a planar compact set.
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Pairs of vortices

dzi(t) 1 ol dz(t) 1 Y2

@ The equations are given by

dt ~ 2irw z1—2 dt ~ 2irw Zp— 271

@ Thus the vector Z(t) = z1(t) — z2(t) satisfies

dZ(t) v+ 1

dt 2ir  Z(t)

@ We distinguish two scenarios :

© Case 71 +72 # 0. The pairs rotate uniformly about

the center of mass, with 2 = %

=

T 1

@ Case 71+ 72 = 0. The pairs translate uniformly with U = 51, .
1, 3%
7
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Triple vortices.

e Grobli (1877), Synge (1949),Novikov (1975), Aref (1979-2010),.. :
@ Remind that 3 vortices form an integrable system.
@ Classification of rigid motion (Equilateral triangles and collinear configuration)

© Sufficient and necessary condition of Self-similar collapse

=
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Relative equilibria : link with polynomials'

» Rotating configurations : zj(t) = eiQtzj(O),j =1,...,N. By taking v; = 1 and rescaling

the time we find the system
_ 1 .
Zj = E z-—zk’J_l’m’N

P

o Stieltjes [Acta Math. 6-7, 321-326 (1885)] : Collinear vortices on the real line rotates iff they
correspond to the zeros of Hermite polynomial Hy.

N
@ Consider the generating polynomial P(z) = H(Z_Zf)’ then
j=1
P'(z)=P(z2) 1, -2
= j=1 zfzw
N
/!
P(Z ZZZJ PZZZ27PZ)Z(zzjzzk
j=1 Jj=1 Jj#k=1
N N
1 11
- P(Z Z ( z— Zk) Zj—2z) = 2P(Z) Z z—2Zz; zj—2zk
#k=1 j#k=1
N
zj—z+z /
=2P(2) ) ZEE = —2NP+2zP
j=1
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@ Thus P satisfies
P" —2zP" +2NP =0

@ P is a Hermite polynomial : P(z) = AHp(z), with
(V)
Hy(z) = (~1)Ve? (6_22)

@ The points {z1,2,..,zy} are located on the zeroes of Hermite polynomial Hy.
The configuration is symmetric with respect to the origin.

e Thomson (1883) : The regular polygon z; = ei% € T rotates uniformly.
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Desingularization of rigid configuration
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Desingularization of relative equilibria

@ Marchioro-Pulvirenti 1992 : Vortex localization around vortex point system (short
time description).

@ Problem statement : Is it possible to desingularize a rigid configuration ?
Find classical solutions to Euler equations that replicate the same dynamics as the
point vortex system ?
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Pairs of vortices

@ Rotating vortex pairs :

@ Deem- Zabusky(1978), Saffman-Szeto 1980, Pierrehumbert (1980) : numerical
existence of pairs of symmetric rotating and translating patches.

@ Turkington (1985), Keady (1985) gave proofs using variational principles. The
topological structure of each patch is not explored.
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Contour dynamics approach

elet0<e<1l,d>1and
1 1
Wo.e = XD T 5XD;
with D be a small simply connected domain containing the origin,
D5 =—-Di+2d, Di=eD°®

with D® a small perturbation of the unit disc.

Theorem (H-Mateu, Comm. Math. Phys. 2017)

There exists g > 0 such that for any € € (0,20) there exists a strictly convex smooth
domain DF such that wg . generates a co-rotating vortex pair for Euler equations

Actually, we obtained a more genral result : counter-rotating patches and for the
(5QG,) model.
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» This approach is flexible and has been used in different configurations :

@ H.-Hassainia (Discrete Contin. Dyn. Syst. 2021) : construction of asymmetric pairs for Euler
equations confirming the numerical simulations of Dritschel (1995).

e Gal’CI’a(Nonlinearity 2020) : periodic pattern of Karmén vortex street for (SQGy,).

e Hassainia-Miles (SIAM 2022) : general case covering the nested N-gons.
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Ideas of the proof.

@ For £ €(0,1) and d > 2 we define the domains
Df =eD® and D5 = —eD°+2d.

@ Set 1

wo,e = E%XDf T 3XD0;
It gives rise to a rotating pairs about (d,0) and with angular velocity Q iff
w(t,2) =woe(e" (2~ d))
@ It is a solution to Euler equations if and only if
Re(—iQ (z—d) i) = Re(v(z)7), VzedDi.

Therefore
Re{ (29(27 d)+ I(z)) F} —0, VzedDt,

with 7 a tangent vector to D] and by Green-Stokes theorem,

_1 &~z . 1 _ £
I(z)= g2 ]{mla ffzdg g2 ]{)Dla £+zf2dd§‘
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@ Remind that D] =eD® and D¢ a perturbation of the unit disc. Rescaling,
Re{ (29(52— d)+ lg(z)) F} —0, VzedD",

and

1 £~z . [ 3
IE(Z)_E]éDsffzdé faDE sEJrsszddg'

Take the conformal parametrization : ¢. : T — 9D°

de(w)=w+ef(w), f(w)= Zanw_", an€R
n>1

then the boundary equation becomes : Vw € T

G(e,, F(w)) = Im{ (29 [c 6e(w) — d] +/E(¢>5(W))) W¢;(W)} —0
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Easy computations
) _1_ [A+eB, AB—AB
l(ge(w)) = EW+fTA+€Bf(T)dT+]'[]I*A(A+€B)dT

B ][ (F+ef(F)(1+ef' (1)) .
T (T +w)+e2(f(7)+ f(w)) —2d

with A=7—w and B=f(7)— f(w). Hence
G(e,Q,f(w)) =Im(F(s,Q,f(w)))=0
with

F(o, 0 f(w)) =29 (w4 F(w) — d ) w(1+F (w)) — £ (w)
"A+eB AB—AB /
+ (f]yA—&-EBf (T)dT"'_]’[H‘de)W(l-FEf (W))

. (]{T (?+sf(?)2 (1+€f’(7—))

e(r+ W)+€2( (T)—!—f(w))

— 2dd7‘) W(l +5f’(w))
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@ We can check that 1
F(0,9,0)(w) = (—2Qd+ %) w

Let Qoo = then F(0,Q,0) =0.

1
(2d)2 I
@ Function spaces : let 0 < < 1

X={fe (), f(w)=> aw "2, c R},
n>1

y = {f € CP(T),F = anen,an € R}, en(w) = Im(w")
n>1

vi={feY,a=0}.
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The rest of the proof follows the following steps :

@ Step 1 : The function G : (—f 7) xR x By — Y is well-defined and is of class C1,
where Bj is the open unit ball of X.

@ Step 2 : Let L=9¢G(0,9,0) then
Lh(w) = —Im(K' (w)).

and L: X — Yj is an isomorphism, ( and not onto Y, Y3 C Y).
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@ Step 3. Q as a Lagrange multiplier : Q = Q(e,f) in such way
H(e,f) = G(e,9Q(e, ), f)

is well-defined from (—%, %) X R x By to Y7. The constraint on Q is

/ F(e,Q,f(w))(W* —1)dw =0
T

from which we get
Q=0 +eN(g,f)

Moreover,
D H(0,0)h(w) = —Im(h' (w)).
and therefore 9¢H(0,0) : X — Y1 is an isomorphism.

@ Step 4 : We conclude by using the implicit function theorem.
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Euler equations in bounded domains '

@ Let D C R? be a bounded simply connected domain. Euler equation writes
rw+v(t,x) Vw=0,xED,  v=VTip=(—00,010)
with
v(t) = [ Golxyuley)dy.
and Gp : D xD — R is the Green function

@ We have the decomposition
Go(x,y) = 5= log|x —y|+ 2= K(x,y), x,y €D

with K being smooth in D x D.
@ Robin function is defined by

Rp(x) = K(x,x),x €D
It is smooth in D and

lim Rp(x) = +oo.
x—+0D
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Dynamics of a concentrated single vortex

fy(t):/Dw(t,x)dX:'y(O), f(t):%/szw(t,x)dx

@ Define

@ Then, we have

_ 1 (x—y)* 1 L/
v(t,x) = 27T/D e w(t,y)dy + 5V - K(x,y)w(t,y)dy

L
~ 5 [ S+ (TR e(0)

@ Differentiating
. 1 _ 1
&(t)= TAXdlv (v(t,x)w(t,x))dx = g/Dv(t,x)w(t,x))dx
= 2 (Vi K)(E(D),£(1) = 2 Vi Ro(¢(1))
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@ A single vortex w(t) = Y0¢(r) obeys to the Hamiltonian equation

9l — X VIR (E(1)).

@ When D = D the unit disc, then

zZ—Ww
|\ Ro(z) = —log(1- |2,

Gp(z,w) = % log T

@ General domains. Let ¢ : D — D be a conformal map, then

GD(Z7W): GD(¢(Z)7¢(W))7 z,weD

RD(Z)—|Og< 'o/(z)b):——log( oz )

1-|¢(2)

conformal radius
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Classification of a single vortex motion '

The orbits £\ = {t— &(t)} C {z € C,Rn(z) = A}
Almost all the orbits are periodic.
Identify the stationary points and the geometry of the orbits?

At least, one critical point exists.

Caffarelli-Friedman 1985- Gustaffsson 1990 : For convex bounded domains, Robin
function is strictly convex and all the orbits

Ex={z,Ro(z) = A}, A> A= inf Ro(2)

are time periodic and enclose convex regions.
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Main result

@ Given A\« < a < b such that for any X € [a, b] the orbit £, is periodic with minimal
period T(\) and parametrized by t € R — &) ().

@ Consider the T(\)—periodic matrix :

va(t) ux(t)

ha(t) = (“*“) ”(”) () = gy (0 = §[0:Ro (60(0)]?

@ We consider the fundamental matrix .Z), :
Oedl\(t) = Ax(t)4\(t),  A\(0)=Id.

@ The monodromy matrix is . (T()\))
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General statement '

Theorem (Hassainia-H.-Roulley '24)

Let D be a simply connected bounded domain and assume that :

@ Non-degeneracy of the period :

/\ren[Ler] |T/(>\)| > 0.

@ Spectral assumption :
VAE[abl, 1¢sp(AA(TOV))).

Then, 3eg > 0 such that Ve € (0,e0), there exists a Cantor set ¢- C [a, b], with

lim |6z| = b—a,

e—0
and for any \ € 6., there exists a solution to Euler equation taking the form

1
VteR, w(t)= ;2105, Dt = &x\(t)+¢0x%,

with

VteRa D§+T(A):D§7 €>\(t+T()‘)):£A(t)
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Corollary

The main Theorem holds true under the following assumptions

@ Robin function admits only one critical point & (satisfied for convex bounded
domains)

@ The conformal mapping F : 1D — D with F(0) = & satisfies
F®)(0) 1 *
‘f/(‘o) ‘ # {2\/ 1-7,neN }

@ Almost all the rectangles and ellipses.

Corollary applies with

® Sectors of type {z€D st. 0<arg(z) < Z},meN*
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General Remarks '

For D =D we get better result : we can desingularize all the orbits with rigid time
periodic patches.

In general the solutions are non-rigid time periodic.

This is the first construction of this type of solutions near point vortices in
bounded domains.

© 00 O

Hassainia-H.-Masmoudi (2023) :Similar construction for the leapfrogging with 4
symmetric vortices in the plane
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Application to 4-point vortices in the disc '

© The motion of 4 symmetric points in a disc reduces to a single point in a quarter
disc.

@ Our Theorem works in a quarter disc and we can desingularize into concentrated
periodic patches.

Taoufik Hmidi 39/49



Main ideas of the proof'

© Contour dynamics equation

@ Construction of a good periodic approximation without Cantor sets
© Nash Moser scheme

Q KAM tools
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Contour dynamics equation '

w(t) = E—]'les7 with D? £ EO§+£(t)7

t

@ Ansatz

@ Let 6 € T+ ~(t,0) be any smooth parametrization of the domain O;f. Then the
contour dynamics equation writes

€2|m{8t7(t,0)89'y(t,0)} - %Re{BZRD (g(r))am(t,e)}

+200 [ ToB(n(.0) = )AQ)

200 [ K(1(60)+ (0, +£(6)) dAQ) 0.

t
@ We look for time periodic solutions

2

i0 _
0 €T /142er(wo(N)t,0)e”, wo(N) = T

with r: (,0) € T? — r(¢,0) € R. Hence

F(r)(g,0) £ c*wo(N)dpr + 3 [Fole, (), r)] = 0.
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Formal Nash-Moser scheme '

@ Newton scheme : To construct a solution to F(r) =0 we use the scheme :
ro is given such that F(rp) is small enough, rp1 = rn+ hn, hp := —F/(r,,)le(rn)
To do that, it is enough that F: X — Y is C* and F'(rg): X — Y is an
isomorphism.

@ In our context, F'(rg) is not an isomorphism !

@ Nash-Moser scheme is a regularization of Newton scheme where we require that
F'(rn) admits a right inverse (with a loss of regularity+ suitable tame estimates)
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@ First, F(0) = O(¢).

@ By linearization at any small state r, we get
O F(r)[H] = £2wo(N)Dph+ g K% P 0(83)) h}
— LH[h] + 2289 Qolh] + O(),
with 7 the Hilbert transform in the toroidal case

g(0.0) 2 3Re{ (2R (61 ()" + 1S(@)(6x(2)) ™ },

Qolhl(,0) £ /T o) (778 + bR { €0 S(0) (62(4)) } ) o

@ For € =0, the operator degenerates ( in time),
O-F(r)[h =3 (0 —H)h

The spatial modes +1 are trivial resonances!
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A toy model (Resonance and loss of regularity)

Consider the operator :
Loh = £%wo(A)dph+ dgh

@ To solve Loh = f, with (f), 9 =0, we use Fourier expansion
. fk
h 0) = h i(kp+nb) h — i Tkem
(90’ ) Z k,n€ ’ k,n IEZUJO(A)k+n
(k,n)#(0,0)
@ In the Cantor set

Co = { N € [a,B1¥(k,n) # (0,0), |2wo(Mk + 1| > 5= b,

we get . s
— —2-45
Lo “Fllps <& = “lfllpser

@ We know that A — wg(\) does not degenerate,

inf |w’(N\)| > 0.
Ael?a’b]\w( )l

Hence for 7 > 1
|Co| = b—a— ce’
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Good approximation and new scaling

@ We cannot start from rg = 0 because
F(0)=0(), (aF) 1 (0)=0(="*"), (8:F)(0)F(0)=0( ")

@ We have to find a good approximation. Actually we obtain the following result :
there exists 7= such that

=0() and F(%)=0("
@ The functional that we will use is ( € (0,1))
G(p) = 2 F(E+ep), G(0)=0(E>")
@ We show that in a suitable Cantor set

(96)7(0)=0(=""""), (9,6)7(0)6(0)=0(=" ")
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Invertibility of the linearized operator and strategy

@ The linear operator is given by
0y G(p)[h] = e%wo(A)Dph+ g [Vi(p)h] — S H[A] +=°05 Qolh] + O(=>)

@ With

2

2 +
Vi(p) =3 +e%g— S5 p+ O(3),

@ Is it possible to invert the operator 9,G(p), for p and € small enough ?

e Difficulties :
@ The operator is quasi-linear ( variable coefficients at the main order).
@ Small divisor problems.
© Trivial resonance of the spatial modes +1.

@ Degeneracy in € in the time direction
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e Tools:

@ KAM techniques in the spirit of the works of Berti-Montalto and
Feola-Giuliani-Procesi, to conjugate the linear operator into a Fourier multiplier.

@ Monodromy matrix to handle the modes +1.
© Nash Moser scheme to construct solutions to the nonlinear problem.

© Measure of the Cantor set.
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Reduction of the linearized operator

@ In the spirit of Baldi-Berti-Montalto [2014], Feola-Giuliani-Montalto-Procesi [2019], We construct an
isomorphism Z(\) : H*(T?) — H*(T?) in the form

#h= (1+09B)h(9079+d(90a9))

@ There exists a change of coordinates transform % such that on the Cantor set

co)= () {re@by [Fuksneien o) > G |

(k,n)€22
[n]>1

we have
B 10,6 (p)B = 2w(N)Dp +c(e,\)0p — AH — 2 0pQ+ TR

with
Qlh](p,0) = Ah(w,n)K(éx(w)ﬁen)dm

COos — 2 i
K(6x.0.1) = B0 — 1Re{ (0:Rp (¢0)) e+ }

c(e,\p) = 3+ O(3).

@ The operator R is smoothing in space.
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Thank you so much for your attention !
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