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Abstract: We prove the mathematical version of Taylor’s conjecture which says that in
3DMHD,magnetic helicity is conserved in the ideal limit in bounded, simply connected,
perfectly conductingdomains.When the domain ismultiply connected,magnetic helicity
depends on the vector potential of the magnetic field. In that setting we show that
magnetic helicity is conserved for a large and natural class of vector potentials but not in
general for all vector potentials. As an analogue of Taylor’s conjecture in 2D, we show
that mean square magnetic potential is conserved in the ideal limit, even in multiply
connected domains.

1. Introduction

Magnetohydrodynamics (MHDin short) couplesNavier–Stokes equationswithMaxwell’s
equations to study the macroscopic behaviour of electrically conducting fluids such as
plasmas and liquid metals (see [30,48]). Given a domain � ⊂ R

3 and a time interval
[0, T ), the Cauchy problem for the incompressible, viscous, resistive MHD equations
consists of the equations

∂t u + (u · ∇)u − (b · ∇)b − ν�u + ∇� = 0, (1.1)

∂t b + curl(b × u) + μ curl curl b = 0, (1.2)

div u = div b = 0, (1.3)

u(·, 0) = u0, b(·, 0) = b0, (1.4)

where b is the magnetic field, u is the velocity field, � is the total pressure, ν > 0 is the
coefficient of viscosity, μ > 0 is the coefficient of resistivity and the initial datas u0 and
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b0 are divergence-free. The Navier–Stokes equations are a special case of MHD where
b ≡ 0. Furthermore, setting μ = ν = 0 one obtains the ideal MHD equations, while in
the case μ = 0 < ν, (1.1)–(1.3) are called the non-resistive MHD equations.

In this work we consider Leray–Hopf solutions of (1.1)–(1.4) in a bounded domain
� ofR3 that has aC 1,1 boundary �. As we want to incorporate Tokamaks and other lab-
oratory plasma configurations, it is mandatory to consider multiply connected domains
(see Assumptions 2.1–2.2 for the exact conditions on �). We use the standard no-slip
and perfect conductivity boundary conditions

u|� = 0, (1.5)

b · n|� = 0 and (curl b) × n|� = 0, (1.6)

(see Sect. 2.4 for precise definitions).
The existence of Leray–Hopf solutions in smooth simply connected domains goes

back to [20,48], and in [55], existence is shown under the slip without friction conditions
on u. The more complicated case of smooth multiply connected domains is covered in
the doctoral dissertation [35]. Since [35] is not readily available, we present our version
of the proof for C 1,1 multiply connected domains in the Appendix. For local-in-time
existence and uniqueness of strong solutions as well as weak solutions in suitable Besov
spaces for ideal MHD see [39,46], and [47], and for the case of non-resistive MHD see
[12,24,25], and [37]. For further references see [30, p. 57].

In ideal 3D MHD, smooth solutions conserve the total energy 2−1
∫
�
(|u(x, t)|2 +

|b(x, t)|2)dx and the cross helicity
∫
�

u(x, t) · b(x, t) dx in time. In simply connected
domains the magnetic helicity

∫

�

ψ(x, t) · b(x, t) dx,

where ψ is a vector potential of b (that is, curlψ = b), is also conserved by smooth
solutions and is independent of the choice of ψ .

Recently obtained numerical evidence points, however, towards anomalous energy
dissipation, that is, the rate of total energy dissipation in viscous, resistive MHD does
not tend to zero when μ, ν → 0 (when the Reynolds number and magnetic Reynolds
number tend to infinity); see [17,38,40]. Thus, if ideal MHD equations are to be a
good model for magnetohydrodynamic turbulence at very high Reynolds number and
magnetic Reynolds number, then the equationsmust possess (physically realistic) energy
dissipative solutions. This is in analogy to the celebrated Onsager Conjecture on Euler
equations (see [9,15,21,33,43]). In ideal MHD, bounded non-vanishing weak solutions
with compact support in time (thus violating total energy conservation) were found in
[7], while non-vanishing smooth strict subsolutions with compact support in space-time
were constructed in [22].

In stark contrast to total energy, magnetic helicity has proved to be a very ro-
bust time invariant of ideal MHD. First, Caflisch, Klapper and Steele showed in [10]
that magnetic helicity is conserved whenever u ∈ C([0, T ]; Bα1

3,∞(T3,R3)) and b ∈
C([0, T ]; Bα2

3,∞(T3,R3)) with α1 + 2α2 > 0, and next Kang and Lee ([34]) and Aluie
and Eyink ([1,2]) showed independently that magnetic helicity is conserved for u, b ∈
L3(0, T ; L3(T3,R3)). In [22], the authors extended conservation to subsolutions and
weak limits of solutions in L3(0, T ; L3(T3,R3)).

It is still open whether magnetic helicity is conserved if u and b belong to the energy
space L∞(0, T ; L2(T3,R3)). However, a straightforward adaptation of our Theorem1.2
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to the torus implies that conservation occurs if u, b ∈ L∞(0, T ; L2(T3,R3)) are a
weak ideal limit of Leray–Hopf solutions (see Definition1.1 and Corollary1.3), which
is arguably the physically relevant case.

It has been conjectured in the physics literature thatmagnetic helicity is approximately
conserved at very low resistivities (see [49] where the conjecture was first formulated
by Taylor, and for bounds at small resistivities see [4]). Mathematically, the conjecture
says that magnetic helicity is conserved in the ideal limit μ, ν → 0 (see [10, p. 444]).
Taylor’s conjecture has been successful in explaining magnetic structures in laboratory
plasmas, e.g., in the prediction of the relaxed state of a reversed field pinch, and lies at
the heart of Taylor relaxation theory (for reviews with numerous further references see
[8,50]).

In Theorem1.2 we prove Taylor’s conjecture under weak and natural assumptions.
We consider arbitrary weak limits of Leray–Hopf solutions when μ j , ν j → 0 (which
exist, up to a subsequence, whenever the L2 norms of the initial datas are uniformly
bounded). In particular, we do not assume that the weak limits satisfy the ideal MHD
equations. Recall that

L2
σ (�,R3) := {v ∈ L2(�,R3) : div v = 0, v · n|� = 0}.

Definition 1.1. Given Leray–Hopf solutions (u j , b j ) of (1.1)–(1.6) withμ j , ν j > 0 and
initial datas u j,0, b j,0 ∈ L2

σ (�,R3) suppose that μ j , ν j → 0 and that u j,0 ⇀ u0 and

b j,0 ⇀ b0 in L2
σ (�,R3). Assume that u j

∗
⇀ u and b j

∗
⇀ b in L∞(0, T ; L2

σ (�,R3)).
We then say that (u, b) is a weak ideal limit of (u j , b j ).

If instead μ j → 0 and ν j = ν > 0 for every j ∈ N, we say that (u, b) is a weak
non-resistive limit of (u j , b j ).

Taylor’s conjecture concerns the case where magnetic helicity is gauge invariant
(i.e. independent of the choice of the vector potential of b), that is, simply connected
domains. The following theorem proves Taylor’s conjecture.

Theorem 1.2. Suppose � is simply connected and (u, b) is a weak ideal limit of Leray–
Hopf solutions (u j , b j ) with μ j , ν j → 0. Then

∫
�

ψ(x, t) · b(x, t) dx is a.e. constant
in t for every vector potential ψ ∈ L∞(0, T ; W 1,2(�,R3)) of b.

Although in Theorem1.2 we do not assume that u and b satisfy the ideal MHD
equations, we present a corollary on solutions of ideal MHD. If a solution (u, b) lies
in the energy space L∞(0, T ; L2

σ (�,R3)), then we may choose representatives u, b ∈
Cw([0, T ); L2

σ (�,R3)); this can be proved by slightlymodifying [28, Lemmas 2.1–2.2].

Corollary 1.3. Suppose � is simply connected and u, b ∈ Cw([0, T ); L2
σ (�,R3)) form

a weak solution of ideal MHD. If (u, b) is a weak ideal limit of Leray–Hopf solutions
(u j , b j ), then b conserves magnetic helicity in time.

Notice that for general weak solutions of ideal MHD, magnetic helicity conservation
has only been proved under L3

t L3
x integrability, and so there is an apparent scaling gap.

Actually, as pointed out to us by the anonymous referee, the same phenomenon has been
observed in other equations of hydrodynamics, see [13] for Euler and [16] for SQG, and
the proof of Theorem 1.2 is built on similar principles.

While simply connected domains (and especially the torus T
3) allow a relatively

neat mathematical treatment, we also cover the much more difficult case of multiply
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connected domains in order to incorporate plasma containers in typical laboratory set-
tings. The topology of multiply connected domains leads, however, to mathematical
complications starting with the very definition of magnetic helicity.

Consider an arbitrary weak ideal limit (u, b) of Leray–Hopf solutions (u j , b j ). If the
domain � is multiply connected, then

∫
�

ψ(x, t) · b(x, t) dx depends on the choice of
the vector potential ψ . The basic reason behind this gauge dependence is the fact that
when � is multiply connected, the orthogonal complement of ker(curl) in L2(�,R3)

is a strict subspace of L2
σ (�,R3)–in other words, the set of harmonic Neumann vector

fields

L2
H (�,R3) := {v ∈ L2

σ (�,R3) : curl v = 0}

is non-trivial. For a physical interpretation of L2
H (�,R3) see e.g. [11, pp. 428–430].

We write

L2
σ (�,R3) = L2

�(�,R3) ⊕ L2
H (�,R3); (1.7)

a useful intrinsic characterisation of L2
�(�,R3) was given in [27] (see Theorem3.2).

For the purposes of this article, it is also illuminating to use a characterisation familiar
from Hodge–Friedrichs–Morrey decomposition theory (see e.g. [41]),

L2
�(�,R3) = {curlψ : ψ ∈ W 1,2(�,R3), ψ × n|� = 0}. (1.8)

In fact, wewill need slightlymore refined versions of (1.8), see Theorem3.8 andRemark
3.9.

Bearing in mind (1.7), we decompose b uniquely as

b = b� + bH (b� ∈ L∞(0, T ; L2
�(�,R3)) and bH ∈ L∞(0, T ; L2

H (�,R3)))

(1.9)
and use similar notation for every b j . In multiply connected domains, we prove that∫
�

ψ(x, t)·b(x, t) dx is conserved for all vector potentialsψ ∈ L∞(0, T ; W 1,2(�,R3))

of b if and only if the harmonic part bH = 0. There exist, however, weak ideal limits
(u, b) of Leray–Hopf solutions with bH 
= 0 (see Proposition 3.5 for both claims).

We are thus led to the following question in multiply connected domains:

Is
∫

�

ψ(x, t) · b(x, t) dx conserved for some natural class of potentialsψ? (1.10)

We give a positive answer to (1.10) in Corollary 1.6. First, in Theorem1.5 we compute
the magnetic helicity dissipation rate for arbitrary Leray–Hopf solutions and arbitrary
vector potentials. In (1.11) we are able to compute the dissipation rate also for weak
ideal limits and all their potentials. Corollary1.6 then gives a condition on potentials
that is coherent with (1.8) and ensures magnetic helicity conservation.

We use the decomposition in (1.9) in order to give a formula for the time evolution of
magnetic helicity. The components b� and bH of b behave in rather differing ways; in
particular, bH is constant in time (see Proposition4.3). Because of difficulties described
in Sect. 4.1, we also need to decompose ψ in order to take advantage of the different
features of b� and bH :

ψ = ψ� + ψ H (curlψ� = b� and curlψ H = bH ).
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The decomposition ψ = ψ� + ψ H is not unique, and a judicious choice of the compo-
nents ψ�,ψ H ∈ L∞(0, T ; W 1,2(�,R3)) is a fundamental part of the proof of Theo-
rem1.5. In fact, we end up performing a further decomposition of ψ� , and the whole
decomposition of ψ is described in Sects. 3.2 and 4.1.

In order to state Theorem1.5 we already note below that given ψ , there exists a
canonical choice of ψ H , and we use it for all the vector potentials in this article. In
particular, with this choice, ∂t bH = 0 implies that ∂tψ

H = 0.

Definition 1.4. Suppose that v = v� + vH ∈ L∞(0, T ; L2
σ (�,R3)) and that ψ ∈

L∞(0, T ; W 1,2(�,R3)) satisfies curlψ = v. We denote by ψ H the unique mapping in
L∞(0, T ; W 1,2(�,R3) ∩ L2

�(�,R3)) such that curlψ H = bH (see Theorem3.7), and
we furthermore denote ψ� := ψ − ψ H .

We are now in a position to state our main theorem; the strategy of the proof is
described in Sects. 4.1–4.2, and the details are presented in Sects. 4.3–4.6.

Theorem 1.5. Suppose a domain � ⊂ R
3 satisfies Assumption 2.1, and assume that

(u, b) is a weak ideal limit or weak non-resistive limit of Leray–Hopf solutions (u j , b j ),
j ∈ N. Then any vector potentials ψ j and ψ j,0 of b j and b j,0 satisfy

∫

�

ψ j (x, t) · b j (x, t) dx =
∫

�

ψ j,0(x) · b j,0(x) dx

− 2μ j

∫ t

0

∫

�

b j (x, τ ) · curl b j (x, τ ) dx dτ

−
∫

�

[ψ�
j (x, t) − ψ�

j,0(x)] × n · ψ H
j,0(x) dx

for all j ∈ N and t ∈ [0, T ). Furthermore,

∫

�

ψ(x, t) · b(x, t) dx =
∫

�

ψ0(x) · b0(x)dx −
∫

�

[ψ�(x, t)−ψ�
0 (x)]× n ·ψ H

0 (x) dx

(1.11)
for a.e. t ∈ (0, T ) and all vector potentials ψ and ψ0 of b and b0.

Formula (1.11) allows us to show magnetic helicity conservation for a large class
of vector potentials. The class is specified in (1.12), and its naturality is apparent from
(1.8) and (1.11).

Corollary 1.6. Suppose the assumptions of Theorem1.5 hold. If

ψ�
j × n|� = ψ� × n|� = 0 and ψ�

j,0 × n|� = ψ�
0 × n|� = 0, (1.12)

then
∫

�

ψ(x, t) · b(x, t) dx =
∫

�

ψ0(x) · b0(x)dx = lim
j→∞

∫

�

ψ j,0(x) · b j,0(x) dx (1.13)

for a.e. t ∈ (0, T ). In particular, under condition (1.12), the magnetic helicity of b is
independent of the choice of ψ .
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In Sect. 5we prove a two-dimensional analogue of Theorem1.5: in bounded,multiply
connected Lipschitz domains, mean-square magnetic potential is conserved in the weak
ideal limit. In 2D, there exists a canonical choice of potentials, and so we can follow the
philosophy of [22] which is based onH1−BMOduality and compensated compactness.
In fact, we also show that in multiply connected domains, all solutions of ideal MHD
in the energy space conserve magnetic mean-square potential, extending a similar result
on the torus T2 from [22].

In three dimentions, when magnetic field lines are allowed to cross �, that is, the
assumption b · n|� = 0 is dropped, magnetic helicity is no longer gauge invariant even
for smooth solutions of ideal MHD in simply connected domains. In such a setting the
so-called relative magnetic helicity, defined in [5,26], can be studied instead. We defer
a treatment of relative magnetic helicity to a subsequent work.

2. Background

In this chapter we review tools and results needed in this article. We first fix our as-
sumptions on the domain � in Sect. 2.1 and recall basic material on boundary traces
of Sobolev and L p functions in Sects. 2.2 and 2.3 reviews some standard results on
time-dependent mappings in Bochner spaces, and in Sect. 2.4 we discuss Leray–Hopf
solutions of viscous, resistive 3D MHD equations and the notion of ideal limit.

2.1. Assumptions on the domain. We start by fixing our assumptions on the domain �,
and we illustrate the assumptions in Fig. 1. Our exposition follows [3, pp. 835–836] (see
also [51]).

Assumption 2.1. The domain � ⊂ R
3 is bounded and its boundary � is of class C 1,1

and has a finite number of connected components denoted by �1, . . . , �K .

Another assumption is introduced in order to produce a simply connected domain by
making cuts into �. The cuts will, however, only play an implicit role in this article.

Assumption 2.2. There exist connected open surfaces � j , 1 ≤ j ≤ N , contained in �

and satisfying the following conditions:

(i) Each surface � j is an open subset of a smooth manifold M j .
(ii) The boundary of each � j is contained in ∂�.
(iii) �̄i ∩ �̄ j = ∅ whenever i 
= j .
(iv) The open set �̇ := � \ ∪N

j=1� j is simply connected and pseudo-Lipschitz (see
Definition2.3 below).

The sets � j are called cuts.

The notion of a pseudo-Lipschitz domain is a generalization of a Lipschitz domain
that allows the domain to locally lie on both sides of its boundary.

Definition 2.3. A bounded domain � ⊂ R
3 is called pseudo-Lipschitz if for every

x ∈ ∂� there exists an integer r(x) ∈ {1, 2} and a radius ρ0 > 0 such that whenever
0 < ρ < ρ0, the intersection � ∩ B(x, ρ) has r(x) connected components, each one
with a Lipschitz boundary.

Assumptions2.1–2.2 are standard in the studyoffluid dynamics inmultiply connected
domains (see e.g. [3,27,51]) and will remain in place for the rest of this article (except
Sect. 5 where we discuss the two-dimensional setting). In particular, a solid torus clearly
satisfies Assumptions2.1–2.2.
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(a) Projection of a torus
Ω ⊂ R

3 into the xy-plane.
(b) Projection of a double torus
into the xy-plane.

Fig. 1. Examples of domains satisfying Assumptions 2.1 and 2.2

2.2. Traces of Sobolev functions. We recall results on boundary traces, normal traces
and tangential traces and refer to [29,31,42] for the proofs. In Theorems2.4–2.7 the
assumption that � is C 1,1 can in fact be relaxed to � being Lipschitz regular. The first
trace theorem we present is a special case of [29, Theorem II.4.1].

Theorem 2.4. Let 1 ≤ p < ∞. Then there exists a unique, continuous linear map
γ : W 1,p(�) → L p(�) such that for every u ∈ C∞(�̄) we have γ (u) = u on �.

We denote by W 1−1/p,p(�) the subspace of L p(�) of functions for which

‖u‖W 1−1/p,p(�) := ‖u‖L p(�) +

(∫

�

∫

�

|u(x) − u(y)|p

|x − y|1+p
d S(x) d S(y)

) 1
p

< ∞.

The space W 1−1/p,p(�) is dense in L p(�) and complete in the norm ‖ · ‖W 1−1/p,p(�).
When 1 < p < ∞, the trace operator γ is a Banach space isomorphism from the
quotient space W 1,p(�)/W 1,p

0 (�) onto W 1−1/p,p(�) (see [42, §2.5, Theorems 5.5 and
5.7]):

Theorem 2.5. Let 1 < p < ∞. If u ∈ W 1,p(�), then γ (u) ∈ W 1−1/p,p(�) and

‖γ (u)‖W 1−1/p,p(�) ��,p ‖u‖W 1,p(�).

Conversely, for every w ∈ W 1−1/p,p(�) there exists u ∈ W 1,p(�) such that γ (u) = w

and ‖u‖W 1,p(�) ��,p ‖γ (u)‖W 1−1/p,p(�).

For conveniencewewill denote the traceγ (u) simplybyu.Wheneveru ∈ C∞(�̄,R3),
the normal trace u · n and the tangential trace u × n are well-defined on the boundary
� and the generalized Gauss identity and Green’s formula

〈u · n, ϕ〉� =
∫

�

u(x) · ∇ϕ(x) dx +
∫

�

ϕ(x) div u(x) dx, ϕ ∈ W 1,p′
(�) (2.1)

〈u × n, ψ〉� =
∫

�

curl u(x) · ψ(x) dx

−
∫

�

u(x) · curlψ(x) dx, ψ ∈ W 1,p′
(�,R3) (2.2)
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hold, where 〈u · n, ϕ〉� and 〈u × n, ψ〉� are standard surface integrals (but can also be
interpreted in terms of W −1/p,p(�)–W 1−1/p′,p′

(�) duality).
Normal and tangential traces are extended to the function spaces defined next: when

1 < p < ∞, H p(div,�) := {v ∈ L p(�,R3) : div v ∈ L p(�)} is endowed with
the norm ‖v‖H p(div,�) := (‖v‖p

L p(�) + ‖div v‖p
L p(�))

1/p, while H p(curl,�) := {v ∈
L p(�,R3) : curl v ∈ L p(�,R3)} is given the norm ‖v‖H p(curl,�) := (‖v‖p

L p(�) +

‖curl v‖p
L p(�))

1/p.

Theorem 2.6. Suppose 1 < p < ∞. Then the normal trace has a unique bounded
extension u �→ u · n : H p(div,�) → W −1/p,p(�) and the generalized Gauss identity
(2.1) holds.

For a proof of Theorem2.6 see [29, Theorem III.2.2]. In a similar vein, a tangential
trace is well-defined whenever v ∈ L p(�,R3) and curl v ∈ L p(�,R3):

Theorem 2.7. Suppose 1 < p < ∞. Then the tangential trace has a unique bounded
extension u �→ u × n : H p(curl;�) → W −1/p,p(�,R3) and the generalized Green’s
formula (2.2) holds.

Finally, we mention a characterisation of W 1,2(�,R3) by Foias and Temam (see e.g.
[31, Corollary 3.7]). Here Lipschitz continuity of � would not be sufficient (see [3, p.
832]).

Theorem 2.8. We have W 1,2(�,R3) = {v ∈ L2(�,R3) : div v ∈ L2(�), curl v ∈
L2(�,R3), v · n ∈ W 1/2,2(�)} and

‖v‖W 1,2(�) �� ‖v‖L2(�) + ‖ div v‖L2(�) + ‖ curl v‖L2(�) + ‖v · n‖W 1/2,2(�)

for all v ∈ W 1,2(�,R3).

2.3. Bochner spaces. Werecall somebasic facts on time-dependentmappings inBochner
spaces in a generality needed in this article. We do not discuss the definitions of Bochner
measurability and Bochner integrability but refer to [32] for a thorough introduction to
Bochner spaces and to [45] for a shorter one with an emphasis on applications in PDE’s.

Whenever 1 ≤ p < ∞ and X is a Banach space, the Bochner space L p(0, T ; X) con-
sists of (classes with respect to equality a.e. t ∈ (0, T ) of) Bochner integrable functions
v : (0, T ) → X satisfying

∫ T
0 ‖v(·, t)‖p

X dt < ∞. For L∞(0, T ; X) the correspond-
ing condition is ‖‖v(·, t)‖X‖L∞(0,T ) < ∞. If 1 ≤ p < ∞ and X∗ is separable, then

(L p(0, T ; X))∗ = L p′
(0, T ; X∗) with the duality pairing given by

〈 f, v〉L p′
(0,T ;X∗)−L p(0,T ;X)

:=
∫ T

0
〈 f (·, t), v(·, t)〉X∗−X dt

(see [32, Corollary 1.3.22]). Furthermore, then L p(0, T ; X) is separable (see [32, Propo-
sition 1.2.29]) and thus every bounded sequence in L p′

(0, T ; X∗) has a weak-∗ conver-
gent subsequence.We also denote byCw([0, T ); X) the set of mappings v : [0, T ) → X
defined at every t ∈ [0, T ) and satisfying t j → t in [0, T ) ⇒ v(·, t j ) ⇀ v(·, t) in X .

Whenever f ∈ L1(0, T ; X), 0 < δ < T/2 and θ ∈ C∞
c (R) with supp(θ) ⊂ (−δ, δ),

we define f ∗ θ ∈ C∞(δ, T − δ; X) by f ∗ θ(·, t) := ∫ T
0 θ(t − s) f (·, s) ds ∈ X . We

record a variant of Young’s convolution inequality.
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Lemma 2.9. Suppose p, q, r ∈ [1,∞] with 1/p + 1/q = 1 + 1/r and 1 ≤ s < ∞. If
v ∈ L p(0, T ; Ls(�)) and θ ∈ C∞

c (R) with supp(θ) ⊂ (−δ, δ), then

‖v ∗ θ‖Lr (δ,T −δ;Ls (�)) ≤ ‖v‖L p(0,T ;Ls (�)) ‖θ‖Lq (−δ,δ) .

Proof. By Minkowski’s integral inequality and Young’s convolution inequality,
∫ T −δ

δ

(∫

�

|v ∗ θ(x, t)|sdx

) r
s

dt

=
∫ T −δ

δ

(∫

�

∣
∣
∣
∣

∫ T

0
v(x, τ )θ(t − τ) dτ

∣
∣
∣
∣

s

dx

) r
s

dt

≤
∫ T −δ

δ

(∫ T

0

(∫

�

|v(x, τ )|s dx

) 1
s |θ(t − τ)| dτ

)r

dt

=
∫ T −δ

δ

(‖x �→ v(x, ·)‖Ls (�) ∗ |θ | (t))r dt

≤ ‖v‖r
L p(0,T ;Ls (�)) ‖θ‖r

Lq (−δ,δ) .

��
We fix, for the rest of this article, an even mollifier χ ∈ C∞

c (R) with supp(χ) ⊂
(−1, 1) and

∫ 1
−1 χ(t) dt = 1. We denote χδ(t) := δ−1χ(t/δ) for all δ > 0 and t ∈ R.

For every f ∈ L1(0, T ; L1(�)) we denote fδ := f ∗ χδ . For a proof of the following
mollifier approximation lemma see [32, Proposition 1.2.32].

Lemma 2.10. Let 0 < ε < T/2 and suppose 1 ≤ p, q < ∞ and f ∈ L p(0, T ; Lq(�)).
Then ‖ fδ − f ‖L p(ε,T −ε;Lq (�)) → 0 as δ → 0.

The following interpolation inequalities will also be useful to us.

Lemma 2.11. For every v,w ∈ L∞(0, T ; L2(�,R3)) ∩ L2(0, T ; W 1,2(�,R3)) we
have

‖v‖L4(0,T ;L3(�)) �� ‖v‖1/2
L2(0,T ;W 1,2(�)

‖v‖1/2
L∞(0,T ;L2(�))

,

‖v ⊗ w‖L1(0,T ;W 1,3/2(�)) �� ‖v‖L2(0,T ;W 1,2(�))‖w‖L2(0,T ;W 1,2(�)),

‖v ⊗ w‖L4/3(0,T ;L2(�)) �� ‖v‖3/4
L2(0,T ;W 1,2(�))

‖v‖1/4
L∞(0,T ;L2(�))

· ‖w‖3/4
L2(0,T ;W 1,2(�))

‖w‖1/4
L∞(0,T ;L2(�))

,

where v ⊗ w := [viw j ]3i, j=1 is the tensor product of v and w.

Proof. The first inequality is a standard interpolation and can be found e.g. at [44, p. 74]
(up to a use of the Sobolev embedding W 1,2(�) ⊂ L6(�)). For the second one note that
at a.e. t ∈ (0, T ), Hölder’s inequality and the Sobolev embedding W 1,2(�) ↪→ L6(�)

yield

‖|v| |∇w|‖L3/2(�) ≤ ‖v‖L6(�) ‖∇w‖L2(�) �� ‖v‖W 1,2(�) ‖w‖W 1,2(�) .

A similar inequality holds for |w| |∇w| and |v| |w|, and one then uses the Cauchy–
Schwarz inequality on time integrals to finish the proof. Similar reasoning is used to
prove the third inequality of the lemma. ��
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We also recall the Aubin–Lions Lemma which we formulate in a form that suffices
for the purposes of this article (see [45, Lemma 7.7]).

Lemma 2.12. Let X, Y and Z be reflexive Banach spaces such that X embeds compactly
into Y and Y embeds into Z. Suppose 1 < p < ∞ and 1 ≤ q ≤ ∞. Then {u ∈
L p(0, T ; X) : ∂t u ∈ Lq(0, T ; Z)} embeds compactly into L p(0, T ; Y ).

2.4. Leray–Hopf solutions of viscous, resistive MHD equations and the ideal limit. We
recall the definition and present an existence theorem on Leray–Hopf solutions of vis-
cous, resistive 3D MHD equations. When 1 < p < ∞, we denote the relevant function
spaces by

C∞
c,σ (�,R3) := {ϕ ∈ C∞

c (�,R3) : div ϕ = 0},
L p

σ (�,R3) := C∞
c,σ (�,R3)

L p(�,R3) = {v ∈ L p(�,R3) : div v = 0, v · n|� = 0},
W 1,p

0,σ (�,R3) := C∞
c,σ (�,R3)

W 1,p
0 (�,R3) = {v ∈ W 1,p

0 (�,R3) : div v = 0},
W 1,p

σ (�,R3) := {v ∈ W 1,p(�,R3) : div v = 0, v · n|� = 0}.
(for the two identities see e.g. [29, Theorems III.2.3 and III.4.1]). Leray–Hopf solutions
of MHD are defined by the following standard variational formulation.

Definition 2.13. Let u0, b0 ∈ L2
σ (�,R3). Suppose that u ∈ Cw([0, T ); L2

σ (�,R3)) ∩
L2(0, T ; W 1,2

0,σ (�)) and b ∈ Cw([0, T ); L2
σ (�,R3))∩ L2(0, T ; W 1,2

σ (�)) satisfy ∂t u ∈
L1(0, T ; (W 1,2

0,σ (�,R3))∗) and ∂t b ∈ L1(0, T ; (W 1,2
σ (�,R3))∗), and that

〈∂t u, ϕ〉 +
∫

�

(u · ∇u − b · ∇b) · ϕ + ν

∫

�

∇u : ∇ϕ = 0, (2.3)

〈∂t b, θ〉 +
∫

�

b × u · curl θ + μ

∫

�

curl b · curl θ = 0 (2.4)

hold at a.e. t ∈ [0, T ) and every ϕ ∈ W 1,2
0,σ (�,R3) and θ ∈ W 1,2

σ (�,R3). Suppose
furthermore that u(·, 0) = u0 and b(·, 0) = b0 and that u and b satisfy the energy
inequality

1

2

∫

�

(|u(x, t)|2 + |b(x, t)|2) dx

+
∫ t

0

∫

�

(ν |∇u(x, τ )|2 + μ |curl b(x, τ )|2) dx dτ

≤ 1

2

∫

�

(|u0(x)|2 + |b0(x)|2) dx

for all t ∈ (0, T ). Then (u, b) is called a Leray–Hopf solution of (1.1)–(1.6).

Note that (2.4) captures in a weak sense the condition (curl b) × n|� = 0. Also note
that (2.4) and the condition b(·, 0) = b0 imply that
∫ T

0
∂tη

∫

�

b · θ −
∫ T

0
η

∫

�

b × u · curl θ −μ

∫ t

0
η

∫

�

curl b · curl θ +η(0)
∫

�

b0 · θ = 0

(2.5)
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for all η ∈ C∞
c ([0, T )) and θ ∈ W 1,2

σ (�,R3). As mentioned in the introduction, we
present a proof of the following theorem in the Appendix.

Theorem 2.14. Let u0, b0 ∈ L2
σ (�;R3). Then there exists a Leray–Hopf solution (u, b)

of (1.1)–(1.6).

Theorems1.2 and 1.5 do not assume that the ideal (i.e. inviscid, non-resistive) limit,
defined below, holds. However, wemention the notion for completeness and also because
it falls under the scope of Corollary 1.3. It is a fundamental open problem under what
conditions the ideal limit holds in 3D MHD (see [18,52–55,57] for partial results).

Definition 2.15. Suppose viscosities ν j > 0 and resistivitiesμ j > 0 satisfy ν j , μ j → 0
and that divergence-free initial datas u j,0 → u0 and b j,0 → b0 in L2

σ (�,R3). Assume
that for every j ∈ N, (u j , b j ) is a Leray–Hopf solution of (1.1)–(1.6) and that u, b ∈
L∞(0, T ; L2

σ (�,R3)) form a solution of (1.1)–(1.4) with μ = ν = 0. We say that
(u, b) is the ideal limit or inviscid, non-resistive limit of (u j , b j ) (in the energy norm)
if ‖u j − u‖L∞(0,T ;L2(�)) → 0 and ‖b j − b‖L∞(0,T ;L2(�)) → 0. We then also say that
the ideal limit holds for (u j , b j ) and (u, b).

3. Vector Potentials and Gauge Dependence of Magnetic Helicity

The aim of this section is to discuss the notion of magnetic helicity inmultiply connected
domains and to recall the existence of vector potentials satisfying the assumptions of
Corollary 1.6.

3.1. Magnetic helicity in multiply connected domains. We first recall the Helmholtz–
Weyl decomposition of L2(�,R3) which is, in fact, valid in every domain of Rn for all
n ≥ 2 (see [28, Theorem III.1.1]).

Theorem 3.1. L2(�) = L2
σ (�,R3) ⊕ ∇W 1,2(�,R3).

In [27], Foias and Temam performed a further direct decomposition of L2
σ (�,R3)

into a part that has a vanishing flux across the cuts and an harmonic part (see [27,
Proposition 1.1] or [51, Appendix I, Lemma 1.4]). We present the decomposition of
Foias and Temam in the notation of [56].

Theorem 3.2. L2
σ (�,R3) = L2

�(�,R3) ⊕ L2
H (�,R3), where

L2
�(�,R3) :=

{

v ∈ L2
σ (�,R3) :

∫

�i

v(x) · n(x) d S(x) = 0 for i = 1, . . . , N

}

,

L2
H (�,R3) := {v ∈ L2

σ (�,R3) : curl v = 0}.

By Theorem2.8, L2
H (�,R3) ⊂ W 1,2

σ (�,R3).

Definition 3.3. We denote the projections onto L2
�(�,R3) and L2

H (�,R3) by P� :
L2

σ (�,R3) → L2
�(�,R3) and PH : L2

σ (�,R3) → L2
H (�,R3). For every v ∈ L2

σ

(�,R3) we denote v� := P�v and vH := PH v.
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The vector space L2
H (�,R3) is N -dimensional. For a characterisation of an orthonormal

basis {h1, . . . , hN } of L2
H (�,R3) see [51, Appendix I, Lemma 1.3] or [3, Proposition

3.14]. Theorems3.1 and 3.2 yield the decomposition

L2(�,R3) = L2
�(�,R3) ⊕ ker(curl). (3.1)

Furthermore, L2
σ (�,R3) ⊂ {curlψ : ψ ∈ W 1,2(�,R3)} (see [51, Appendix I, Propo-

sition 1.3]). We record the following simple observation.

Proposition 3.4. Suppose b ∈ L2
σ (�,R3). Then the value

∫
�

ψ(x) ·b(x) dx is indepen-
dent of the solution ψ ∈ W 1,2(�,R3) of curlψ = b if and only if b ∈ L2

�(�,R3).

Proof. If b ∈ L2
σ (�,R3) and

∫
�

φ(x) · b(x) dx = 0 for all φ ∈ W 1,2(�,R3) with
curl φ = 0, then in particular

∫
�

hi (x) · b(x) dx = 0 for all i ∈ {1, . . . , N }, giving
b ∈ L2

�(�,R3). The converse follows immediately from (3.1). ��
Consequently, magnetic helicity is independent of the vector potential for every

b(·, t) ∈ L2
σ (�,R3) precisely when L2

H (�,R3) = {0}. In Proposition 3.5 this helps us
to characterise, in multiply connected domains, those magnetic fields whose magnetic
helicity is conserved for every vector potential.

Proposition 3.5. Suppose the mappings u j , b j , u j,0, b j,0, u, b, u0, b0 satisfy the as-
sumptions of Theorem1.5. Then the following conditions are equivalent.

(i)
∫
�

ψ(x, t) · b(x, t) dx is a.e. constant for every ψ ∈ L∞(0, T ; W 1,2(�,R3)) with
curlψ = b.

(ii) bH = 0.
(iii) b0,H = 0.

If � is multiply connected, there exist u j , b j , u j,0, b j,0, u, b, u0, b0 such that (i)–(iii)
are not satisfied.

Proof. The equivalence (i)⇔ (ii) is a direct corollary ofTheorem1.5 andProposition3.4,
and the equivalence (ii) ⇔ (iii) follows immediately from Lemma 4.3. The last claim
follows by combining Lemma4.3 and Theorem2.14. ��

Proposition3.5 indicates that in multiply connected domains, magnetic helicity con-
servation can only hold in the weak ideal limit if some restrictions are imposed on the
vector potential.

3.2. Good vector potentials. As stated in Corollary1.6, a condition that allowsmagnetic
helicity conservation in multiply connected domains is given by

ψ� × n|� = 0 and ψ�
0 × n|� = 0. (3.2)

We will, in fact, obtain Theorem1.5 as a consequence of the fact that (3.2) leads to
magnetic helicity conservation. For more information on condition (3.2) see e.g. [3,36,
56].

Our next aim is to specify vector potentials that satisfy (3.2). For the L2
� part of

the magnetic field we essentially use vector potentials found by Borchers and Sohr in
[6, Corollary 2.2]. The boundary condition 〈∂n(divψ), 1〉�i = 0, added by Amrouche,
Bernardi, Dauge, and Girault in [3], ensures uniqueness. Theorem3.6 follows from [3,
Corollary 3.19] and [3, Theorem 3.20].
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Theorem 3.6. For every v ∈ L2
�(�,R3) there exists a unique T�v := �� ∈ W 1,2

0
(�,R3) such that

curl�� = v, div(���) = 0, 〈∂n(div��), 1〉�i = 0 (i = 1, . . . , K ).

Furthermore, T� : L2
�(�,R3) → W 1,2

0 (�,R3) is linear and bounded.

For the space L2
H (�,R3) a natural choice of potentials is a special case of [3, Theorem

3.12] and [3, Corollary 3.16]:

Theorem 3.7. For every v ∈ L2
H (�,R3) there exists a unique TH v := ψ H ∈ W 1,2

(�,R3) ∩ L2
�(�,R3) such that curl(ψ H ) = v. Furthermore, TH : L2

H (�,R3) →
W 1,2(�,R3) is linear and bounded.

We use Theorems3.6 and 3.7 to record an existence theorem about vector potentials
satisfying (3.2).

Corollary 3.8. For every v ∈ L∞(0, T ; L2
σ (�,R3)), the mappings ��(x, t) := T�

v�(x, t) and ψ H (x, t) := TH vH (x, t) belong to L∞(0, T ; W 1,2(�,R3)) and satisfy
curl�� = v� , curlψ H = vH and (3.2).

Given v ∈ L∞(0, T ; L2
σ (�,R3)), the time-dependent mappings T�v� and TH vH

are strongly measurable, which follows from the fact that T� ◦ P� and TH ◦ PH are
bounded linear operators from L2

σ (�,R3) into W 1,2(�,R3).

Remark 3.9. Another choice of vector potentials that satisfies (3.2) (a special case of
the Coulomb gauge) is given in [3, Theorem 3.17] and [3, Corollary 3.19]: for every
v ∈ L2

�(�,R3) there exists a unique φ ∈ W 1,2(�,R3) with curl φ = v, div φ = 0,
φ × n = 0 on � and 〈φ · n, 1〉�i = 0 for all i ∈ {1, . . . , N } - the condition ψ� · n|� = 0
is thus traded for div φ = 0.

We will also need a scalar potential for time-dependent curl-free L p vector fields in
simply connected domains.

Lemma 3.10. Let 1 ≤ p ≤ ∞ and 1 < q < ∞, and suppose �′ ⊂ � is a simply
connected domain with smooth boundary. If v ∈ L p(0, T ; Lq(�′,R3)) is curl-free, then
there exists a unique g ∈ L p(0, T ; W 1,q(�′)) such that v = ∇g and

∫
�′ g(x, t) dx = 0.

Furthermore, ‖g(·, t)‖W 1,q (�′) ��′,q ‖v(·, t)‖Lq (�′) for a.e. t ∈ (0, T ).

Proof. For the existence of g(·, t) a.e. t ∈ (0, T ) see e.g. [29, Lemma III.1.1]. Given
t ∈ (0, T ) the uniqueness of g(·, t) is clear and the norm estimate follows from the
Poincaré inequality. Since v(·, t) �→ g(·, t) is linear, g is strongly measurable. ��

4. The proof of Theorems 1.2 and 1.5

Theorem1.5 is proved in this section, and Theorem 1.2 is obtained as a special case. We
begin by motivating our decomposition of vector potentials.
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4.1. The decomposition of vector potentials. Given a weak ideal or non-resistive limit
(u, b), our aim is to compute

∫
�

ψ(x, t) · b(x, t) dx at a.e. t ∈ (0, T ) for every vector
potential ψ ∈ L∞(0, T ; W 1,2(�,R3)) of b. However, we do not assume that (u, b)

satisfies the ideal MHD equations and so no neat formula for
∫
�

ψ(x, t) · b(x, t) dx
is readily available. We therefore wish to relate

∫
�

ψ(x, t) · b(x, t) dx to
∫
�

ψ j (x, t) ·
b j (x, t) dx and compute the latter for every ψ j .

A natural idea for computing
∫
�

ψ j (x, t) · b j (x, t) dx (which works without major
complications in simply connected domains) is to write
∫

�

ψ j (x, t) · b j (x, t) dx =
∫ t

0

∫

�

[∂τψ j (x, τ ) · b j (x, τ ) + ψ j (x, τ ) · ∂τ b j (x, τ )] dx dτ

+
∫

�

ψ j (x, 0) · b j (x, 0) dx

and use the induction equation

∂t b j + curl(b j × u j ) + μ j curl curl b j = 0 (4.1)

on ∂τψ j and ∂τ b j . In the multiply connected case, however, (4.1) leads (formally) to
∂tψ j = −b j×u j−μ j curl b j+

∑N
i=1 di (t)hi+∇g,where {h1, . . . , hN } is anorthonormal

basis of L2
H (�,R3), and the product

∑N
i=1 di (t)hi · b j seems very difficult to control.

We therefore maneuver carefully in the proof of Lemma4.5 to make sure that we do not
multiply ∂tψ j and b j,H at any point of the argument.

The considerations above prompt us to decompose ψ j and take advantage of the
differences between b j,� and b j,H . Using the notation of Corollary 3.8, we write

ψ j = (ψ j − ��
j − ψ H

j ) + ��
j + ψ H

j . (4.2)

In (4.2), ∂tψ
H
j = 0, while the condition ��

j × n|� = 0 ensures that many natural
integrations by parts do not create unwanted boundary terms. These properties play a
key role in the proof of Lemma 4.5. Finally, the ’bad part’ ψ j − ψ�

j − ψ H
j is curl-free

and, consequently,
∫
�
(ψ j (x, t)−��

j (x, t)−ψ H
j (x)) ·b j (x, t) dx can be given a simple

formula.
Furthermore, while ψ j need not converge to ψ in any useful sense, the ’good parts’

��
j + ψ H

j of the potentials satisfy

��
j + ψ H

j → �� + ψ H in L2
loc(0, T ; L2(�,R3)) (4.3)

(see Lemma4.4). The basic reason is that ��
j and ψ H

j depend linearly on b j , which

allows us to exploit the weak-∗ convergence b j
∗
⇀ b in L∞(0, T ; L2

σ (�,R3)).

4.2. An overview of the proof. The proof of Theorem1.5 is reduced to the special case of
ψ j = ��

j +ψ H
j and ψ = �� +ψ H in Lemma4.2. We therefore introduce a shorthand

notation for magnetic helicity in this gauge.

Definition 4.1. Given v ∈ L∞(0, T ; L2
σ (�,R3)) and �� := T�v, ψ H := TH v we

denote

M (v; t) :=
∫

�

(��(x, t) + ψ H (x, t)) · v(x, t) dx .
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Our aim is to show that

M (b j ; t) = M (b j ; 0) − 2μ j

∫ t

0

∫

�

b j (x, τ ) · curl b j (x, τ ) dx dτ (4.4)

for every j ∈ N and t ∈ [0, T ) and that given η ∈ C∞
c (0, T ),

∫ T

0
η(t)M (b; t) dt = lim

j→∞

∫ T

0
η(t)M (b j ; t) dt = lim

j→∞

∫ T

0
η(t)M (b j ; 0) dt.

(4.5)
Once (4.5) is proved, (1.11) follows for ψ = �� + ψ H rather easily (see Lemma4.7).

The leftmost equality in (4.5) is proved by showing (4.3) and recalling that b j ⇀ b
in L2(0, T ; L2(�,R3)). The proof of (4.3) uses the Aubin–Lions Lemma as a main
tool and is presented in Sect. 4.5. The rightmost equality of (4.5) is proved in Sect. 4.6
by showing that the double integral on the right-hand side of (4.4) vanishes at the limit
j → ∞.

We finally mention that in the proof of Theorem1.5 we will on several occasions pass
to a subsequence without relabeling it. The limit (1.11) will however hold for the whole
sequence (b j )

∞
j=1 as every subsequence will have a subsequence satisfying (1.11).

4.3. Reduction to good vector potentials. The following lemma shows that it suffices
to prove the claims of Theorem1.5 and Corollary1.6 for the potentials of Definition4.1.
It also indicates to what extent gauge invariance of magnetic helicity fails in multiply
connected domains.

Lemma 4.2. Suppose ψ = ψ� + ψ H ∈ L∞(0, T ; W 1,2(�,R3)) is a vector potential
of v ∈ L∞(0, T ; L2

σ (�,R3)). Then

∫

�

ψ(x, t) · v(x, t) dx = M (v; t) −
∫

�

ψ�(x, t) × n · ψ H (x) dx

at a.e. t ∈ (0, T ).

Proof. By using the definition of M (v; t) and the facts that ψ� − �� ∈ ker curl =
L2

�(�,R3)⊥ and �� × n|� = 0 we obtain

∫

�

ψ(x, t) · v(x, t) dx = M (v; t) +
∫

�

(ψ�(x, t) − ��(x, t)) · vH (x, t) d S(x)

= M (v; t) +
∫

�

ψ H (x) × n · (ψ�(x, t) − ��) d S(x)

= M (v; t) −
∫

�

ψ�(x, t) × n · ψ H (x) dx

at a.e. t ∈ (0, T ). ��
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4.4. Stationarity of the harmonic parts of magnetic fields. We next show that for Leray–
Hopf solutions and their weak ideal limits, the harmonic part of the magnetic field is
stationary.

Lemma 4.3. Under the assumptions of Theorem1.5, for every j ∈ N the harmonic
parts b j,H and bH are of the forms b j,H (x, t) = b j,0,H (x) and bH (x, t) = b0,H (x) =
lim j→∞ b j,0,H (x).

Proof. Given j ∈ N we write b j,H (x, t) = ∑N
i=1 c j

i (t)hi (x) and set out to prove that
c1j , . . . , cN

j are constants independent of t . We fix i ∈ {1, . . . , N } and first show that ci
j

is continuous. Since b j is weakly L2-continuous in time, we get

c j
i (tk) =

∫

�

b j (x, tk) · hi (x) dx →
∫

�

b j (x, t) · hi (x) dx = c j
i (t)

whenever tk → t in [0, T ). Now let η ∈ C∞
c (0, T ) and set θ(x, t) := η(t)hi (x) in (2.5),

getting
∫ T
0 η′(t)c j

i (t) dt = 0, which implies that c j
i (t) = c j

i (0) for all t ∈ [0, T ). Fixing
i ∈ {1, . . . , N } and η ∈ C∞

c (0, T ) we get

c j
i (0)

∫ T

0
η(t) dt =

∫ T

0

∫

�

η(t)hi (x) · b j (x, t) dx dt

→
∫ T

0

∫

�

η(t)hi (x) · b(x, t) dx dt,

which yields the statement on bH . ��

4.5. Strong convergence of good vector potentials. The aim of this section is to prove
(4.3) via theAubin–LionsLemma.This requires uniformcontrol of the norms

∥
∥∂tψ j

∥
∥

L1(0,T ;X)

in some (reflexive) Banach space X ⊃ L2(�,R3). Note that since ∂tψ
H
j = 0, (1.2)

yields

curl(∂tψ
�
j + b j × u j + μ j curl b j ) = 0. (4.6)

If �′ ⊂ � is a simply connected subdomain, we can thus write ∂tψ
�
j + b j × u j +

μ j curl b j = ∇g in �′. It is, however, not immediately clear how well-behaved ∂tψ
�
j

(and, thus, g) is. In order to circumvent this issue we mollify in time via the functions
t �→ χδ(t) mentioned in Sect. 2.3 and write ∂t (ψ

�
j ∗ χδ) = ψ�

j ∗ ∂tχ
δ .

Lemma 4.4. The vector potentials ��
j + ψ H

j converge in L2
loc(0, T ; L2(�,R3)) to the

vector potential �� + ψ H of b.

Proof. Lemma4.3 implies thatψ H
j converges toψ H in L2(0, T ; L2(�,R3)). The more

elaborate part is the strong convergence of the potentials ��
j .

We fix a sequence of numbers ε j ∈ (0, T/2). We then choose another sequence

of numbers δ j ∈ (0, ε j ) such that
∥
∥
∥��

j ∗ χδ j − ��
j

∥
∥
∥

L2(ε j ,T −ε j )
< 1/j for all j ∈

N, so that it suffices to prove the convergence of the sequence (��
j ∗ χδ j )∞j=1 in
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L2
loc(0, T ; L2(�,R3)). We fix ε > 0 and a non-empty simply connected, smooth sub-

domain �′ ⊂ � and aim to show that

sup
j∈N

(‖��
j ∗ χδ j ‖L2(ε,T −ε;W 1,2(�,R3)) + ‖∂t�

�
j ∗ χδ j ‖L2(ε,T −ε;(W 1,4

0,σ (�′,R3))∗)) < ∞;
(4.7)

the Aubin–Lions Lemma then implies norm convergence of a subsequence of (��
j )∞j=1

to some ψ̃ ∈ L2(ε, T − ε; L2(�)). On the other hand, for a further subsequence,
��

j = T�b j,� ⇀ T�b� in L2(ε, T − ε; W 1,2(�,R3)), and thus ψ̃ = T�b� =: �� .
For (4.7) we fix j ∈ N and use the fact that by Lemma3.6, Theorem2.14 and

Lemma2.9,

‖��
j ∗ χδ j ‖L2(ε,T −ε;W 1,2(�,R3)) � ‖b j,� ∗ χδ j ‖L2(ε,T −ε;L2(�)) ≤ ‖b j,�‖L2(0,T ;L2(�))

≤ ‖b j‖L2(0,T ;L2(�)) ≤
√

T (‖b j,0‖2L2(�)
+ ‖u j,0‖2L2(�)

).

In order to control the norm of ∂t (�
�
j ∗χδ j ) we note that ∂t (� j ∗χδ j ) = ��

j ∗ ∂tχ
δ j ∈

L∞(ε, T − ε; W 1,2
0 (�′)), and so Lemma 3.10 and (4.6) yield

��
j ∗ ∂tχ

δ j + (b j × u j ) ∗ χδ j − μ j curl b j ∗ χδ j = ∇g j , (4.8)

where g j ∈ L∞(ε, T − ε; W 1,2(�′)). We estimate, at every t ∈ (ε, T − ε),

∣
∣
∣
∣

∫

�′
∂t [��

j ∗ χδ j ](x, t) · v(x) dx

∣
∣
∣
∣ ≤ ‖b j × u j ∗ χδ j (·, t)‖L1(�)‖v‖L∞(�)

+ μ j‖ curl b j ∗ χδ j (·, t)‖L2(�)‖v‖L2(�)

for all v ∈ W 1,4
0,σ (�′,R3) so that, by Lemma 2.9,

‖∂t�
�
j ∗ χδ j ‖L2(ε,T −ε;(W 1,4

0,σ (�))∗) �� ‖b j × u j ∗ χδ j ‖L2(ε,T −ε;L1(�))

+ μ j‖ curl b j ∗ χδ j ‖L2(ε,T −ε;L2(�))

≤ ‖b j × u j‖L2(0,T ;L1(�)) + μ j‖ curl b j‖L2(0,T ;L2(�))

which yields (4.7). ��

4.6. Completion of the proof. The proof of Theorem1.5 will be finished in the following
two lemmas by showing (4.4) and controlling the size of the integral term in (4.4). A
third lemma then proves Corollary1.6.

Lemma 4.5. For every j ∈ N and every t ∈ [0, T ) we have

M (b j ; t) = M (b j ; 0) − 2μ j

∫ t

0

∫

�

b j (x, τ ) · curl b j (x, τ ) dx dτ.
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Proof. We intend to show that

∂tM (b j ; t) = −2μ j

∫

�

b j (x, t) · curl b j (x, t) dx (4.9)

in the sense of distributions; the claim then follows since the Cauchy–Schwarz inequality
and the energy inequality give ∂tM (b j ; ·) ∈ L1(0, T ).

Letη ∈ C∞
c (0, T ) andnote that

∫ T
0 η(t)M (b j ; t) dt = limδ→0

∫ T
0 η(t)M (b j,δ; t) dt

by Lemma2.10. Fix δ ∈ (0, T/2) such that supp(η) ⊂ [2δ, T − 2δ]. Then, integrating
by parts several times and using the facts that ��

j,δ × n|� = 0 and ∂t�
H
j = ∂t b j,H = 0

we get
∫ T

0
∂tη(t)M (b j,δ; t) dt =

∫ T

0
∂tη(t)

∫

�

(��
j + ψ H

j )δ(x, t) · (b j,� + b j,H )δ(x, t) dx dt

= − 2
∫ T

0
η(t)

∫

�

∂t�
�
j,δ(x, t) · b j,�,δ(x, t) dx dt

+ 2
∫ T

0
∂tηδ(t)

∫

�

ψ H
j (x) · b j,�(x, t) dx dt =: I1 + I2.

For I1 we note that ∂t�
�
j,δ + (b j × u j )δ + μ j curl b j,δ ∈ L∞(δ, T − δ; ker(curl)) =

L∞(δ, T − δ; (L2
�(�,R3))⊥) so that

I1 = 2
∫ T

0
η(t)

∫

�

[(b j × u j )δ(x, t) + μ j curl b j,δ(x, t)] · (b�
j,δ(x, t) dx dt.

For I2 we note that since ∂t (ψ
H
j · b j,H ) = 0, we get

I2 = 2
∫ T

0
∂tηδ(t)

∫

�

ψ H
j (x) · b j (x, t) dx dt.

By setting θ(x, t) := 2ηδ(t)ψ H
j (x) in (2.5) we obtain

I2 = 2
∫ T

0
ηδ(t)

∫

�

curlψ H
j (x) · [b j × u j (x, t) + μ j curl b j (x, t)] dx dt

= 2
∫ T

0
η(t)

∫

�

bH
j (x) · [(b j × u j )δ(x, t) + μ j curl b j,δ(x, t)] dx dt.

Collecting the identities, taking the limit δ → 0 (via Lemma2.11) and using the point-
wise identity b j · b j × u j = 0 we conclude that

∫ T

0
∂tη(t)M (b j ; t) dt = 2μ j

∫ T

0
η(t)

∫

�

b j (x, t) · curl b j (x, t) dx,

which yields (4.9). ��
The following estimate, which goes back to [4], completes the proof of Theorem1.5.

Lemma 4.6. For every j ∈ N,

μ j

∫ T

0

∫

�

|b j (x, t) · curl b j (x, t)| dx dt �T
√

μ j (‖u j,0‖2L2 + ‖b j,0‖2L2).
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Proof. By Young’s inequality and the energy inequality,

μ j

∫ T

0

∫

�

|b j (x, t) · curl b j (x, t)| dx dt

≤
√

μ j

2

∫ T

0

∫

�

(|b j (x, t)|2 + μ j | curl b j (x, t)|2) dx dt

�T
√

μ j (‖u j,0‖2L2 + ‖b j,0‖2L2).

��
A simple lemma gives the rightmost equality in (1.13).

Lemma 4.7. lim j→∞
∫
�
(��

j,0(x) + ψ H
j,0(x)) · b j,0(x) dx = ∫

�
(��

j,0(x) + ψ H
j,0(x)) ·

b0(x) dx.

Proof. By assumption, b j,0 ⇀ b0 in L2
σ (�,R3), and therefore��

j,0+ψ H
j,0 = T�b j,0,�+

TH b j,0,H ⇀ T�b0,� + TH b0,H = ��
0 +ψ H

0 in W 1,2(�,R3). The Rellich–Kondrachov
Theorem then yields ‖(��

j,0 +ψ H
j,0)− (��

0 +ψ H
0 )‖L2(�) → 0, which implies the claim.

��

5. A Two-Dimensional Analogue

Magnetic helicity has a two-dimensional counterpart, the mean-square magnetic poten-
tial. It is defined as the L2 energy of the canonical stream function of b, and it is conserved
in time by smooth solutions of ideal 2D MHD. In Sect. 5.1 we define the mean-square
magnetic potential in multiply connected domains and formulate Theorem5.4 which
says that it is also conserved in the weak ideal limit. As a byproduct, we prove that if a
weak solution of 2D ideal MHD lies in the energy space, then it conserves mean-square
magnetic potential in time. The proof of Theorem5.4 is presented in Sect. 5.2. As main
tools, apart from ones already used in 3D, we use C. Fefferman’s H1–BMO duality
theorem from [23] and the Hardy space theory of compensated compactness quantities
of Coifman, Lions, Meyer and Semmes from [14].

5.1. Mean-square magnetic potential and statement of the theorem. In two dimensions,
the viscous, resistive MHD equations are given by

∂t u + (u · ∇)u − (b · ∇)b − ν�u + ∇� = 0, (5.1)

∂t b − ∇⊥(b × u) − μ∇⊥(curl b) = 0, (5.2)

div u = div b = 0, (5.3)

u(·, 0) = u0, b(·, 0) = b0, (5.4)

where∇⊥ = (−∂2, ∂1) and curl = ∇⊥·. We now record our assumptions on the domain;
we weaken the regularity condition that we placed on the boundary in three dimensions.
Assumption5.1 is strong enough to ensure the existence of a canonical stream function
for every vector field in L2

σ (�,R2) (see Theorem 5.2).

Assumption 5.1. The set� ⊂ R
2 is open and bounded. Furthermore,� is connected and

its boundary� is Lipschitz-continuous and has a finite number of connected components
denoted by �1, . . . , �K .
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The boundary conditions corresponding to (1.5)–(1.6) are

u|� = 0, (5.5)

b · n|� = 0 and curl b|� = 0. (5.6)

Equations (5.1)–(5.6) are understood in analogy to the 3D case, but (2.4) needs to be
replaced by the formula

〈∂t b, θ〉 +
∫

�

b × u curl θ + μ

∫

�

curl b curl θ = 0. (5.7)

We enumerate �1, . . . , �K in such a way that �1 is the boundary of the unbounded
component of R2 \ �. Following [31, p. 40] we denote

� := {ψ ∈ W 1,2(�) : ψ |�1 = 0, ψ |�i is constant for 2 ≤ i ≤ K };

note that if� is connected, then� = W 1,2
0 (�). The following theorem gives a canonical

choice of stream functions (see [31, Corollary I.3.1]).

Theorem 5.2. The mapping −∇⊥ : � → L2
σ (�,R2) is an isomorphism.

When v ∈ L2
σ (�,R2), we call (−∇⊥)−1v ∈ � the stream function of v. Leray–Hopf

solutions are defined in direct analogy to Definition2.13.

Definition 5.3. Suppose (u, b) is a Leray–Hopf solution of (5.1)–(5.6) and ψ ∈ Cw

([0, T );�) is the stream function of b. For every t ∈ [0, T ),
∫
�

|ψ(x, t)|2 dx is called
the mean-square magnetic potential of b at time t .

We formulate an analogue of Theorem1.5 for the mean-square magnetic potential,
denoting the stream functions of the initial datas b j,0 and b0 by ψ j,0 and ψ0. The weak
ideal limit and weak non-resistive limit are defined in direct analogy to Definition1.1.

Theorem 5.4. Suppose � ⊂ R
2 satisfies Assumption5.1, and assume that u, b ∈ L∞

(0, T ; L2
σ (�,R3)) are a weak ideal limit or weak non-resistive limit of Leray–Hopf

solutions (u j , b j ), j ∈ N. Then b ∈ Cw([0, T ); L2
σ (�,R2)), ∂t b −∇⊥(b ×u) = 0 with

b(·, 0) = b0 and

∫

�

|ψ(x, t)|2 dx =
∫

�

|ψ0(x)|2 dx = lim
j→∞

∫

�

∣
∣ψ j,0(x)

∣
∣2 dx (5.8)

for all t ∈ [0, T ).

Note that Theorem5.4 is stronger than Theorem 1.5 in the sense that the induction
equation ∂t b − ∇⊥(b × u) = 0 holds in the weak ideal limit. Theorem5.4 is proved in
the following subsection.
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5.2. Proof of Theorem5.4. Our first task is to prove that the induction equation ∂t b −
∇⊥(b × u) = 0 holds and b(·, 0) = b0. We begin the proof by showing a 2D analogue
of Lemma4.4.

Lemma 5.5. ψ j → ψ in L2(0, T ; L2(�)).

Proof. Since−∇⊥ψ j = b j ⇀ b = −∇⊥ψ in L2(0, T ; L2
σ (�,R2)), we haveψ j ⇀ ψ

in L2(0, T ;�) by Theorem5.2. Hence, it suffices, by the Aubin–Lions Lemma, to show
that

sup
j∈N

‖∂tψ j‖L1(0,T ;W−1,2(�)) < ∞. (5.9)

We write ∂tψ j = −b j × u j − μ j curl b j and estimate the terms separately. First, we set

B j (x, t) :=
{

b j (x, t), x ∈ �,

0, x /∈ �,
U j (x, t) :=

{
u j (x, t), x ∈ �,

0, x /∈ �
(5.10)

and note that div B j = divU j = 0 in R2 × (0, T ). Fix t ∈ (0, T ) and ϕ ∈ C∞
c (�), and

denote �(x) = ϕ(x) for x ∈ � and �(x) = 0 for x /∈ �. Fefferman’sH1-BMO duality
theorem and the div-curl estimate of Coifman, Lions, Meyer and Semmes give

∫

�

b j (x, t) × u j (x, t)ϕ(x) dx =
∫

R2
B j (x, t) × U j (x, t)�(x) dx

� ‖B j (·, t) × U j (·, t)‖H1‖�‖BMO

� ‖B j (·, t)‖L2‖U j (·, t)‖L2‖∇�‖L2 ,

yielding, by the Cauchy–Schwartz inequality,

sup
j∈N

‖b j × u j‖L1(0,T ;W−1,2(�)) � sup
j∈N

∥
∥b j

∥
∥

L2(0,T ;L2(�))

∥
∥u j

∥
∥

L2(0,T ;L2(�))
< ∞.

Furthermore, trivially, sup j∈N ‖μ j curl b j‖L1(0,T ;W−1,2(�)) < ∞, and so (5.9) holds. ��
We next show that the limit mappings u and b satisfy the ideal induction equation.

Given j ∈ N, the mappings u j and b j satisfy (5.1)–(5.6) and using standard arguments
(see e.g. [28, Lemma 2.4]), (5.7) and the initial value condition b j (·, 0) = b j,0 yield

∫ T

0

∫

�

(b j · ∂tφ − b j × u j curl φ − μ curl b j curl φ) dx dt +
∫

�

b j,0 · φ(·, 0) (5.11)

for every φ ∈ C∞
c (� × [0, T ),R2) with div φ = 0.

Lemma 5.6. ∂t b − ∇⊥(b × u) = 0 with initial value b(·, 0) = b0.
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Proof. Fix φ ∈ C∞
c (� × [0, T ),R2) with div φ = 0. By using the formula b j × u j =

∇ψ j · u j , Theorem3.1 and Lemma 5.5,
∫ T

0

∫

�

b j (x, t) × u j (x, t) curl φ(x, t) dx dt

=
∫ T

0

∫

�

∇[curl φ(x, t)ψ j (x, t)] · u j (x, t) dx dt

−
∫ T

0

∫

�

ψ j (x, t)∇ curl φ(x, t) · u j (x, t) dx dt

→ −
∫ T

0

∫

�

ψ(x, t)∇ curl φ(x, t) · u(x, t) dx dt

=
∫ T

0

∫

�

b(x, t) × u(x, t) curl φ(x, t) dx dt.

The claim now follows immediately by inspection of (5.11), since the energy inequality
yields μ j

∫ T
0

∫
�
curl b j (x, t) curl φ(x, t) dx dt → 0. ��

As in 3D, by adapting [28, Lemmas 2.1 and 2.2] we may assume that b ∈ Cw([0, T );
L2

σ (�,R2)). Thus the stream functionψ belongs toCw([0, T );�) ⊂ C([0, T ); L2(�)).
Theorem5.4 will be proved once we show (5.8). The right equality in (5.8) follows

from the assumption b j,0 ⇀ b0 and the Rellich–Kondrachov Theorem. We next prove
the left equality—in fact, we also prove that every weak solution of ideal MHD in the
energy space conserves magnetic helicity in time.

Lemma 5.7. Suppose u ∈ L∞(0, T ; L2
σ (�,R2)) and b ∈ Cw([0, T ); L2

σ (�,R2)) sat-
isfy ∂t b−∇⊥(b×u) = 0 with initial value b(·, 0) = b0 ∈ L2

σ (�,R2). Then b conserves
mean square magnetic potential in time.

Proof. Since ψ ∈ C([0, T ); L2(�)), it suffices to show that for every η ∈ C∞
c (0, T )

we have
∫ T
0 ∂tη(t)

∫
�

|ψ(x, t)|2 dx dt = 0. Fix such an η and choose ε > 0 such that
supp(η) ⊂ [ε, T − ε]. Whenever 0 < δ < ε, we mollify in time and writeψδ := ψ ∗χδ .
ByLemma2.10,

∫ T
0 ∂tη(t)

∫
�

|ψ(x, t)|2 dx dt = limδ→0
∫ T
0 ∂tη(t)

∫
�

|ψδ(x, t)|2 dx dt .
Let now0 < δ < ε. The induction equation ∂t b−∇⊥(b×u) = 0 and the assumptions

about the boundary values of u, b andψ imply that ∂tψ +b×u = 0, and thus (b×u)δ =
−ψ ∗ ∂tχδ ∈ L∞(ε, T − ε; W 1,2(�)), giving

∫ T

0
∂tη(t)

∫

�

|ψδ(x, t)|2 dx dt = 2
∫ T

0
η(t)

∫

�

ψδ(x, t)(b × u)δ(x, t) dx dt.

As in (5.10),we denote the zero extensions ofb andu outside�by B andU . Likewise, for
every t ∈ [0, T ), we denote by�(·, t) ∈ W 1,2(R2) the unique compactly supported solu-
tion of −∇⊥�(·, t) = B(·, t). Thus � ∈ L∞(0, T ; W 1,2(R2)) ⊂ L2(0, T ;VMO(R2))

and B × U ∈ L∞(0, T ;H1(R2)) ⊂ (L2(0, T ;VMO(R2)))∗. This allows us to write,
using Lemma2.10,
∫ T

0
η(t)

∫

�

ψδ(x, t)(b × u)δ(x, t) dx dt =
∫ T

0
η(t)

∫

R2
�δ(x, t)(B × U )δ(x, t) dx dt

→
∫ T

0
η(t)〈�(·, t), B × U (·, t)〉VMO−H1dt.
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We finally mollify � and B in space and use the Dominated Convergence Theorem in
time to conclude that

∫ T

0
η(t)〈�(·, t), B × U (·, t)〉VMO−H1dt

= lim
ε→0

∫ T

0
η(t)

∫

R2
�ε(x, t)Bε(x, t) × U (x, t) dx dt

= 1

2
lim
ε→0

∫ T

0
η(t)

∫

R2
∇ |�ε(x, t)|2 · U (x, t) dx dt = 0.

��
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Appendix A. The Existence of Leray–Hopf Solutions in Multiply Connected Do-
mains

We give a proof of the existence of Leray–Hopf solutions of (1.1)–(1.6), referring to the
literature on some of the steps that are familiar from Navier–Stokes equations. A proof
for simply connected domains is sketched in [48] and presented in more detail in [30].
As we cover multiply connected domains, more technicalities are needed although we
follow the general scheme of the proof given in [30]. We reformulate Theorem2.14 for
the convenience of the reader.

Theorem A.1. Suppose � satisfies Assumption2.1 and let u0, b0 ∈ L2
σ (�,R3). Then

there exists a Leray–Hopf solution (u, b) of (1.1)–(1.6).

The basic strategy of the proof, via finite-dimensional Galerkin approximations, is
classical, but we discuss the main ideas. The solution is built via orthonormal bases
{v j } j∈N and {w j } j∈N of L2

σ (�,R3) satisfying the sought boundary conditions, that is,
v j ∈ W 1,2

0,σ (�,R3) and w j ∈ W 1,2
σ (�,R3) with (curlw j × n)|� = 0.

Definition A.2. Suppose u0, b0 ∈ L2
σ (�,R3) and let n ∈ N. Mappings of the forms

un(x, t) =
n∑

j=1

cnj (t)v j (x), bn(x, t) =
n∑

j=1

dnj (t)w j (x), (A.1)

where cnj , dnj ∈ C1([0, T )), satisfy the nth orderGalerkin approximation of (1.1)–(1.6)
if

d

dt
(un, v j )L2 + ν(∇un,∇v j )L2 + 〈(un · ∇)un − (bn · ∇)bn, v j 〉(W 1,2

0,σ )∗−W 1,2
0,σ

= 0,

d

dt
(bn, w j )L2 + μ(curl bn, curlw j )L2 + 〈curl(bn × un), w j 〉(W 1,2

σ )∗−W 1,2
σ

= 0,

un(·, 0) = Pnu0, bn(·, 0) = Qnb0

for all j = 1, . . . , n.
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For every n ∈ N, standard theory of ordinary differential equations gives a unique
solution of the Galerkin approximation satisfying the energy equality

1

2

∫

�

(|un(x, t)|2 + |bn(x, t)|2) dx

+
∫ t

0

∫

�

(ν |∇un(x, τ )|2 + μ |curl bn(x, τ )|2) dx dτ

= 1

2

∫

�

(|Pnu0(x)|2 + |Qnb0(x)|2) dx (A.2)

for all t ∈ (0, T ) (see LemmaA.8). With some work, the energy equality allows us
to subtract a subsequence with un ⇀ u in L2(0, T ; W 1,2

0,σ (�,R3)) and bn ⇀ b in
L2(0, T ; W 1,2

σ (�,R3)). Our goal is to show that (u, b) is a Leray–Hopf solution with
initial data (u0, b0).

For every n ∈ N we denote by Pn and Qn the projections of L2
σ (�,R3) onto

span{v1, . . . , vn} and span{w1, . . . , wn}. Note that Pn : W 1,2
0,σ (�,R3) → W 1,2

0,σ (�,R3)

and Qn : W 1,2
σ (�,R3) → W 1,2

σ (�,R3) are also bounded operators, and we denote
their (Banach space) adjoints by P∗

n : (W 1,2
0,σ (�,R3))∗ → (W 1,2

0,σ (�,R3))∗ and Q∗
n :

(W 1,2
σ (�,R3))∗ → (W 1,2

σ (�,R3))∗. We also define the Stokes operator and a corre-
sponding operator for magnetic fields,

�1 : W 1,2
0,σ (�,R3) → (W 1,2

0,σ (�,R3))∗ and �2 : W 1,2
σ (�,R3) → (W 1,2

σ (�,R3))∗,

by

〈�1u, v〉
(W 1,2

0,σ )∗−W 1,2
0,σ

:=
∫

�

∇u : ∇v,

〈�2b, w〉
(W 1,2

σ )∗−W 1,2
σ

:=
∫

�

curl b · curlw.

We write the Galerkin approximation in the condensed form

∂t un − ν P∗
n �1un + P∗

n [(un · ∇)un − (bn · ∇)bn] = 0, (A.3)

∂t bn − μQ∗
n�2bn + Q∗

n[curl(bn × un)] = 0, (A.4)

un(·, 0) = Pnu0, bn(·, 0) = Qnb0. (A.5)

In order for the weak limit (u, b) to satisfy the MHD equations (1.1)–(1.6) we need
to gain enough compactness in the nonlinear terms P∗

n [(un · ∇) · un − bn × (curl bn)]
and Q∗

n[curl(bn × un)]. This is eventually achieved by using the Aubin Lions Lemma
to get un → u and bn → b in L2(0, T ; L2

σ (�,R3)). In order to satisfy the assumptions
of the Aubin–Lions Lemma we wish to choose suitable bases {v j } j∈N and {w j } j∈N (see
Sect. A.1) that ensure the uniform norm control

sup
n∈N

(‖P∗
n ‖

(W 1,2
0,σ (�,R3))∗→(W 1,2

0,σ (�,R3))∗ + ‖Q∗
n‖

(W 1,2
σ (�,R3))∗→(W 1,2

σ (�,R3))∗) < ∞. (A.6)

As is customary,we select v j to be eigenfunctions of�1,while a basis of L2
�(�,R3) con-

sists of eigenfunctions of �2. Since we deal with multiply connected domains, {w j } j∈N
also needs to include a basis of L2

H (�,R3), and some care is needed in the ensuing
arguments. The proof is completed in Sect. A.3.
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A.1. The choice of bases. This subsection is devoted to the choice of the orthonormal
bases of L2

σ (�,R3). The first basis {v j } j∈N consists of eigenfunctions of the Stokes
operator and its existence is classical; we refer to [51, p. 39]. We endow W 1,2

0,σ (�,R3)

with the Hilbert norm ‖·‖W 1,2
0,σ

:= ‖∇·‖L2 .

Lemma A.3. L2
σ (�,R3) has an orthonormal basis {v j } j∈N with the following proper-

ties: for every j ∈ N there exists λ j > 0 such that v j ∈ W 1,2
0,σ (�,R3) satisfies

(v j , φ)W 1,2
0,σ

= λ j (v j , φ)L2

for all φ ∈ W 1,2
0,σ (�,R3). In particular, {v j/

√
λ j } j∈N is an orthonormal system in

W 1,2
0,σ (�,R3).

The analysis of the second basis is simplified by using the following lemma which
is essentially a special case of [3, Corollary 3.16].

Lemma A.4. On W 1,2
σ (�,R3), the norm ‖·‖W 1,2

σ
induced by the inner product

(v,w)W 1,2
σ

:=
∫

�

curl v(x) · curlw(x) dx +
N∑

i=1

γi 〈v · n, 1〉�i 〈w · n, 1〉�i

(where γi > 0 is chosen such that ‖hi‖W 1,2
σ

= 1 for all i ∈ {1, . . . , N }) is equivalent to

the norm inherited from W 1,2(�,R3).

LemmaA.4 has the following consequence ([19, Lemme II.6]).

Lemma A.5. The vector spaces W 1,2
� (�,R3) := W 1,2

σ (�,R3) ∩ L2
�(�,R3) and W 1,2

H
(�,R3) := W 1,2

σ (�,R3) ∩ L2
H (�,R3) satisfy

W 1,2
σ (�,R3) = W 1,2

� (�,R3) ⊕ W 1,2
H (�,R3). (A.7)

Furthermore, W 1,2
� (�,R3) is dense in L2

�(�,R3).

Proof. In the proof of (A.7) the only non-trivial condition to check is that when w ∈
W 1,2

σ (�,R3), we have w� := P�w ∈ W 1,2
� (�,R3) and wH := PH w ∈ W 1,2

H (�,R3).

Note that Theorem2.8 gives wH ∈ W 1,2
H (�,R3), which immediately implies w� ∈

W 1,2
� (�,R3). Furthermore, the projection P� : L2

σ (�,R3) → L2
�(�,R3) is also a

bounded operator from W 1,2
σ (�,R3) into W 1,2

� (�,R3).
Let now f ∈ L2

�(�,R3) and choose mappings ψ j ∈ C∞
c,σ (�,R3) ⊂ W 1,2

σ (�,R3)

such that ‖ψ j − f ‖L2 → 0. Then P�ψ j ∈ W 1,2
� (�,R3) for all j ∈ N and P�ψ j →

P� f = f in L2(�,R3). ��
We use LemmaA.5 to find the basis of L2

σ (�,R3) that is used to construct the
magnetic field in TheoremA.1. In the case of simply connected domains this is done
by analysing the magnetostatic problem instead of the stationary Stokes problem (see
[30, pp. 67–69]). In multiply connected domains the situation is a bit more complicated
because W 1,2

H (�,R3) is non-trivial.
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Lemma A.6. L2
σ (�,R3) has an orthonormal basis {w j } j∈N with the following proper-

ties: {w1, . . . , wN } = {h1, . . . , hN } and for every j ∈ N there exists λ̃ j > 0 such that
w j ∈ W 1,2

σ (�,R3) satisfies

(w j , ψ)W 1,2
σ

= λ̃ j (w j , ψ)L2 (A.8)

for all ψ ∈ W 1,2
σ (�,R3). In particular, {w j/

√
λ̃ j } j∈N is an orthonormal system in

W 1,2
σ (�,R3).

Proof. Given j ∈ {1, . . . , N } we first check that (A.8) holds for w j = h j with λ̃ j = 1.
Let ψ ∈ W 1,2

σ (�,R3). Writing ψ = ∑N
i=1(ψ, hi )L2hi + ψ� and using LemmaA.5,

(A.8) follows immediately.
Next we set out to find w j ∈ W 1,2

� (�,R3) for every j > N . Given f ∈ L2
�(�,R3)

we define a quadratic functional K : W 1,2
� (�,R3) → R by

K (C) := 1

2

∫

�

| curlC(x)|2dx −
∫

�

f (x) · C(x) dx .

The quadratic part of K is coercive and K is strictly convex, and therefore K has a
unique minimizer w in W 1,2

� (�,R3). Thus

∫

�

curlw(x) · curlψ(x) dx =
∫

�

f (x) · ψ(x) dx (A.9)

for all ψ ∈ W 1,2
� (�,R3).

We define a bounded linear operatorA2 : L2
�(�,R3) → L2

�(�,R3) byA2 f := w.
Our aim is to choose w j , j > N , as eigenfunctions of A2. Since

‖w‖2W 1,2(�)
�� ‖curlw‖2L2(�)

=
∫

�

f · w ≤ ‖ f ‖L2(�) ‖w‖L2(�)

for all f ∈ L2
�(�,R3), the Rellich–Kondrachov Theorem implies that A2 is compact.

In addition,
∫
�
A2 f (x) · g(x) dx = ∫

�
curlA2 f (x) · curlA2g(x) dx = ∫

�
f (x) ·

A2g(x) dx for all f, g ∈ L2
�(�,R3) so that A2 is self-adjoint. Furthermore, A2 is a

positive operator. Indeed, given f ∈ L2
�(�,R3) \ {0} we have ∫

�
A2 f (x) · f (x) dx =

‖curlA2 f ‖2
L2(�)

. Now (A.9) and the assumption f 
= 0 imply that curlA2 f 
= 0: since

W 1,2
� (�,R3) is dense in L2

�(�,R3) by LemmaA.5, we may choose ψ ∈ W 1,2
� (�,R3)

such that
∫
�
curlA2 f (x) · curlψ(x) dx = ∫

�
f (x) ·ψ(x) dx 
= 0. Hence,

∫
�
A2 f (x) ·

f (x) dx > 0.
The Spectral Theorem for compact self-adjoint operators now yields an orthonormal

basis {w j } j∈N of L2
�(�,R3) and corresponding strictly positive eigenvalues μ j → 0.

We denote λ̃ j := 1/μ j → ∞. Equality (A.8) implies that the mappings w j/

√
λ̃ j form

an orthonormal system in W 1,2
σ (�,R3). ��
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When u ∈ W 1,2
0,σ (�,R3), b ∈ W 1,2

σ (�,R3) and n ∈ N, LemmasA.3 and A.6 allow
us to write Pnu and Qnb as

Pnu =
n∑

j=1

(

u,
v j

√
λ j

)

W 1,2
0,σ

v j
√

λ j
, Qnb =

n∑

j=1

⎛

⎝b,
w j
√

λ̃ j

⎞

⎠

W 1,2
σ

w j
√

λ̃ j

.

This immediately implies the following result, which in turn yields the norm bound in
(A.6).

Proposition A.7. Both of the linear operators Pn : W 1,2
0,σ (�,R3) → W 1,2

0,σ (�,R3) and

Qn : W 1,2
σ (�,R3) → W 1,2

σ (�,R3) are self-adjoint and bounded uniformly in n.

In the next subsection we give a solution of the Galerkin approximation equations.

A.2. The Galerkin approximation. In order to smoothen the exposition we work with
the bases constructed in the previous subsection, although the following lemma holds
for any orthonormal bases {v j } j∈N and {w j } j∈N of L2

σ (�,R3) with v j ∈ W 1,2
0,σ (�,R3)

and w j ∈ W 1,2
σ (�,R3).

Lemma A.8. For every n ∈ N, the Galerkin approximation has a solution of the form
(A.1) with the energy equality (A.2) holding for all t ∈ [0, T ).

Proof. When un and bn are of the form (A.1), Lemmas A.3 and A.6 imply that the
Galerkin equations read as

ċn j (t) − νλ j cnj (t) +
n∑

k,l=1

cnk(t)cnl(t)α jkl −
n∑

k,l=1

dnk(t)dnl(t)β jkl = 0, (A.10)

ḋn j (t) − μλ̃ jχ j>N dnj (t) +
n∑

k,l=1

cnk(t)dnl(t)γ jkl −
n∑

k,l=1

dnk(t)cnl(t)δ jkl = 0,

(A.11)

cnj (0) =
∫

�

u0(x) · v j (x) dx, dnj (0) =
∫

�

b0(x) · w j (x) dx (A.12)

for j = 1, . . . , n, where

α jkl :=
∫

�

(vk(x) · ∇)vl(x) · v j (x) dx, β jkl :=
∫

�

(wk(x) · ∇)wl(x) · v j (x) dx

γ jkl :=
∫

�

(wk(x) · ∇)vl(x) · w j (x) dx, δ jkl :=
∫

�

(vk(x) · ∇)wl(x) · w j (x) dx .

Note that (A.10)–(A.12) is an initial value problem for a system of 2n ODE’s on the 2n
functions cnj , dnj , and by standard theory of ODE’s there exists Tn > 0 and a solution
cn1, . . . , dnn ∈ C∞([0, Tn)). Note also that

α jkl = −αlk j , β jkl = −γlk j , δ jkl = −δlk j = 0. (A.13)
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The energy equality can be written as

n∑

j=1

cnj (t)
2 +

n∑

j=1

dnj (t)
2 + 2

n∑

j=1

∫ t

0
(νλ j cnj (τ )2 + μλ̃ jχ j>N dnj (τ )2) dτ

=
n∑

j=1

cnj (0)
2 +

n∑

j=1

dnj (0)
2

and is proved by multiplying (A.10) by cnj (t) and (A.11) by dnj (t), summing in j ,
integrating in time and using (A.13). The energy equality allows us to continue the
solution of (A.10)–(A.12) to the whole interval [0, T ). ��

A.3. Passing to the limit. TheLeray–Hopf solution (u, b)of (1.1)- -(1.6)will be obtained
as a strong L2 limit of (un, bn) by using the Aubin-Lions Lemma. To that end we prove
norm bounds on (un, bn).

Lemma A.9. There exists C > 0 such that

‖un‖L∞(0,T ;L2(�)) + ‖un‖L2(0,T ;W 1,2(�)) + ‖∂t un‖L4/3(0,T ;(W 1,2
0,σ (�))∗) ≤ C,

‖bn‖L∞(0,T ;L2(�)) + ‖bn‖L2(0,T ;W 1,2(�)) + ‖∂t bn‖L4/3(0,T ;(W 1,2
σ (�))∗) ≤ C

for all n ∈ N.

Proof. First, since un and bn satisfy the energy equality for every n ∈ N, ‖Pnu0 −
u0‖L2 → 0 and ‖Qnb0 − b0‖L2 → 0, it follows that supn∈N(‖un‖L∞(0,T ;L2(�)) +‖bn‖L∞(0,T ;L2(�))) < ∞. By another use of the energy equality and LemmaA.4, |∇un|
and |∇bn,� | are uniformly bounded in L2(0, T ; L2(�)). Furthermore,

‖∇bn,H ‖L2(0,T ;L2(�)) =
∥
∥
∥
∥
∥

min n,N∑

i=1

dnj∇w j

∥
∥
∥
∥
∥

L2(0,T ;L2(�))

��

∥
∥
∥
∥
∥

min n,N∑

i=1

dnjw j

∥
∥
∥
∥
∥

L2(0,T ;L2(�))

= ‖bn,H ‖L2(0,T ;L2(�))

for all n ∈ N, and thus supn∈N(‖un‖L2(0,T ;W 1,2(�)) + ‖bn‖L2(0,T ;W 1,2(�))) < ∞.
We now deal with ∂t bn , ∂t un being similar but slightly simpler. At a.e. t ∈ [0, T ) and

for all θ ∈ W 1,2
σ (�,R3) we write

〈∂t bn, θ〉
(W 1,2

σ (�))∗−W 1,2
σ (�)

+ 〈μ�2bn + curl(bn × un), Qnθ〉
(W 1,2

σ (�))∗−W 1,2
σ (�)

= 0.

PropositionA.7 gives

〈μ�2bn, Qnθ〉
(W 1,2

σ (�))∗−W 1,2
σ (�)

= μ(curl bn(·, t), curl Qnθ)L2

� μ ‖bn(·, t)‖W 1,2
σ (�)

‖θ‖W 1,2
σ (�)

.
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By using PropositionA.7 again, given n ∈ N and θ ∈ W 1,2
σ (�,R3) we get

|〈curl(bn × un), Qnθ〉
(W 1,2

σ (�))∗−W 1,2
σ (�)

| ≤ ‖bn(·, t)‖L6‖un(·, t)‖L3‖ curl Qnθ‖L2

�� ‖∇bn(·, t)‖L2‖un(·, t)‖L3‖θ‖W 1,2
σ

,

so that, by using the previous inequality and Hölder’s inequality with exponents 3/2 and
3 in t ,

‖ curl(un × bn)‖L4/3(0,T ;(W 1,2
0,σ (�))∗) �� ‖ ‖∇bn‖L2(�) ‖un‖L3(�) ‖L4/3(0,T )

≤ ‖∇bn‖L2(0,T ;L2(�)) ‖un‖L4(0,T ;L3(�))

which, when combined with Lemma2.11, completes the proof. ��
The Aubin–Lions Lemma and interpolation give various convergence properties.

Lemma A.10. There exist u ∈ L∞(0, T ; L2
σ (�,R3)) ∩ L2(0, T ; W 1,2

0,σ (�,R3)) and

b ∈ L∞(0, T ; L2
σ (�,R3)) ∩ L2(0, T ; W 1,2

σ (�,R3)) such that, up to a subsequence,
the following convergences hold:

(i) un → u and bb → b in L2(0, T ; L2
σ (�,R3)),

(ii) un ⇀ u in L2(0, T ; W 1,2
0,σ (�,R3)) and bn ⇀ b in L2(0, T ; W 1,2

σ (�,R3)),

(iii) ∂t un ⇀ ∂t u in L4/3(0, T ; (W 1,2
0,σ (�,R3)∗) and furthermore ∂t bn ⇀ ∂t b in L4/3

(0, T ; (W 1,2
σ (�,R3)∗),

(iv) un ⊗un ⇀ u⊗u and bn ⊗bn ⇀ b⊗b in L4/3(0, T ; L2(�,R3×3)), bn ×un ⇀ b×u
in L4/3(0, T ; L2(�,R3)).

Proof. While (i) and (ii) follow immediately from the Aubin–Lions Lemma and
LemmaA.9, claims (iii)–(iv) follow from (i) and Lemma2.11. The claim u, b ∈ L∞

(0, T ; L2
σ (�,R3)) follows from the fact that up to a subsequence, un

∗
⇀ u and bn

∗
⇀ b

in L∞(0, T ; L2
σ (�,R3)). ��

We show that (u, b) solves the equations (1.1)–(5.3) and (1.5)–(1.6), and we refer to
[28] for the proof of the claims that u, b ∈ Cw([0, T ); L2

σ (�,R3)) and that u(·, 0) = u0
and b(·, 0) = b0. The energy inequality is then obtained as a consequence.

Lemma A.11. The mappings u and b mentioned in LemmaA.10 form a Leray–Hopf
solution of (1.1)–(1.6).

Proof. We first show that u and b satisfy (2.3) and (2.4) a.t a.e. t ∈ [0, T ) for every
ϕ ∈ W 1,2

0,σ (�,R3) and θ ∈ W 1,2
σ (�,R3). Note that whenever η ∈ C∞

c ([0, T )) and
k ∈ N, LemmasA.8 and A.10 give

0 = − η(0)(Pnu0, vk)L2 −
∫ T

0
η′(t)(un, vk)L2 dt

−
∫ T

0
η(t)(un ⊗ un − bn ⊗ bn,∇vk)L2 dt + ν

∫ T

0
η(t)(∇un,∇vk)L2 dt

→ − η(0)(u0, vk)L2 −
∫ T

0
η′(t)(u, vk)L2 dt

−
∫ T

0
η(t)(u ⊗ u − b ⊗ b,∇vk)L2 dt + ν

∫ T

0
η(t)(∇u,∇vk)L2 dt.
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Given any ϕ ∈ W 1,2
0,σ (�,R3) we can replace vk above by ϕk := Pkϕ by taking linear

combinations. Now ‖Pkϕ − ϕ‖L2(�,R3) → 0 and supk∈N ‖Pkϕ‖W 1,2
0,σ (�,R3)

< ∞ imply

that Pkϕ ⇀ ϕ in W 1,2
0,σ (�,R3). We let k → ∞ to obtain

0 = − η(0)(u0, ϕ)L2 −
∫ T

0
η′(t)(u, ϕ)L2 dt

−
∫ T

0
η(t)(u ⊗ u − b ⊗ b,∇ϕ)L2 dt + ν

∫ T

0
η(t)(∇u,∇ϕ)L2 dt,

which in particular gives (2.3) at a.e. t ∈ [0, T ). Similarly, if θ ∈ W 1,2
σ (�,R3), equation

(2.4) holds at a.e. t ∈ [0, T ).
The claims that u, b ∈ Cw([0, T ); L2

σ (�,R3)) and that u(·, 0) = u0 and b(·, 0) = b0
can be proved by slightly modifying [28, Lemmas 2.1–2.2]. Since we have u, b ∈
Cw([0, T ); L2

σ (�,R3)), it suffices to show the energy inequality at a.e. t ∈ [0, T ).
Since un → u and bn → b in L2(0, T ; L2(�,R3)), passing to a subsequence we get
un(·, t) → u(·, t) and bn(·, t) → b(·, t) in L2(�,R3) at a.e. t ∈ [0, T ). At those times
t the energy inequality for u and b now follows from the energy equality of un and bn . ��
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