COLLINEAR FRACTALS: INNER STABILITY

BERNAT ESPIGULÉ

ABSTRACT. This poster investigates the connectedness loci, \mathcal{M}_n , of n-ary collinear fractals, E(c,n). We define E(c,n) as the attractor of an iterated function system parameterized by a complex number c outside the unit disk, and an integer $n \geq 2$. We establish that \mathcal{M}_n is the set of parameters c for which E(c,n) is connected. We introduce an inner stability principle, showing that if 2c lies in the interior of E(c,2n-1), then c lies in the interior of \mathcal{M}_n . Furthermore, we provide a direct proof of the generalized Bandt's conjecture, confirming that for all $n \geq 2$, the non-real part of \mathcal{M}_n lies within the closure of its interior. We show that the roots c_0 of integer polynomials with coefficients restricted to $D_n = \{-n+1, -n+2, \ldots, n-1\}$ are the centers of the inner components of \mathcal{M}_n .

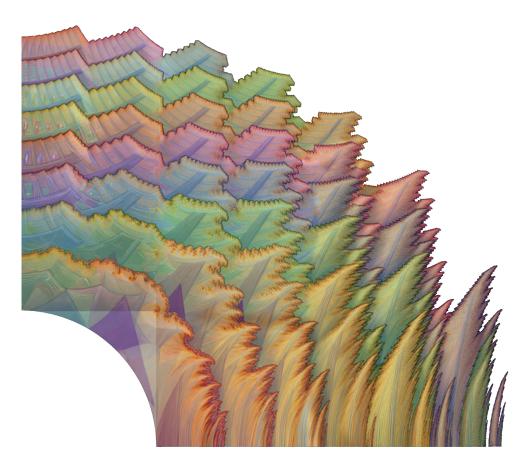


FIGURE 1. In our previous work [EJSn24], it was shown that for $n \geq 21$ the non-real part of \mathcal{M}_n lies in the closure of its interior. In this poster, we provide a self-contained proof to the general case $n \geq 2$.

References

[EJSn24] Bernat Espigule, David Juher, and Joan Saldaña. Collinear Fractals and Bandt's Conjecture. Fractal and Fractional, 8(12), 2024.

DEPARTAMENT D'INFORMÀTICA, MATEMÀTICA APLICADA I ESTADÍSTICA, UNIVERSITAT DE GIRONA, C/ MARIA AURÈLIA CAPMANY 61, 17003 GIRONA, SPAIN. ORCID 0000-0002-8036-7851 Email address: bernat@espigule.com