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Abstract: In this paper, we study the existence of corotating and counter-rotating pairs
of simply connected patches for Euler equations and the (SQG)α equations with α ∈
(0, 1). From the numerical experiments implemented for Euler equations in Deem and
Zabusky (Phys Rev Lett 40(13):859–862, 1978), Pierrehumbert (J Fluid Mech 99:129–
144, 1980), Saffman and Szeto (Phys Fluids 23(12):2339–2342, 1980) it is conjectured
the existence of a curve of steady vortex pairs passing through the point vortex pairs.
There are some analytical proofs based on variational principle (Keady in J Aust Math
Soc Ser B 26:487–502, 1985; Turkington in Nonlinear Anal Theory Methods Appl
9(4):351–369, 1985); however, they do not give enough information about the pairs,
such as the uniqueness or the topological structure of each single vortex. We intend
in this paper to give direct proofs confirming the numerical experiments and extend
these results for the (SQG)α equation when α ∈ (0, 1). The proofs rely on the contour
dynamics equations combined with a desingularization of the point vortex pairs and the
application of the implicit function theorem.
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1. Introduction

The present work deals with the dynamics of vortex pairs for some nonlinear transport
equations arising in fluid dynamics. The equations that we shall consider are the gener-
alized surface quasi-geostrophic equations which describe the evolution of the potential
temperature θ through the system,

⎧
⎨

⎩

∂tθ + v · ∇θ = 0, (t, x) ∈ R+ × R
2,

v = −∇⊥(−�)−1+ α
2 θ,

θ|t=0 = θ0.

(1)

Here v refers to the velocity field, ∇⊥ = (−∂2, ∂1) and α is a real parameter taken in
[0, 2). The operator (−�)−1+ α

2 is of convolution type and defined as follows

(−�)−1+ α
2 θ(x) =

ˆ
R2

Kα(x − y)θ(y)dy

with

Kα(x) =
{

− 1
2π log |x |, if α = 0

Cα

2π
1

|x |α , if α ∈ (0, 2)
(2)

and Cα = �(α/2)
21−α�( 2−α

2 )
where � stands for the gamma function. Note that this model was

proposed by Córdoba et al. in [11] as an interpolation between Euler equations and the
surface quasi-geostrophic model (SQG) corresponding to α = 0 and α = 1, respec-
tively. We mention that the SQG equation is used in [21,25] to describe the atmosphere
circulation near the tropopause and to track the ocean dynamics in the upper layers [30].
The mathematical analogy with the classical three-dimensional incompressible Euler
equations was pointed out in [10].

In the last few years there has been a growing interest in the mathematical study of
these active scalar equations. Local well-posedness of classical solutions has been dis-
cussed in various function spaces. For instance, this was implemented in the framework
of Sobolev spaces [8], however, the global existence is still an open problem except for
Euler equations. The second restriction with the (SQG)α equation concerns the con-
struction of Yudovich solutions—known to exist globally in time for Euler equations
[43]—which remains unsolved even locally in time. The main difficulty is due to the
velocity, which is in general singular and scales below the Lipschitz class. Nonetheless,
one can say more about this issue for some special class of concentrated vortices. More
precisely, when the initial data is a single vortex patch, that is, θ0(x) = χD is the char-
acteristic function of a bounded simply connected smooth domain D, there is a unique
local solution in the patch form θ(t) = χDt . In this case, the boundary motion of the
domain Dt is described by the contour dynamics formulation. Indeed, the Lagrangian
parametrization γt : T → ∂Dt obeys the following integro-differential equations

∂tγt (w) =
ˆ
T

Kα

(
γt (w) − γt (ξ)

)
γ ′
t (ξ)dξ.
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For more details, see [9,19,37]. The global persistence of the boundary regularity is
established for Euler equations by Chemin [9]; we refer also to the paper of Bertozzi
and Constantin [2] for another proof. However for α > 0 only local persistence result
is known and numerical experiments carried out in [11] reveal a singularity formation
in finite time. Let us mention that the contour dynamics equation remains locally well-
posed when the domain of the initial data is composed of multiple patches with different
magnitudes in each component.

In this paper we shall focus on steady single and multiple patches moving without
changing shape, called relative equilibria or V-states according to the terminology of
Deem and Zabusky. Their dynamics is seemingly simple flow configurations described
by rotating or translatingmotion but it is immensely rich and exhibits complex behaviors.
There is abundant literature dealing with numerical and analytical structures for the
isolated rotating patches and the first example goes back to Kirchhoff [28], who proved
for Euler equations that an ellipse of semi-axes a and b rotates uniformly with the
angular velocity � = ab/(a + b)2. About one century later, Deem and Zabusky [12]
provided strong numerical evidence for the existence of rotating patches with to be
m-fold symmetry for the integers m ∈ {

3, 4, 5
}
. Recall that a domain is said to be

m-fold symmetric if it is invariant by the action of the dihedral group Dm . A few years
later, Burbea gave in [3] an analytical proof and showed for any integer m ≥ 2 the
existence of a curve of V-states with m-fold symmetry bifurcating from Rankine vortex
at the angular velocity m−1

2m . The proof relies on the use of complex analysis tools
combined with the bifurcation theory. The regularity of the boundary close to Rankine
vortices has been discussed very recently by the authors and Verdera in [22] where it
was proved that the boundary is C∞ and convex. It seems that the boundary is actually
analytic according to the recent result of Castro, Córdoba and Gómez-Serrano [7]. We
also refer to the paper [42] where it is proved that corners with right angles is the
only plausible scenario for the limiting V-states. It is worth pointing out that Burbea’s
approach has been successfully implemented for the (SQG)α equations in [7,20] butwith
muchmore delicate computations. Similarly to the case α = 0,we find countable family
of bifurcating curves at some known angular velocities related to gamma function. In
the same context, it turns out that for Euler equations a second bifurcation of countable
branches from the ellipses occurs but the shapes have in fact less symmetry and being
at most two-folds. This was first observed numerically in [26,31] and analytical proofs
were recently discussed in [6,23]. Another valuable investigation has been devoted to the
existence of doubly connected V-states where the rotating patches have only one hole. In
this case the boundary is comprised of two Jordan curves obeying to two coupled singular
nonlinear equations and thereby the dynamics acquires more richness and significant
behaviors. The existence of such structures was first accomplished for Euler equations in
[14] by using bifurcation tools in the spirit of Burbea’s approach. Roughly speaking, for
higher symmetrym weget two branches ofm−foldV-states bifurcating from the annulus{
b < |z| < 1

}
and numerical experiments about the limiting V-states reveal different

plausible configurations depending on the size of the parameter b. Later, this result has
been extended for the (SQG)α equations in [13] for α ∈ (0, 1), which surprisingly
exhibit various completely new behaviors compared to Euler equations. For example we
find rotating patches with negative and positive angular velocities for any α ∈ (0, 1).
It is worth mentioning that the bifurcation in the preceding cases is obtained under the
transversality assumption of Crandall–Rabinowitz corresponding to simple nonlinear
eigenvalues. However the bifurcation in the degenerate case where there is crossing
eigenvalues is more complicated and has been recently solved in [24].
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The main task of this paper is to deal with non connected V-states where the
bifurcation arguments discussed above are out of use. To be more precise, we shall
be concerned with vortex pairs moving without deformation. This is a fundamental and
rich subject in vortex dynamics and they serve for instance to model trailing vortices
behind the wings of aircraft in steady horizontal flight or to describe the interaction be-
tween isolated vortex and a solid wall. We point out that the literature is very abundant
and it is by no means an easy task to collect and recall all the results done in this field.
Therefore we shall restrict the discussion to the cases of counter-rotating and corotating
vortices and recall some results that fit with our main goal. In the first case, the most
common studied configuration is two symmetric vortex pairs with opposite circulations
moving steadily with constant speed in a fixed direction. Notice that an explicit example
is given by a pair of point vortices with opposite circulations which translates steadily
with the speed Using = γ

2πd , where d is the distance separating the point vortices
and γ is the magnitude, see for instance [29]. Another nontrivial explicit example of
touching counter-rotating vortex pair was discovered by Lamb [29], where the vortex
is not uniformly distributed but has a smooth compactly supported profile related to
Bessel functions of the first kind. Later, Deem and Zabusky [12] and Pierrehumbert [36]
provided numerically a class of translating vortex pairs of symmetric patches and they
conjectured the existence of a curve of translating symmetric pair of simply connected
patches emerging from two point vortices and ending with two touching patches at right
angle. We mention that Keady [27] used a variational principle in order to explore the
existence part and give asymptotic estimates for some significant functionals such as
the excess kinetic energy and the speed of the pairs. The basic idea is to maximize the
excess kinetic energy supplemented with some additional constraints and to show the
existence of a maximizer taking the form of a pair of vortex patches in the spirit of the
paper of Turkington [41]. However, this approach does not give sufficient information
on the structure of the pairs. For example the uniqueness of the maximizer is left open
and the topology of the patches is not well-explored, and it is not clear from the proof
whether or not each single patch is simply connected as it is suggested numerically.
Concerning the corotating vortex pair, which consists of two symmetric patches with
the same circulations and rotating about the centroid of the systemwith constant angular
velocity, it was investigated numerically by Saffman and Szeto in [39]. They showed
that when far apart, the vortices are almost circular and when the distance between them
decreases they become more deformed until they touch. We remark that a pair of point
vortices far away at a distance d and with the same magnitude γ rotates steadily with the
angular velocity�sing = γ

πd2
.By using variational principle, Turkington gave in [41] an

analytic proof of the existence of corotating vortex pairs but this general approach does
not give enough precision on the topological structure of each vortex patch, similarly to
the translating case commented before. Note that in the same direction Dritschel [16]
calculated numerically V-states of vortex pairs with different shapes and discussed their
linear stability. Very recently, Denisov established in [15] for a modified Euler equations
the existence of corotating simply connected vortex patches and analyzed the contact
point of the limiting V-states. To end this short discussion, we want to emphasize once
again that the subject of vortex pairs has been intensively studied during the past and it
is difficult to track, know and recall here everything written about it. So, we have only
selected some basic results and the reader can find more details not only in this subject
but also in some other connected topics in [1,4,5,17,18,31,32,34,35,38,40] and the
references therein.
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In the current paper we intend to give direct proofs for the existence of corotating and
counter-rotating vortex pairs using the contour dynamics equations.We shall also extend
these results to the (SQG)α equations for α ∈ (0, 1). Now we shall fix some notations
before stating our main result. Let 0 < ε < 1, d > 2 and take a small simply connected
domain D1 containing the origin and contained in the open ball D(0, 2) centered at the
origin and with radius 2. Define

θ0,ε = 1

ε2
χDε

1
+ δ

1

ε2
χDε

2
, Dε

1 = εD1, Dε
2 = −Dε

1 + 2d, (3)

where the number δ is taken in {±1}. As we can readily observe, this initial data is com-
posed of symmetric pair of simply connected patches with equal or opposite circulations.
The main result of the paper is the following.

Main Theorem. Let α ∈ [0, 1), there exists ε0 > 0 such that the following results hold
true.

(i) Case δ = 1. For any ε ∈ (0, ε0] there exists a strictly convex domain Dε
1 at least of

class C1 such that θ0,ε in (3) generates a corotating vortex pair for (1).
(ii) Case δ = −1. For any ε ∈ (0, ε0] there exists a strictly convex domain Dε

1 of class
C1 such that θ0,ε generates a counter-rotating vortex pair for (1).

Before giving the basic ideas of the proofs some remarks are in order.

Remark 1. The domain Dε
1 is a small perturbation of the disc D(0, ε), centered at zero

and of radius ε. Moreover, it can be described by the conformal parametrization φε :
T → ∂Dε

1 which belongs for 0 < α < 1 to C2−α(T) and for α = 0 to C1+β for any
β ∈ (0, 1), and satisfies

φε(w) = εw + ε2+α fε(w) with ‖ fε‖C2−α ≤ 1.

Therefore the boundary of each V-state is at leastC1. Note that with slight modifications
we can adapt the proofs and show that the domain Dε

1 belongs to Cn+β for any fixed
n ∈ N. Of course, the size of ε0 depends on the parameter n and cannot be uniform; it
shrinks to zero as n grows to infinity. However, we expect the boundary to be analytic,
meaning that the conformal mapping possesses a holomorphic extension in D(0, r)c for
some 0 < r < 1. The ideas developed in the recent paper [6] might be useful to confirm
such expectation.

Remark 2. In the setting of the vortex patches the global existence with smooth bound-
aries is not known for α ∈ (0, 2). In [7,13,20] we exhibit the first nontrivial examples
of simply connected and doubly connected V-states which are periodic in time. We find
here another class of global solutions which are the vortex pairs.

Remark 3. The proof is valid for α ∈ [0, 1) but we expect that the result remains true
for α ∈ [1, 2). We believe that the use of the spaces introduced in [7] could be helpful
for solving these cases.

Remark 4. As we shall see later, we can unify the formalism leading to the existence
of corotating patches with the point vortex model. The latter one is obtained when
ε = 0 in which case we find the classical result which says that two point vortices at
distance 2d and with the same magnitude rotate uniformly about their center with the
angular velocity�α

sing = αCα

π(2d)2+α ·However, when they have opposite signs they exhibit
a uniform translating motion with the speed Uα

sing = αCα

π(2d)1+α ·
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Next we shall sketch the basic ideas used to prove the main result. We will just
restrict the discussion to the corotating pairs for Euler equations since the proofs for the
remaining cases follow the same lines but with much more involved computations. The
proof relies on the desingularization of point vortex pairs combined with the implicit
function theorem. We first formulate the equations governing the corotating vortex pairs
using the complex variable, and we shall see later in Sect. 3 more details. However, we
think that at this stage it is convenient to sketch the arguments needed to get the contour
dynamics equations of the boundary. Let D1 and D2 be two disjoint simply connected
domains and a, b be two non vanishing real numbers. Then the initial datum

θ0 = aχD1 + bχD2

gives rise to a rotating vortex pair about the point (d, 0) and with the angular velocity
� if the solution θ(t) of (1) takes the form

θ(t, z − d) = θ0
(
eit�(z − d)

)
.

Therefore, inserting this expression into the equation (1) we find
(
v0(z) − �(z − d)

)
· ∇θ0(z) = 0

with v0 the velocity associated to θ0. Using the patch structure, the preceding equation
reduces to

(
v0(z) − �(z − d)

)
· n(z) = 0, ∀ z ∈ ∂D1 ∪ ∂D2

where n(z) is a normal vector to the boundary. Combining Biot–Savart law with Green–
Stokes formula we find

v0(z) = a

4π

ˆ
∂D1

ξ − z

ξ − z
dξ +

b

4π

ˆ
∂D2

ξ − z

ξ − z
dξ, ∀ z ∈ C.

Consequently, using the special structure (3) combined with some elementary transfor-
mations in the complex plane we deduce that the two equations governing the boundary
are actually equivalent to the following equation

Re
{(

2�
(
εz − d) + Iε(z)

)
τ (z)

}
= 0, ∀ z ∈ ∂D1

with τ (z) being the unit tangent vector to the boundary ∂D1 positively oriented and

Iε(z) = 1

2iπε

ˆ
∂D1

ξ − z

ξ − z
dξ − 1

2iπ

ˆ
∂Dε

1

ξ

εξ + εz − 2d
dξ.

The basic idea of the proof is to extend the functional defining the vortex pairs beyond
ε = 0 corresponding to point vortex pairs and afterwards to apply the implicit function
theorem. As we can see, the first integral term in Iε(z) is singular and to remove the
singularity we should seek for domains which are slight perturbation of the unit disc with
a small amplitude of order ε. In other words, we look for a conformal parametrization
of D1 in the form

∀w ∈ T, φε(w) = w + ε f (w)
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where the Fourier expansion of f takes the form

f (w) =
∑

n≥1

anw
−n, an ∈ R and ‖ f ‖C1+β ≤ 1

for some β ∈ (0, 1). Note that the singularity in ε is in fact removable owing to the
symmetry of the disc. Indeed, following standard computations we get the expansion

Iε(φε(w)) = −1

ε
w + Jε(φε(w)) (4)

where Jε belongs to the space Cβ and can be extended for ε ∈ (−ε0, ε0) with ε0 > 0.
Setting

G(ε,�, f (w)) ≡ Im

{(
2�

(
εφε(w) − d) + Iε

(
φε(w)

))
w φ′

ε(w)

}

,

then the equation of the vortex pairs is simply given by

∀w ∈ T, G(ε,�, f (w)) = 0.

It follows from the expansion (4) that we can get rid of the singularity in ε and this is the
first step towards the application of the implicit function theorem. Before giving further
details we should first fix the function spaces. Let

X0 = {
f ∈ C1+β(T), f (w) =

∑

n≥1

anw
−n},

and

Y 0 =
{
f ∈ Cβ(T), f =

∑

n≥1

anen, an ∈ R

}
, Ŷ 0 = {

f ∈ Y 0, a1 = 0
}
,

en(w) ≡ Im(wn).

According to Proposition 1 the function G : (− 1
2 ,

1
2 ) × R × B0

1 → Y 0 is well-defined
and it is of class C1, where B0

1 is the open unit ball of X0. Moreover

∂ f G(0,�, 0)h(w) = −Im(h′(w)).

However, this operator is not invertible from X0 to Y 0 but it does from X0 to Ŷ 0. The
next step is to choose carefully � such that the image of the nonlinear functional G
is contained in the vector space Ŷ 0. This will be done carefully in Sect. 4.2 and leads
eventually to a new nonlinear constraint of the type � = �(ε, f ). Consequently the
equation of the vortex pairs becomes

F(ε, f (w)) ≡ G(ε,�(ε, f ), f ) = 0.

Note thatwith this formulation the point vortex configuration corresponds to F(0, 0) = 0
in which case � = �0

sing = 1
4πd2

. In addition, from the platitude of � we deduce that
the linearized operator remains the same, that is,

∂ f F(0, 0) = ∂ f G(0,�0
sing, 0)
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which is invertible from X0 to Ŷ 0. Therefore and at this stage one can use the implicit
function theoremwhich implies the local existence of a unique curve of solutions ε �→ φε

passing through (0, 0) and remark that each point of this curve is a nontrivial corotating
vortex pair of symmetric simply connected patches.

The remaining of the paper is organized as follows. In Sect. 2 we shall gather some
tools dealing with the function spaces and give some results on Newton and Riesz
potentials. In Sect. 3 we shall write down the equations governing the corotating and
translating vortex pairs of symmetric patches for both Euler and (SQG)α equations.
Sections 4 and 5 are dedicated to the proofs of the Main Theorem.

Notation We need to fix some notations that will be frequently used along this paper.
We denote by C any positive constant that may change from line to line. We denote by
D the unit disc and its boundary, the unit circle, is denoted by T. Let f : T → C be a
continuous function, we define its mean value by, 

T

f (τ )dτ ≡ 1

2iπ

ˆ
T

f (τ )dτ,

where dτ stands for the complex integration. Finally, for x ∈ R and n ∈ N, we use the
notation (x)n to denote the Pochhammer symbol defined by,

(x)n =
{
1 n = 0
x(x + 1) · · · (x + n − 1) n ≥ 1.

2. Preliminaries and Background

In this section we shall briefly recall the classical Hölder spaces on the periodic case and
state some classical facts on the continuity of fractional integrals over these spaces. It is
convenient to think of 2π−periodic function f : R → C as a function of the complex
variable w = eiη rather than a function of the real variable η. To be more precise, let
f : T → R

2, be a continuous function, then it can be assimilated to a 2π−periodic
function g : R → R via the relation

f (w) = g(η), w = eiη.

Hence when f is smooth enough we get

f ′(w) ≡ d f

dw
= −ie−iηg′(η).

Because d/dw and d/dη differ only by a smooth factor with modulus one we shall in
the sequel work with d/dw instead of d/dη which appears to be more convenient in the
computations. Now we shall introduce Hölder spaces on the unit circle T.

Definition 1. Let 0 < β < 1. We denote by Cβ(T) the space of continuous functions f
such that

‖ f ‖Cβ (T) ≡ ‖ f ‖L∞(T) + sup
x �=y∈T

| f (x) − f (y)|
|x − y|β < ∞.

For any integer n the space Cn+β(T) stands for the set of functions f of class Cn whose
n−th order derivatives are Hölder continuous with exponent β. This space is equipped
with the usual norm,

‖ f ‖Cn+β (T) ≡ ‖ f ‖L∞(T) +
∥
∥
∥
dn f

dwn

∥
∥
∥
Cβ(T)

.
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Recall that the Lipschitz (semi)-norm is defined as follows.

‖ f ‖Lip(T) = sup
x �=y

| f (x) − f (y)|
|x − y| .

Now we list some classical properties that will be used later in several sections.
(i) For n ∈ N, β ∈]0, 1[ the space Cn+β(T) is an algebra.
(ii) For K ∈ L1(T) and f ∈ Cn+β(T) we have the convolution law,

‖K ∗ f ‖Cn+β (T) ≤ ‖K‖L1(T)‖ f ‖Cn+β(T).

The next result is used frequently and it deals with fractional integrals of the following
type,

T ( f )(w) =
ˆ
T

K (w, τ) f (τ )dτ, (5)

with K : T × T → C being a singular kernel satisfying some properties. The problem
on the smoothness of this operator will appear naturally when we shall deal with the
regularity of the nonlinear functional defining steady vortex pairs. The result that we
shall discuss with respect to this subject is classical and whose proof can be found for
instance in [20,33].

Lemma 1. Let 0 ≤ α < 1 and consider a function K : T × T → C with the following
properties. There exits C0 > 0 such that,

(i) K is measurable on T × T\{(w,w), w ∈ T} and
∣
∣K (w, τ)

∣
∣ ≤ C0

|w − τ |α , ∀w �= τ ∈ T.

(ii) For each τ ∈ T, w �→ K (w, τ) is differentiable in T\{τ } and
∣
∣∂wK (w, τ)

∣
∣ ≤ C0

|w − τ |1+α
, ∀w �= τ ∈ T.

Then

(A) The operatorT defined by (5) is continuous from L∞(T) toC1−α(T).More precisely,
there exists a constant Cα depending only on α such that

‖T ( f )‖1−α ≤ CαC0‖ f ‖L∞ .

(B) For α = 0 the operator T is continuous from L∞(T) to Cβ(T) for any 0 < β < 1.
That is, there exists a constant Cβ depending only on β such that

‖T ( f )‖β ≤ CβC0‖ f ‖L∞ .

As a by-product we obtain a result that will be frequently used through this paper.

Corollary 1. Let 0 < α < 1, φ : T → φ(T) be a bi-Lipschitz function with real Fourier
coefficients and define the operator

Tφ : f �→
 

T

f (τ )

|φ(w) − φ(τ)|α dτ, w ∈ T.

Then Tφ : L∞(
T

) → C1−α
(
T

)
is continuous with the estimate

‖Tφ( f )‖C1−α(T) ≤ C
(
‖φ−1‖α

Lip(T) + ‖φ‖2Lip(T)‖φ−1‖1+α
Lip(T)

)
‖ f ‖L∞(T),

where C is a positive constant depending only on α.
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3. Steady Vortex Pairs Models

The aim of this section is to derive the equations governing co-rotating and translating
symmetric pairs of patches. In the first step, we shall write down the equations for the
rotating pairs for Euler and (SQG)α equations. In the second step, we shall be concerned
with the counter-rotating vortex pairs sometimes called translating pairs. Notice that
we prefer to use the conformal parametrization because it is more convenient in the
computations especially through its holomorphic structure.

3.1. Corotating vortex pairs. Let D1 be a bounded simply connected domain containing
the origin and contained in the ball B(0, 2). For ε ∈]0, 1[ and d > 2 we define the
domains

Dε
1 = εD1 and Dε

2 = −Dε
1 + 2d.

Set

θ0,ε = 1

ε2
χDε

1
+

1

ε2
χDε

2

and assume that this gives rise to a rotating pairs of patches about the centroid of the
system (d, 0) and with an angular velocity�. According to ([14], p. 1896) this condition
holds true if and only if

Re(−i �
(
z − d

)
n(z)) = Re(v(z) n), ∀ z ∈ ∂Dε

1 ∪ ∂Dε
2, (6)

where n(z) is the exterior unit normal vector to the boundary of Dε
1 ∪ Dε

2 at the point
z. Next we shall discuss separately Euler equations and the case α ∈ (0, 1) due to the
difference structures of their Green functions.

3.1.1. Euler equations It is well-known that the velocity can be recovered for the vor-
ticity according to Biot–Savart law,

v(z) = − i

2π ε2

ˆ
Dε
1

d A(ζ )

z − ζ
− i

2πε2

ˆ
Dε
2

d A(ζ )

z − ζ
, ∀ z ∈ C.

From Green–Stokes formula we record that

− 1

π

ˆ
D

d A(ζ )

z − ζ
=
 

∂D

ξ − z

ξ − z
dξ, ∀ z ∈ C.

Therefore

Re
{(

2�
(
z − d) + I (z)

)
τ
}

= 0, ∀ z ∈ ∂Dε
1 ∪ ∂Dε

2, (7)

with τ being the unit tangent vector to ∂Dε
1 ∪ ∂Dε

2 positively oriented and

I (z) = 1

ε2

 
∂Dε

1

ξ − z

ξ − z
dξ +

1

ε2

 
∂Dε

2

ξ − z

ξ − z
dξ.
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Changing in the last integral ξ to −ξ + 2d, which sends ∂Dε
2 to ∂Dε

1, we get

I (z) = 1

ε2

 
∂Dε

1

ξ − z

ξ − z
dξ − 1

ε2

 
∂Dε

1

ξ + z − 2d

ξ + z − 2d
dξ.

We can check that if the Eq. (7) is satisfied for all z ∈ ∂Dε
1, then it will be surely satisfied

for all z ∈ ∂Dε
2. This follows easily from the identity

I (−z + 2d) = −I (z).

Now observe that when z ∈ ∂Dε
1 then −z + 2d /∈ Dε

1 and thus residue theorem allows
to get

I (z) = 1

ε2

 
∂Dε

1

ξ − z

ξ − z
dξ − 1

ε2

 
∂Dε

1

ξ

ξ + z − 2d
dξ.

Denote �1 = ∂D1 then by the change of variables ξ �→ εξ and z �→ εz the Eq. (7)
becomes

Re
{(

2�
(
εz − d) + Iε(z)

)
τ
}

= 0, ∀ z ∈ �1.

with

Iε(z) ≡ I (εz)

= 1

ε

 
�1

ξ − z

ξ − z
dξ −

 
�1

ξ

εξ + εz − 2d
dξ

≡ I 1ε (z) − I 2ε (z).

We shall search for domains D1 which are small perturbations of the unit disc with
an amplitude of order ε. More precisely, we shall in the conformal parametrization
φ : T → ∂D1 look for a solution in the form

φ(w) = w + ε f (w), with f (w) =
∑

n≥1

an
wn

, an ∈ R.

We remark that the assumption an ∈ R means that the domain D1 is symmetric with
respect to the real axis. Setting z = φ(w), then for w ∈ T a tangent vector to the
boundary at the point z is given by

τ = i w φ′(w) = i w
(
1 + ε f ′(w)

)
.

Thus the steady vortex pairs equation becomes

Im
{(

2�
[
εw + ε2 f (w) − d

]
+ Iε(φ(w))

)
w

(
1 + ε f ′(w)

)} = 0, ∀ w ∈ T. (8)

Notice that we have used that f has real Fourier coefficients and thus f (w) = f (w).
By using the notation A = τ − w and B = f (τ ) − f (w) we can write for all w ∈ T

I 1ε (φ(w)) = 1

ε

 
T

τ − w + ε
(
f (τ ) − f (w)

)

τ − w + ε( f (τ ) − f (w))

(
1 + ε f ′(τ )

)
dτ

=
 
T

A + εB

A + εB
f ′(τ )dτ +

 
T

AB − AB

A(A + εB)
dτ +

1

ε

 
T

A

A
dτ

=
 
T

A + εB

A + εB
f ′(τ )dτ +

 
T

AB − AB

A(A + εB)
dτ − 1

ε
w,
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where we have used the obvious formula
 
T

A

A
dτ = −w

 
T

dτ

τ

= −w.

This leads to a significant cancellation and the singular term will disappear from the full
nonlinearity due in particular to the symmetry of the disc,

Im
{
I 1ε (φ(w))w

(
1 + ε f ′(w)

)}

= Im

{(  
T

A + εB

A + εB
f ′(τ )dτ +

 
T

AB − AB

A(A + εB)
dτ

)
w

[
1 + ε f ′(w)

]
}

− Im( f ′(w)), ∀ w ∈ T.

For the second term I 2ε (φ(w) it takes the form

I 2ε (φ(w) =
 
T

(τ + ε f (τ ))(1 + ε f ′(τ ))

ε(τ + w) + ε2
(
f (τ ) + f (w)

) − 2d
dτ.

Hence the steady vortex pairs equation is equivalent to

− 2G0(ε,�, f ) ≡ Im(F0(ε,�, f )) = 0 (9)

with

F0(ε,�, f (w)) = 2�
(
εw + ε2 f (w) − d

)
w

(
1 + ε f ′(w)

) − f ′(w)

+
(  

T

A + εB

A + εB
f ′(τ )dτ +

 
T

AB − AB

A(A + εB)
dτ

)
w

(
1 + ε f ′(w)

)

−
(  

T

(
τ + ε f (τ )

)(
1 + ε f ′(τ )

)

ε(τ + w) + ε2
(
f (τ ) + f (w)

) − 2d
dτ

)

w
(
1 + ε f ′(w)

)

≡ F1(ε,�, f (w)) + F2(ε, f (w)) + F3(ε, f (w)).

We point out that we have added a factor −2 in the definition of G0 given by (9) in order
to unify the notation with the function Gα that we shall introduce in next section for the
(SQG)α .

3.1.2. (SQG)α equations. First we remark that the Eq. (6) can be written in the form,

�Re
{(
z − d) τ

} = Im
{
v(z) τ

}
, ∀ z ∈ ∂Dε

1 ∪ ∂Dε
2, (10)

where as before τ denotes a tangent vector to the boundary at the point z. This equation
is equivalent to

Re
{(

�
(
z − d) + iv(z)

)
τ
}

= 0, ∀ z ∈ ∂Dε
1 ∪ ∂Dε

2.

The velocity can be recovered from the boundary as follows, see for instance [20],

v(z) = Cα

2π ε2

ˆ
∂Dε

1

1

|z − ξ |α dξ +
Cα

2π ε2

ˆ
∂Dε

2

1

|z − ξ |α dξ, ∀ z ∈ C.
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Using in the last integral the change of variables ξ �→ −ξ + 2d, we deduce that

v(z) = Cα

2π ε2

ˆ
∂Dε

1

1

|z − ξ |α dξ − Cα

2π ε2

ˆ
∂Dε

1

1

|z + ξ − 2d|α dξ, ∀ z ∈ C. (11)

We point out that by a symmetry argument if the equation (10) is satisfied for all z ∈ ∂Dε
1

then it will be also satisfied for all z ∈ ∂Dε
2. This follows from the identity

v(−z + 2d) = −v(z).

As Dε
1 = εD1 then using a change of variable the equation becomes

Re
{(

�
(
εz − d) + Iε(z)

)
τ
}

= 0, ∀ z ∈ ∂D1, (12)

with

Iε(z) = − Cα

ε1+α

 
∂D1

1

|z − ξ |α dξ +
Cα

ε

 
∂D1

1

|εz + εξ − 2d|α dξ.

We shall look for the domains D1 which are small perturbation of the unit disc with
an amplitude of order ε1+α. More precisely, we shall in the conformal parametrization
φ : T → ∂D1 look for a solution in the form

φ(w) = w + ε1+α f (w)

= w + ε1+α
∑

n≥1

an
wn

, an ∈ R.

For w ∈ T the conjugate of a tangent vector is given by τ = −i w φ′(w) and therefore
for any w ∈ T,

Gα(ε,�, f (w)) ≡ Im

{(

�
[
εw + ε2+α f (w) − d

]
+ I (ε, f (w))

)

w
(
1 + ε1+α f ′(w)

)}

= Im
(
Fα(ε,�, f (w)

)
= 0, (13)

with

I (ε, f (w)) = − Cα

ε1+α

 

T

φ′(τ )dτ

|φ(w) − φ(τ)|α +
Cα

ε

 

T

φ′(τ )dτ

|εφ(w) + εφ(τ) − 2d|α

≡ −I1(ε, f (w)) + I2(ε, f (w)). (14)

We shall split G into three terms

Gα = G1 − G2 + G3 (15)

with

G1(ε,�, f (w)) = Im

{

�
[
εw + ε2+α f (w) − d

]
w

(
1 + ε1+α f ′(w)

)}

,

G2(ε, f (w)) = Im
{
I1(ε, f (w))w

(
1 + ε1+α f ′(w)

)}
,

and

G3(ε, f (w)) = Im
{
I2(ε, f (w))w

(
1 + ε1+α f ′(w)

)}
.
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3.2. Counter-rotating vortex pairs. As for the corotating pairs we shall distinguish be-
tween Euler equations and the case 0 < α < 1. As before let D1 be a bounded domain
containing the origin and contained in the ball B(0, 2). For ε ∈]0, 1[ and d > 2 we
define

Dε
1 = εD1 and Dε

2 = −Dε
1 + 2d.

Set

θ0 = 1

ε2
χDε

1
− 1

ε2
χDε

2

and assume that θ0 travels steadily in the (Oy) direction with uniform velocityU. Then
in the moving frame the pair of the patches is stationary and consequently the analogous
of the equation (6) is

Re
{(

v(z) + iU
)
n
} = 0, ∀ z ∈ ∂Dε

1 ∪ ∂Dε
2. (16)

3.2.1. Euler equations. One has from (16)

Re {(2U + I (z)) τ } = 0, ∀ z ∈ ∂Dε
1 ∪ ∂Dε

2, (17)

with

I (z) = 1

ε2

 
∂Dε

1

ξ − z

ξ − z
dξ − 1

ε2

 
∂Dε

2

ξ − z

ξ − z
dξ.

In the last integral changing ξ to −ξ + 2d which sends ∂Dε
2 to ∂Dε

1 we get

I (z) = 1

ε2

 
∂Dε

1

ξ − z

ξ − z
dξ +

1

ε2

 
∂Dε

1

ξ + z − 2d

ξ + z − 2d
dξ.

As for the corotating case, using the identity

I (−z + 2d) = I (z)

one can check that if the equation (17) is satisfied for all z ∈ ∂Dε
1 then it is also satisfied

for all z ∈ ∂Dε
2.

Now observe that when z ∈ ∂Dε
1 then −z + 2d /∈ Dε

1 and using residue theorem we
obtain

I (z) = 1

ε2

 
∂Dε

1

ξ − z

ξ − z
dξ +

1

ε2

 
∂Dε

1

ξ

ξ + z − 2d
dξ.

Let �1 = ∂D1 then by change of variables ξ → εξ and z → εz. The equation (17)
becomes

Re
{(

2U + Iε(z)
)

τ
}

= 0, ∀ z ∈ �1,

with

Iε(z) = I (εz)

= 1

ε

 
�1

ξ − z

ξ − z
dξ +

 
�1

ξ

εξ + εz − 2d
dξ

≡ I 1ε (z) + I 2ε (z).
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we shall now use the conformal parametrization of the boundary �1,

φ(w) = w + ε f (w), with f (w) =
∑

n≥1

an
wn

, an ∈ R.

Setting z = φ(w) and ξ = φ(τ), then for w ∈ T a tangent vector at the point φ(w) is
given by

τ = iw φ′(w) = iw
(
1 + ε f ′(w)

)
.

The V-states equation becomes

Im
{(

2U + Iε(φ(w))
)

w
(
1 + ε f ′(w)

)} = 0, ∀ w ∈ T.

As in the rotating case, with the notation A = τ − w and B = f (τ ) − f (w) we get for
w ∈ T

I 1ε (φ(w)) =
 
T

A + εB

A + εB
f ′(τ )dτ +

 
T

AB − AB

A(A + εB)
dτ − 1

ε
w.

This yields

Im
{
I 1ε (φ(w))w

(
1 + ε f ′(w)

)}

= Im
{(  

T

A + εB

A + εB
f ′(τ )dτ +

 
T

AB − AB

A(A + εB)
dτ

)
w

(
1 + ε f ′(w)

)}

−Im( f ′(w)), ∀ w ∈ T.

The second term I 2ε (φ(w) takes the form

I 2ε (φ(w)) =
 
T

(τ + ε f (τ ))(1 + ε f ′(τ ))

ε(τ + w) + ε2
(
f (τ ) + f (w)

) − 2d
dτ.

Hence the V-states equation becomes

− 2G0(U, ε, f ) ≡ Im(F0(U, ε, f ) = 0 (18)

with

F0(U, ε, f (w)) = 2Uw
(
1 + ε f ′(w)

) − f ′(w)

+

(  
T

A + εB

A + εB
f ′(τ )dτ +

 
T

AB − AB

A(A + εB)
dτ

)

w
(
1 + ε f ′(w)

)

+

(  
T

τ + ε f (τ )

ε(τ + w) + ε2
(
f (τ ) + f (w)

) − 2d

(
1 + ε f ′(τ )

)
dτ

)

×w
(
1 + ε f ′(w)

)

≡ F1(U, ε, f (w)) + F2(ε, f (w)) + F3(ε, f (w)).

For the same reason as in the rotating case we add the factor −2 in (18) in order to unify
the expression with the function Gα that will appear later for the (SQG)α .
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3.2.2. Case α ∈ (0, 1). The Eq. (16) can be written in the form

Re
{(

v(z) − iU
)
n
}

= 0, ∀ z ∈ ∂Dε
1 ∪ ∂Dε

2.

The velocity associated to this model is

v(z) = Cα

2π ε2

ˆ
∂Dε

1

1

|z − ξ |α dξ − Cα

2π ε2

ˆ
∂Dε

2

1

|z − ξ |α dξ, ∀ z ∈ C.

Changing ξ to −ξ + 2d in the last integral we get

v(z) = Cα

2π ε2

ˆ
∂Dε

1

1

|z − ξ |α dξ +
Cα

2π ε2

ˆ
∂Dε

1

1

|z + ξ − 2d|α dξ, ∀ z ∈ C. (19)

Therefore the V-states equation be can be written in the form

Re
{(

−U + Iε(z)
)

τ
}

= 0, ∀ z ∈ ∂D1 (20)

with

Iε(z) ≡ Cα

ε1+α

 
∂D1

1

|z − ξ |α dξ +
Cα

ε

 
∂D1

1

|εz + εξ − 2d|α dξ.

Using the conformal parametrization,

φ(w) = w + ε1+α f (w)

≡ w + ε1+α
∑

n≥1

an
wn

.

For w ∈ T the conjugate of a tangent vector is given by

z′ = −iw φ′(w).

Therefore for any w ∈ T,

Gα(ε,�, f (w)) ≡ Im

{(
−U + I

(
ε, f (w)

))
w

(
1 + ε1+α f ′(w)

)}

= 0, (21)

with

I (ε, f (w)) = Cα

ε1+α

 

T

φ′(τ )dτ

|φ(w) − φ(τ)|α +
Cα

ε

 

T

φ′(τ )dτ

|εφ(w) + εφ(τ) − 2d|α

≡ I1(ε, f (w)) + I2(ε, f (w)). (22)

We shall split, as before, Gα into three terms

Gα = G1 + G2 + G3 (23)

with

G1(ε,�, f (w)) = −U Im
{
w

(
1 + ε1+α f ′(w)

)}
,

G2(ε, f (w)) = Im
{
I1(ε, f (w))w

(
1 + ε1+α f ′(w)

)}

and

G3(ε, f (w)) = Im
{
I2(ε, f (w))w

(
1 + ε1+α f ′(w)

)}
.
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4. Existence of Corotating Vortex Pairs

In this section we will prove the existence of rotating pairs of patches for the (SQG)α
model with α ∈ [0, 1). Recall that the equations governing the boundaries of the vor-
tices were formulated in the Sect. 3.1. The first goal is to discuss the regularity of the
functionals defining the V-states and to compute the associated linear operator at the
trivial solutions corresponding to the point vortex pair. In the Sect. 4.2 we shall see
how the angular velocity is uniquely determined through the geometry of the domain.
In this setting � plays the role of the Lagrangian multiplier such that the first Fourier
coefficient of the nonlinear functional vanishes. Finally, in the Sect. 4.3, we shall see
that the existence of the vortex pairs is a simple consequence of the implicit function
theorem in suitable Banach spaces and the convexity of each single patch is done in a
standard way through a perturbative argument applied for the curvature.

4.1. Extension and regularity of the functional Gα . Themain idea to prove the existence
of rotating vortex pairs is to apply the implicit function theorem to the Eqs. (9) and (13).
To this end we have to check that the functions Gα defined in (9) and (13) satisfy some
regularity conditions. The spaces which are relevant in this study and used throughout
the paper are described below. Take α ∈ [0, 1) and β ∈ (0, 1) an arbitrary given number,
then we define the spaces

Xα ≡
⎧
⎨

⎩

{
f ∈ C1+β(T), f (w) = ∑

n≥1 anw
−n, an ∈ R

}
, if α = 0

{
f ∈ C2−α(T), f (w) = ∑

n≥1 anw
−n, an ∈ R

}
, if α ∈ (0, 1)

and

Y α ≡
⎧
⎨

⎩

{
f ∈ Cβ(T), f (w) = ∑

n≥1 anen, an ∈ R

}
, if α = 0

{
f ∈ C1−α(T), f (w) = ∑

n≥1 anen, an ∈ R

}
, if α ∈ (0, 1)

with the notation en(w) = Im(wn). We shall also consider the subspaces

Ŷ α = {
f ∈ Y α, a1 = 0

}
.

For r > 0 we denote by Bα
r the open ball of Xα centered at zero and of radius r . The next

result deals with some properties of the function Gα . Before giving the main statement
of this section it is convenient to introduce the notation

Ĉα ≡ αCα = 2α
�( 2+α

2 )

�( 2−α
2 )

, for α ∈ [0, 1).

Proposition 1. Let α ∈ [0, 1), then the function Gα can be extended from (− 1
2 ,

1
2 ) ×

R× Bα
1 to Y α as a C1 function. Moreover, for any � ∈ R the operator ∂ f Gα(0,�, 0) :

Xα → Ŷ α is an isomorphism. More precisely, for h = ∑
n≥1 anw

−n ∈ Xα , we get

∂ f G
α(0,�, 0)h(w) =

∑

n≥1

an γ̂nen+1

with

γ̂n = Ĉα�(1 − α)

4�2(1 − α
2 )

(
2(1 + n)

1 − α
2

−
(
1 + α

2

)

n(
1 − α

2

)

n

−
(
1 + α

2

)

n+1(
1 − α

2

)

n+1

)

.
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Remark 5. We can easily check from the proofs that two initial point vortex πδ(0,0) and
πδ(2d,0) rotate uniformly about (d, 0) with the angular velocity

�α
sing ≡ Ĉα

(2d)2+α
· (24)

Remark 6. By adapting the proof below we can check that the preceding proposition
remains true if we change in the definition of Xα and Y α the parameter α by α − n for
any n ∈ N

�. As a consequence, the boundaries of the V-states belong to the Hölderian
class Cn−α for any n ∈ N.

Proof. The proof will be divided in two pieces. In the first one we shall discuss the case
α = 0 and the second one will be devoted to α ∈ (0, 1).

Part I: Euler case According to the definition (9) we have the decomposition

−2G0 ≡ G1 + G2 + G3

= Im(F1) + Im(F2) + Im(F3).

We will first proceed with the regularity of the first term, that is,

G1(ε,�, f ) = Im
{
2�

(
εw + ε2 f (w) − d

)
w

(
1 + ε f ′(w)

) − f ′(w)
}
.

Clearly this function can be defined from the set (− 1
2 ,

1
2 ) × R × B0

1 to Y 0 because the
function in the brackets is in Cβ(T), and is obtained as sums and products of functions
with real coefficients. In order to prove its differentiability we have to compute their
partial derivatives,

∂εG1(ε,�, f ) = Im
{
2�(w + 2ε f (w))w(1 + ε f ′(w)) + 2�(εw + ε2 f (w) − d)w f ′(w)

}
,

and clearly this is a continuous function from (− 1
2 ,

1
2 ) × R × B0

1 to Y 0.

Taking now the derivative in � we get

∂�G1(ε,�, f ) = Im
{
2
(
εw + ε2 f (w) − d

)
w

(
1 + ε f ′(w)

)}
,

which is continuous from (− 1
2 ,

1
2 ) ×R× B0

1 to Y 0. Let us note that G1 is a polynomial
also in f and f ′ and consequently the derivative is polynomial in f and f ′. Thus, it is
necessary a continuous function from (− 1

2 ,
1
2 )×R× B0

1 to Y
0. It is an easy computation

to check that

∂ f G1(0,�, 0)(h) = −Im{h′(w)}.
Let’s take now

G2(ε, f ) = Im
{(  

T

A + εB

A + εB
f ′(τ )dτ +

 
T

AB − AB

A(A + εB)
dτ

)
w

(
1 + ε f ′(w)

)}

= Im
{(
G21 + G22

)
w

(
1 + ε f ′(w)

)}
.
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To prove that G2(ε, f ) is a function from (− 1
2 ,

1
2 )×R× B0

1 to Y 0 it is enough to verify
that the functions G21(ε, f ) and G22(ε, f ) satisfy the same property. Observe that the
function

G21(ε, f ) =
 
T

τ − w + ε( f (τ ) − f (w))

τ − w + ε( f (τ ) − f (w))
f ′(τ )dτ

is given by an integral operator. Since f is in C1+β(T), we will have that G21 belongs
to the space Cβ(T) provided the kernel

K (τ, w) = τ − w + ε( f (τ ) − f (w))

τ − w + ε( f (τ ) − f (w))

satisfies the hypotheses of Lemma 1 for α = 0. It is obvious that

sup
τ �=w

|K (τ, w)| ≤ 1,

and moreover

|∂wK (τ, w)| =
∣
∣
∣
(1 + ε f ′(w)

(
(τ − w) + ε( f (τ ) − f (w)

)

((τ − w) + ε( f (τ ) − f (w)))2

+
1

w2

1 + ε f ′(w)

(τ − w) + ε( f (τ ) − f (w))

∣
∣
∣

≤ M2 + M

|τ − w| ,

where M = 1+ε‖ f ‖C1+α(T)

1−ε‖ f ‖C1+α(T)
. Now to check that this function has real coefficients we have

to show that G21(ε, f )(w) = G21(ε, f )(w). Using the change of variable η = τ , it is
an easy computation to see that

G21(ε, f )(w) = −
 
T

τ − w + ε( f (τ ) − f (w))

τ − w + ε( f (τ ) − f (w))
f ′(τ )dτ

=
 
T

η − w + ε( f (η) − f (w))

η − w + ε( f (η) − f (w))
f ′(η)dη

= G21(ε, f )(w).

On the other hand the function

G22(ε, f ) =
 
T

(τ − w)
(
f (τ ) − f (w)

) − (τ − w)( f (τ ) − f (w))

(τ − w)
(
(τ − w) + ε( f (τ ) − f (w)

) dτ

will be in the space Cβ(T) if the kernel

K (τ, w) = (τ − w)
(
f (τ ) − f (w)

) − (τ − w)( f (τ ) − f (w))

(τ − w)
(
(τ − w) + ε( f (τ ) − f (w)

)

satisfies the hypotheses of Lemma 1 for α = 0. As before, it is straightforward that

sup
τ �=w

|K (τ, w)| ≤ 2‖ f ‖C1+α

1 − ε‖ f ‖C1+α(T)
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and

|∂wK (τ, w) ≤ C

|τ − w| ,

where the constant C depends on ε and ‖ f ‖C1+β(T). To check that the function G22 has
real coefficients one can repeat the same procedure used before for the function G21.

Nowwe will verify that the function G2 is of class C1 from (− 1
2 ,

1
2 )×R× B0

1 to Y
0.

To do so, we will check the continuity of the partial derivatives of G21 and G22. Simple
computations prove that

∂εG21 =
 
T

f (τ ) − f (w)

τ − w + ε( f (τ ) − f (w))
f ′(τ )dτ

−
 
T

τ − w + ε
(
f (τ ) − f (w)

)

(τ − w + ε( f (τ ) − f (w))2
( f (τ ) − f (w)) f ′(τ )dτ

and

∂εG22 = −2i
 
T

Im
{
(τ − w)

(
f (τ ) − f (w)

)}

(τ − w)
(
τ − w + ε( f (τ ) − f (w))

)2 ( f (τ ) − f (w))dτ.

The existence and the continuity of this partial derivative can be obtained by proving
that the kernels that appear in the integral operators satisfy the conditions of Lemma 1.
Take h ∈ X we will compute the Gâteaux derivative in the direction h of the function
G2. For it we only need to calculate the Gâteaux derivatives of the functions G21 and
G22.

∂ f G21(ε, f )h(w) ≡
 
T

(h(τ ) − h(w))

τ − w + ε( f (τ ) − f (w))
f ′(τ )dτ

+
 
T

τ − w + ε( f (τ ) − f (w))

τ − w + ε( f (τ ) − f (w))
h′(τ )dτ

− ε

 
T

τ − w + ε( f (τ ) − f (w))
(
τ − w + ε( f (τ ) − f (w)))2

(h(τ ) − h(w)
)
f ′(τ )dτ.

Moreover, one can easily check that

∂ f G22(ε, f )h(w) = 2i
 
T

Im
{
(τ − w)(h(τ ) − h(w))

}

(τ − w)(τ − w + ε( f (τ ) − f (w))
dτ

− 2iε
 
T

Im
{
(τ − w)( f (τ ) − f (w))

}

(τ − w)
(
(τ − w + ε( f (τ ) − f (w))

)2 (h(τ ) − h(w))dτ.

Again Lemma 1 applied to the kernels that appear in the Gâteaux derivatives of the
functions G21 and G22 will give the existence and the continuity of the functions ∂ f G21
and ∂ f G22. On the other hand,

∂ f G2(0, 0)(h) = Im
{(

∂ f G21(0, 0)(h) − ∂ f G22(0, 0)(h)
)
w

}
.

In addition, using the residue theorem we get

∂ f G21(0, 0)(h) =
 
T

τ − w

τ − w
h′(τ )dτ = 0
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and

∂ f G22(0, 0)(h) = 2i
 
T

Im{(τ − w)(h(τ ) − h(w))}
(τ − w)2

dτ = 0.

Consequently ∂ f G2(0, 0)(h) = 0. Let’s now study the last function in (9)

G3(ε, f ) = −Im
{( 

T

τ + ε f (τ )

ε(τ + w) + ε2( f (τ ) + f (w)) − 2d
(1 + ε f ′(τ ))dτ

)
w(1 + ε f ′(w))

}

= −Im
{
G31(ε, f )w(1 + ε f ′(w)

}
.

So, the regularity of the function G3 is equivalent to the regularity of the function G31.
Now this function is given by an integral operator with kernel

K (τ, w) = τ + ε f (τ )

ε(τ + w) + ε2( f (τ ) + f (w)) − 2d
·

It is clear that |K (τ, w)| ≤ C and moreover

|∂wK (τ, w)| =
∣
∣
∣

(τ + ε f (τ ))
(
ε + ε2 f ′(w)

)

(
ε(τ + w) + ε2( f (τ ) + f (w)) − 2d

)2

∣
∣
∣ ≤ C.

Since 1 + ε f ′(τ ) is in Cβ(T) then applying once again Lemma 1 to the above kernel we
get that G31 is a function in Cβ(T). To prove that G31 has real coefficients one only has
to repeat the arguments given in the case of the function G21. Now, to check that the
function (ε, f ) �→ G31(ε, f ) is C1 we have to compute its partial derivatives

∂εG31 =
 
T

f (τ )(1 + ε f ′(τ ))

ε(τ + w) + ε2( f (τ ) + f (w)) − 2d
dτ

+
 
T

(τ + ε f (τ )) f ′(τ )

ε(τ + w) + ε2( f (τ ) + f (w)) − 2d
dτ

−
 
T

(τ + ε f (τ ))(τ + w + 2ε( f (τ ) + f (w))
(
ε(τ + w) + ε2( f (τ ) + f (w)) − 2d

)2 (1 + ε f ′(τ ))dτ.

Easy computations, using Lemma 1, prove that these operators are continuous from
(− 1

2 ,
1
2 ) × R × B0

1 to Cβ(T). Since they are functions with real coefficients we can
conclude that ∂εG3 is continuous from (− 1

2 ,
1
2 ) ×R× B0

1 to Y 0. On the other hand, we
can compute the Gâteaux derivative of G31 in a given direction h ∈ X

∂ f G31(ε, f )(h) = ε

 
T

h(τ )(1 + ε f ′(τ ))

ε(τ + w) + ε2( f (τ ) + f (w)) − d
dτ

+ ε

 
T

(τ + ε f (τ ))h′(τ )

ε(τ + w) + ε2( f (τ ) + f (w)) − d
dτ

− ε2
 
T

(τ + ε f (τ ))(h(τ ) + h(w))
(
ε(τ + w) + ε2( f (τ ) + f (w)) − d

)2 (1 + ε f ′(τ ))dτ.

Again, by straightforward computations one can verify that the integral operators defined
by these partial derivatives are continuous and sowe obtain that ∂ f G3 is continuous from
(− 1

2 ,
1
2 ) × R × B0

1 to Y 0. Moreover we find ∂ f G31(0, 0)(h) = 0, and consequently

∂ f G31(0, 0)(h) = 0.
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Since by definition −2G0 = G1 + G2 + G3 then we deduce that ∂ f G0(0,�, 0)(h) =
1
2 Im{h′}, which is clearly an isomorphism from X0 to Ŷ 0. Finally we note that when
ε = 0 one should get the two point vortices. Indeed, we can easily check that

G0(0,�, 0) = Im
{(

�d − 1

4d

)
w

}

and therefore G0(0,�, 0) = 0 if and only if

� = �0
sing = 1

4d2
·

Part II: case α ∈ (0, 1) Now we shall move to the proof of the statement when
α ∈ (0, 1).Recall that the functional defining the rotating pairs is given in (15). We shall
start with the proof of the regularity for the function G1 which is the easiest one. The
suitable extension of this function, still denoted G1, is given by

G1(ε,�, f (w)) = � Im

{(
εw + ε2|ε|α f (w) − d

)
w

(
1 + ε|ε|α f ′(w)

)}

. (25)

G1 is well-defined from (− 1
2 ,

1
2 ) × R × Bα

1 to Y α because, using the algebra structure
of Hölder spaces with positive regularities, the function between the brackets belongs to
C1−α(T) and has real Fourier coefficients. To prove that this functional is C1 it suffices
to check that the partial derivatives exist and are continuous. It is clear that

∂εG1(ε,�, f (w)) = � Im

{(
w + (2ε|ε|α + α sign(ε)|ε|1+α) f (w)

)
w

(
1 + ε|ε|α f ′(w)

)}

+ �(|ε|α + α sign(ε)ε|ε|α−1)Im

{(
εw + ε2|ε|α f (w) − d

)
w f ′(w)

}

This function is polynomial in f and f ′ and therefore it is continuous from (− 1
2 ,

1
2 ) ×

R × Bα
1 to Y α . On the other hand, the partial derivative with respect to � it is given by

∂�G1(ε,�, f (w)) = Im

{(
εw + ε2|ε|α f (w) − d

)
w

(
1 + ε|ε|α f ′(w)

)}

and this is obviously continuous from (− 1
2 ,

1
2 ) × R × Bα

1 to Y α . Note also that G1 is
polynomial with respect to f and f ′ and consequently ∂ f G1 exists and is continuous.
This concludes the fact that G1 is C1. It is easy to check that for any direction h ∈ Xα

∂ f G1(0,�, 0)(h) = 0. (26)

For the remaining functionals the situation is much more complicated. As we shall see
the reasoning is very classical and we will give just some significant details. We first
start with the term G3. To find the suitable extension note that the ansatz of the solution
is very crucial and allows to get rid of the singularity in ε. Recall that

G3(ε, f (w)) = Im
{
I2(ε, f (w))L(ε, f (w))

}
with L(ε, f (w)) = w

(
1 + ε|ε|α f ′(w)

)

(27)
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where we have extended the tangent vector to L and as previously,

L : (−1

2
,
1

2
) × Bα

1 → Y α

is well-defined and is of class C1. Therefore it suffices to prove that I2 can be extended
from (− 1

2 ,
1
2 ) × R × Bα

1 to Y α as a C1 function. The key point is Taylor formula:

1

|A + B|α = 1

|A|α − α

ˆ 1

0

Re(AB) + t |B|2
|A + t B|2+α

dt (28)

which is true for any complex numbers A, B such that B| < |A|. As an application we
get

1

|εφ(w) + εφ(τ) − 2d|α

= 1

(2d)α
− α

ˆ 1

0

−2d εRe
[
φ(τ) + φ(w)

]
+ tε2|φ(τ) + φ(w)|2

|tεφ(w) + tεφ(τ) − 2d|2+α
dt.

We mention that the condition |B| < |A| is satisfied because
∣
∣εφ(w) + εφ(τ)

∣
∣ ≤ 2ε‖φ‖L∞

≤ 4ε

< d.

Consequently

I2(ε, f (w)) = −αCα

 
T

ˆ 1

0

−2d Re
[
φ(τ) + φ(w)

]
+ tε|φ(τ) + φ(w)|2

|tεφ(w) + tεφ(τ) − 2d|2+α
φ′(τ )dτdt,

where we have used the fact  
T

φ′(τ )dτ = 0.

Thus the suitable extension of this functional is

I2(ε, f (w)) = −αCα

 
T

ˆ 1

0

−2d Re
[
φ(τ) + φ(w)

]
+ tε|φ(τ) + φ(w)|2

|tεφ(w) + tεφ(τ) − 2d|2+α
φ′(τ )dτdt

≡ −αCα

 
T

ˆ 1

0
K2(τ, w)φ′(τ )dτ, (29)

with φ(w) = w + ε|ε|α f (w). We shall now check that this extension defines a C1

function from (− 1
2 ,

1
2 ) × Bα

1 to Y α . First, the integral operator is well-defined since the
kernel K2 is not singular and satisfies the hypotheses of Lemma 1 for any f ∈ Bα

1 ,

|K2(τ, w)| ≤ C and |∂wK2(τ, w)| ≤ C

for some constant C and thus

‖I2(ε, f )‖C1−α(T) ≤ C‖φ′‖L∞ ≤ C.
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Taking (ε, f ) = (0, 0) in (29) yields

I2(0, 0) = αCα

(2d)1+α

 
T

ˆ 1

0
τdτdt

= αCα

2(2d)1+α
. (30)

In addition, for f ∈ Bα
1 and h ∈ Xα one has

∂ f I2(0, f )h(w) = d

ds
I2(0, f (w) + s h(w))|s=0

= 0.

As ∂ f L(0, f ) = 0 then we deduce

∂ f G3(0, f ) = 0. (31)

For a future use, we shall apply once again (28) to I2(ε, f ) in order to get

I2(ε, f (w)) = αCα

(2d)1+α

 
T

Re
(
φ(τ)

)
φ′(τ )dτ − αCα

(2d)2+α

ε

2

 
T

|φ(τ) + φ(w)|2φ′(τ )dτ

+ αCα(2 + α)ε

 
T

K2(τ, w)φ′(τ )dτ, (32)

K2(τ, w)

=
¨

[0,1]2

(
− 2d Re �(τ,w) + tε|�(τ,w)|2

)(
− 2d t Re �(τ, w) + stε|�(τ,w)|2

)

|stεφ(w) + stεφ(τ) − 2d|4+α
dtds,

with

�(τ,w) = φ(τ) + φ(w).

On the other hand, since φ(w) = w + ε|ε|α f (w) 
T

Re
(
φ(τ)

)
φ′(τ )dτ = 1

2
+ ε|ε|α

 
T

Re(τ ) f ′(τ )dτ + ε|ε|α
 
T

Re
(
f (τ )

)
φ′(τ )dτ.

Therefore one gets

I2(ε, f (w)) = αCα

2(2d)1+α
+ ε I2(ε, f (w)). (33)

Using that the kernel K2 satisfies the conditions of Lemma 1, that is,

|K2(τ, w)| ≤ C, |∂wK2(τ, w)| ≤ C,

one can verify that the function I2 : (− 1
2 ,

1
2 )×Bα

1 → C1−α(T) is well-defined. To prove
that it is indeed of class C1 we shall look for its derivatives and study their continuity.
The computations are straightforward and resemble to those done for Euler equations
and thus we will skip the details. Inserting the formula (33) into the expression of G3
allows to get the decomposition

G3(ε, f ) ≡ − αCα

2(2d)1+α
e1(w) − εR2(ε, f ) (34)
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with R2 : (− 1
2 ,

1
2 ) × Bα

1 → C1−α(T) being a C1 function. Let us now move to the
extension of the function G2 defined in (23). We can split an extension of I1(ε, f ) into
three parts as follows,

I1(ε, f (w)) = Cα

 

T

f ′(τ )dτ

|φ(w) − φ(τ)|α +
Cα

ε|ε|α
 

T

dτ

|τ − w|α

+
Cα

ε|ε|α
 

T

( 1

|φ(w) − φ(τ)|α − 1

|τ − w|α
)
dτ

= Cα

 

T

f ′(τ )dτ

|φ(w) − φ(τ)|α +
μ̂α w

ε|ε|α + Cα

 

T

K (ε, τ, w)dτ

= I11(ε, f (w)) +
μ̂α w

ε|εα| + I12(ε, f (w)) (35)

with

K (ε, τ, w) = 1

ε|ε|α
( 1

|φ(w) − φ(τ)|α − 1

|τ − w|α
)

and

μ̂α = α�(1 − α)

(2 − α)�2(1 − α
2 )

Cα = �(1 − α)�(1 + α
2 )

21−α�(2 − α
2 )�2(1 − α

2 )
· (36)

Note that we have used the identity, see [20, Lemma 2]

 
T

dτ

|τ − w|α = α�(1 − α)

(2 − α)�2(1 − α
2 )

w.

Consequently,

G2(ε, f (w)) = Im
{
I11(ε, f (w))w

(
1 + ε|ε|α f ′(w)

)}

+ Im
{
I12(ε, f (w))w

(
1 + ε|ε|α f ′(w)

)}
− μ̂αIm( f ′(w)). (37)

The last term defines a linear operator from Xα to Y α and therefore it is smooth. It
remains to study the first and second terms. This amounts to studying the terms I11 and
I12. The first part is extended as usual through the formula

I11(ε, f (w)) = Cα

 

T

f ′(τ ) dτ
∣
∣φ(τ) − φ(w)

∣
∣α

, with φ(w) = w + ε|ε|α f (w).

First to check that I11 is well-defined we use Corollary 1 which implies that

‖I11(ε, f )‖C1−α(T) ≤ C‖ f ′‖L∞

≤ C‖ f ‖C2−α(T).
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Now we shall prove that I11 is C1 and for this purpose it suffices to check the existence
of the partial derivatives and their continuity in strong topology. The partial derivative
with respect to ε can be easily computed and we find

∂ε I11(ε, f (w)) = −αCα(|ε|α + αεsign(ε)|ε|α−1)

 

T

Re
[
(τ − w)( f (τ ) − f (w))

]

∣
∣φ(τ) − φ(w)

∣
∣2+α

f ′(τ ) dτ

− αCαε|ε|α(|ε|α + αεsign(ε)|ε|α−1)
 

T

| f (τ ) − f (w)|2
∣
∣φ(τ) − φ(w)

∣
∣2+α

f ′(τ ) dτ.

Introduce the kernels

K1(τ, w) = Re
[
(τ − w)( f (τ ) − f (w))

]

∣
∣φ(τ) − φ(w)

∣
∣2+α

, K2(τ, w) = | f (τ ) − f (w)|2
∣
∣φ(τ) − φ(w)

∣
∣2+α

.

Then for τ �= w

|K1(τ, w)| ≤ ‖ f ‖Lip
‖φ−1‖2+α

Lip

|τ − w|−α

≤ C |τ − w|−α.

and in a similar way

|K2(τ, w)| ≤ C |τ − w|−α.

Moreover

|∂wK1(τ, w)| + |∂wK2(τ, w)| ≤ C |τ − w|−1−α.

Therefore using Lemma 1 we deduce that ∂ε I11(ε, f ) ∈ C1−α(T) and the dependence
on (ε, f ) ∈ (− 1

2 ,
1
2 ) × Bα

1 is continuous. More details in a similar context can be found
in [20]. The partial derivative with respect to f ∈ Xα in the direction h ∈ Xα is given
by

∂ f I11(ε, f )h = Cα

 

T

h′(τ )dτ
∣
∣φ(τ) − φ(w)

∣
∣α

− αCαε|ε|α
 

T

Re
[
(φ(τ) − φ(w))(h(τ ) − h(w))

]
f ′(τ )

∣
∣φ(τ) − φ(w)

∣
∣2+α

dτ

which is continuous from (− 1
2 ,

1
2 )×Bα

1 toC1−α(T). In particular we get for any h ∈ Xα

∂ f I11(0, 0)h = Cα

 

T

h′(τ )
∣
∣τ − w

∣
∣α

dτ. (38)

We shall now move to the extension and the regularity of I12 defined in (35). It can be
extended through its kernel as follows,

K (ε, τ, w) = 1

ε|ε|α
( 1

|φ(w) − φ(τ)|α − 1

|τ − w|α
)
, φ(w) = w + ε|ε|α f (w).
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Now using (28) we find that

K (ε, τ, w) = −α

ˆ 1

0

Re
(
(τ − w)

(
f (τ ) − f (w)

))

|τ − w + tε|ε|α( f (τ ) − f (w))|2+α
dt

− αε|ε|α
ˆ 1

0

t | f (τ ) − f (w)|2
|τ − w + tε|ε|α( f (τ ) − f (w))|2+α

dt. (39)

By straightforward computations we can check that there exists an absolute constant C
such that for (ε, f ) ∈ (− 1

2 ,
1
2 )× ∈ Bα

1 and for τ �= w

|K (ε, τ, w)| ≤ C

|τ − w|α and |∂wK (ε, τ, w)| ≤ C

|τ − w|1+α
·

Therefore using Lemma 1 again we can conclude that I12(ε, f ) is well-defined and
belongs to C1−α(T). The regularity with respect to ε is straightforward since ε �→
K (ε, τ, w) is C1 and

|∂εK (ε, τ, w)| ≤ C

|τ − w|α and |∂w∂εK (ε, τ, w)| ≤ C

|τ − w|1+α

which implies that ∂ε I12(ε, f ) is well-defined for (ε, f ) ∈ (− 1
2 ,

1
2 )× ∈ Bα

1 and it
belongs to the space C1−α(T). The continuity can be done in a similar way. Moreover
by (39) we have that

I12(0, 0) = 0. (40)

The existence of partial derivative with respect to f can be done without difficulty and
we can check that this derivative is continuous. Thus we establish that I12 is C1 and in
particular we deduce that

∂ f I12(0, 0)h(w) = −αCα

 
T

Re
(
(τ − w)

(
h(τ ) − h(w)

))

|τ − w|2+α
dτ. (41)

Putting together (37), (38) and (41) we find for h ∈ Xα ,

∂ f G2(0, 0)h(w) = CαIm

{

w

 

T

h′(τ )dτ

|τ − w|α
}

− μ̂αIm{h′(w)}

− αCαIm

{

w

 

T

Re
(
(τ − w)

(
h(τ ) − h(w)

))

|τ − w|2+α
dτ

}

. (42)

According to (26), (31) and (42) we get for any � ∈ R and h ∈ Xα ,

∂ f G
α(0,�, 0)h(w) = ∂ f G1(0,�, 0)h(w) − ∂ f G2(0, 0)h(w) + ∂ f G3(0, 0)h(w)

= −CαIm

{

w

 

T

h′(τ )dτ

|τ − w|α
}

+ μ̂αIm{h′(w)}

+ αCαIm

{

w

 

T

Re
(
(τ − w)

(
h(τ ) − h(w)

))

|τ − w|2+α
dτ

}

≡ L1h + L2h + L3h.
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Finally note that the extension forG is obtained by putting together (15), (25),(27), (29),
(35),(37) and (39). Note that to obtain the point vortex pairs we write

Gα(0,�, 0) =
(
�d − αCα

2(2d)1+α

)
e1

which implies that this is a solution if and only if

� = �α
sing ≡ Ĉα

(2d)2+α
·

This means that two point vortices πδ0 and πδ2d rotate uniformly about their center
(d, 0) with the angular velocity �α

sing.

It remains to compute explicitly ∂ f Gα(0,�, 0) and show that it is an isomorphism
from Xα to Y α . To this aim we will start computing ∂ f G2(0, 0) whose expression is
given in (42). It is easy to see that

αCαw

 

T

Re
(
(τ − w)

(
h(τ ) − h(w)

))

|τ − w|2+α
dτ = 1

2
αCαw

 

T

(τ − w)(h(τ ) − h(w))

|τ − w|2+α
dτ

+
1

2
αCαw

 

T

(τ − w)(h(τ ) − h(w))

|τ − w|2+α
dτ

≡ I4(h(w)) + I5(h(w)).

According [20, p. 360] these terms were computed and take the form

I4(h(w)) = α(1 + α
2 )

2(2 − α)

Cα�(1 − α)

�2(1 − α/2)

∑

n≥1

an

(

1 −
(
2 + α

2

)

n(
2 − α

2

)

n

)

wn+1 (43)

and

I5(h(w)) = −αCα�(1 − α)

4�2(1 − α/2)

∑

n≥1

an

(

1 −
(

α
2

)

n( − α
2

)

n

)

wn+1. (44)

It follows that

L3h(w) = Im{I4(h(w)) + I5(h(w))} = αCα�(1 − α)

4�2(1 − α/2)

∑

n≥1

anβnen+1. (45)

with

βn =
(

1 −
(

α
2

)

n( − α
2

)

n

)

+
1 + α

2

1 − α
2

(

1 −
(
2 + α

2

)

n(
2 − α

2

)

n

)

=
(

1 −
(

α
2

)

n( − α
2

)

n

)

+
1 + α

2

1 − α
2

−
(
1 + α

2

)

n+1(
1 − α

2

)

n+1

= 2

1 − α
2

+

(
1 + α

2

)

n−1(
1 − α

2

)

n−1

−
(
1 + α

2

)

n+1(
1 − α

2

)

n+1

· (46)
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Regarding the first term L1(h(w)) it may be rewritten in the form

L1(h(w)) = Im
{
I3(h(w))

}

with

I3(h(w)) ≡ −Cαw

 
T

h′(τ )

|w − τ |α dτ

= Cα

∑

n≥1

nanw
 
T

τ n+1

|w − τ |α dτ.

Once again we get in view of [20, p.360] that

I3(h(w)) = Cα�(1 − α)

�2(1 − α/2)

∑

n≥1

nan

(
α
2

)

n(
1 − α

2

)

n

wn+1. (47)

Therefore

L1(h(w)) = − Cα�(1 − α)

�2(1 − α/2)

∑

n≥1

nan

(
α
2

)

n(
1 − α

2

)

n

en+1. (48)

For L2 we readily get by (36),

L2h(w) = μ̂α

∑

n≥1

nanen+1

= αCα�(1 − α)

(2 − α)�2(1 − α
2 )

∑

n≥1

nanen+1.

Putting together the preceding identities yields to

∂ f G
α(0,�, 0)h(w) = L1h(w) + L2h(w) + L3h(w)

= αCα�(1 − α)

4�2(1 − α
2 )

∑

n≥1

anγnen+1, (49)

with

γn = βn − 4

α

(
α
2

)

n(
1 − α

2

)

n

n +
4

2 − α
n

= βn − 2n

(
1 + α

2

)

n−1(
1 − α

2

)

n

+
2n

1 − α
2

= 2(1 + n)

1 − α
2

+

(
1 + α

2

)

n−1(
1 − α

2

)

n−1

−
(
1 + α

2

)

n+1(
1 − α

2

)

n+1

− 2n

n − α
2

(
1 + α

2

)

n−1(
1 − α

2

)

n−1

= 2(1 + n)

1 − α
2

−
(
1 + α

2

)

n(
1 − α

2

)

n

−
(
1 + α

2

)

n+1(
1 − α

2

)

n+1

·
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Now we shall prove that ∂ f Gα(0,�, 0) : Xα → Ŷ α is an isomorphism. The case α = 0
is elementary since

∂ f G
0(0,�, 0)h(w) = 1

2
Im(h′(w))

and one can easily check that this operator is an isomorphism from X0 to Ŷ 0. So it
remains to check the case α ∈ (0, 1). Thus to verify that ∂ f Gα(0,�, 0) is one-to-one
it is enough to prove the following: There exist two constants C1 > 0 and C2 > 0 such
that for any n ≥ 1

C1n ≤ γn ≤ C2n. (50)

It easy to check that

(1 + α
2 )n

(1 − α
2 )n

<
n + α

2

1 − α
2

β,

where β = 1+ α
2

2− α
2

< 1. Therefore we deduce by simple computations that for α ∈ [0, 1]

γn >
2(1 + n)

1 − α
2

− β
n + α

2

1 − α
2

− β
n + 1 + α

2

1 − α
2

≥ C1(α)n.

On the other hand, we readily get

γn ≤ C2(α)n,

and hence the proof of (50) is achieved. It remains to prove that ∂ f Gα(0,�, 0) is onto.
Let g ∈ Ŷ α , we shall prove that the equation ∂ f Gα(0,�, 0)h = g admits a solution
h ∈ Xα. The functions g and h take the form

g(w) = Ĉα�(1 − α)

4�2(1 − α
2 )

∑

n≥1

bnen+1(w) and h(w) =
∑

n≥1

anw
n .

Therefore using (49) and (50) the equation ∂ f Gα(0,�, 0)h = g is equivalent to

an = bn
γn

, n ≥ 1.

The only point to check is h ∈ C2−α(T), that is

w ∈ T �→
∑

n≥1

bn
γn

wn ∈ C2−α(T).

From [20, p. 358], there exists a constant C > 0 such that
(
1 + α

2

)

n(
1 − α

2

)

n

= Cnα + O
( 1

n1−α

)

which implies in turn that

γn = n
( 2

1 − α
2

− 2C
1

n1−α
+ O

( 1

n2−α

))
.
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It is not difficult to show that h ∈ L∞(T) and thus it remains to check that h′ ∈ C1−α(T).

Note that

−wh′(w) =
∑

n≥1

nbn
γn

wn

and

nbn
γn

= bn
2

1− α
2

− 2C 1
n1−α + O

( 1
n2−α

)

= (1 − α
2 )bn
2

+
C(1 − α

2 )

n1−α
( 2
1− α

2
− 2C 1

n1−α

)bn + O
( 1

n2−α

)
bn

≡ (1 − α
2 )bn
2

+ αnbn + O
( 1

n2−α

)
bn .

Using the continuity of Szegö projector � in C1−α(T) we obtain easily that

h̃ : w �→
∑

n≥1

bnw
n ∈ C1−α(T).

Define the kernels

K1(w) =
∑

n≥1

αnw
n and K2(w) =

∑

n≥1

O
( 1

n2−α

)
wn .

The remainder term of −wh′ is given by

K1 � h̃ + K2 � h̃.

As the kernel K2 ∈ L∞(T) ⊂ L1(T) then K2 � h̃ ∈ C1−α(T). In [20, p.363-366] we
established that K1 ∈ L1(T) and therefore we obtain K1 � h̃ ∈ C1−α(T) and this gives
finally h′ ∈ C1−α(T) which concludes the proof. ��

4.2. Relationship between the angular velocity and the boundary shape. As we have
seen in Proposition 1 the linear operator ∂ f Gα(0,�, 0) is an isomorphism from Xα

to Ŷ α and not to the space Y α. However the functional Gα has its range in Y α which
contains strictly Ŷ α . The strategy will be to choose carefully � in such way that the
range of Gα is contained in Ŷ α. This condition is strong enough to uniquely determine
� and by this way � plays the role of a Lagrangian multiplier with respect to the range
constraint. The main result reads as follows.

Proposition 2. Let α ∈ [0, 1). There exists a C1 function Rα : (− 1
2 ,

1
2 ) × Bα

1 → R

such that, for

� = �α(ε, f ) = �α
sing +Rα(ε, f ),

the modified function Ĝα : (− 1
2 ,

1
2 ) × Bα

1 → Ŷ α given by

Ĝα(ε, f ) = Gα
(
ε,�α(ε, f ), f

)
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is well-defined and is of class C1. Moreover,

∀ f ∈ Bα
1 , Rα(0, f ) = 0 and Ĝα(0, 0) = 0.

Notice that �α
sing was defined in (24).

Proof. The proof will be separated in different parts: the case α = 0 and the case
α ∈ (0, 1).

Part I: case α = 0 A sufficient and necessary condition to guarantee that Gα admits
a range contained in the space Ŷ α is that its first Fourier coefficients vanishes. This
condition amounts to  

T

Gα(ε,�, f (w))dw = 0

or equivalently
 
T

Fα
(
�, ε, f (w)

)(
w2 − 1

)
dw = 0. (51)

We recall that Fα was defined in (9) and (13). For α = 0 one may use the residue
theorem to get

 
T

F1
(
�, ε, f (w)

)
w2dw = 2�

(

− d + ε3
 
T

f (w)w f ′(w)dw

)

and 
T

F1
(
�, ε, f (w)

)
dw = 2�

(

− dε

 
T

w f ′(w)dw + ε3
 
T

f (w)w f ′(w)dw

)

.

This last identity can be written in the form
 
T

F1
(
�, ε, f (w)

)
dw = 2�

(

dε

 
T

f (w)dw

+ ε3
 
T

f (w)w f ′(w)dw

)

.

Consequently
 
T

F1
(
�, ε, f (w)

)(
w2 − 1

)
dw = 2�

(

− d
(
1 + ε

 
T

f (w)dw
)

+ ε3
 
T

f (w) f ′(w)
(
w − w

)
dw

)

.

Now we shall evaluate the contribution of F3. First, observe that

F3(ε, f (w)) = −F̂3(w)w
(
1 + ε f ′(w)

)
,

with the notation

F̂3(ε, f (w)) ≡
 
T

τ + ε f (τ )

ε(τ + w) + ε2
(
f (τ ) + f (w)

) − 2d

(
1 + ε f ′(τ )

)
dτ.
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We write

τ + ε f (τ )

ε(τ + w) + ε2
(
f (τ ) + f (w)

) − 2d
= − τ

2d
+ ε

f (τ )

ε(τ + w) + ε2
(
f (τ ) + f (w)

) − 2d

+
ε

2d

τ + w + ε( f (τ ) + f (w))

ε(τ + w) + ε2
(
f (τ ) + f (w)

) − 2d
τ

≡ − τ

2d
+ εg3(ε, τ, w).

Thus

F̂3(ε, f (w)) = − 1

2d
+ ε

 
T

g3(ε, τ, w)
(
1 + ε f ′(τ )

)
dτ.

Hence
 
T

F3
(
�, ε, f (w)

)
w2dw = 1

2d
− ε

 
T

 
T

g3(ε, τ, w)
(
1 + ε f ′(τ )

)
w

(
1 + ε f ′(w)

)
dτdw

 
T

F3
(
�, ε, f (w)

)
dw = − ε

2d

 
T

f (τ )dτ − ε

 
T

 
T

g3(ε, τ, w)
(
1 + ε f ′(τ )

)
w

(
1 + ε f ′(w)

)
dτdw.

Consequently
 
T

F3
(
�, ε, f (w)

)(
w2 − 1

)
dw = 1

2d
+

ε

2d

 
T

f (τ )dτ

− ε

 
T

 
T

g3(ε, τ, w)
(
1 + ε f ′(τ )

)
(w − w)

(
1 + ε f ′(w)

)
dτdw.

On the other hand using residue theorem we get

F2(ε, f (w)) = ε

 
T

AB − AB

A(A + εB)
f ′(τ )dτ w

(
1 + ε f ′(w)

)

+ ε

 
T

(
AB − AB

)
B

A2(A + εB)
dτ w

(
1 + ε f ′(w)

)

≡ εg2(ε,w)w
(
1 + ε f ′(w)

)
.

Therefore 
T

F2
(
�, ε, f (w)

)(
w2 − 1

)
dw = ε

 
T

g2(ε,w)(w − w)
(
1 + ε f ′(w)

)
dw.

The Eq. (51) becomes

2�

(

d
[
1 + ε

 
T

f (w)dw
]

− ε3
 
T

f (w) f ′(w)
(
w − w

)
dw

)

= 1

2d
+

ε

2d

 
T

f (τ )dτ

+ ε

 
T

g2(ε, w)(w − w)
(
1 + ε f ′(w)

)
dw

+ ε

 
T

 
T

g3(ε, τ, w)
(
1 + ε f ′(τ )

)
(w − w)

× (
1 + ε f ′(w)

)
dτdw

≡ 1

2d
+

ε

2d
T1(ε, f )
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which can be written in the form

� = �0(ε, f )

= 1

4d2
1 + εT1(ε, f )

1 − εT2(ε, f )

= �0
sing +

ε

4d2
T1(ε, f ) + T2(ε, f )

1 − εT2(ε, f )

≡ �0
sing +R0(ε, f ), (52)

where

T2(ε, f ) = −
 
T

f (w)dw +
ε2

d

 
T

f (w) f ′(w)
(
w − w

)
dw.

Nowwe intend to prove that (ε, f ) �→ �0(ε, f ) isC1. For this aim it is enough to check
that the functions (ε, f ) �→ T1(ε, f ) and (ε, f ) �→ T2(ε, f ) are C1 functions and that
|T2(ε, f )| < 2. Since f has real coefficients it is clear that T2(ε, f ) ∈ R and

|T2(ε, f )| ≤ ‖ f ‖C1+β(T) +
ε2

d
2‖ f ‖2C1+β(T)

< 2.

On the other hand, T2 is polynomial in the variables ε, f and f ′ and so it should be a
C1 function from ( 12 ,

1
2 ) × B0

1 to R. Let’s take now the functional

T1(ε, f ) =
 
T

f (τ )dτ + 2d
 
T

g2(ε,w)(w − w)(1 + ε f ′(w))dw

+ 2d
 
T

 
T

g3(ε, τ, w)(1 + ε f ′(τ ))(w − w)(1 + ε f ′(τ ))dτdw,

where

g2(ε, f ) =
 
T

AB − AB

A(A + εB)
f ′(τ )dτ +

 
T

(AB − AB)B

A2(A + εB)
dτ,

with A = τ − w, B = f (τ ) − f (w) and

g3(ε, f ) = f (τ )

ε(τ + w) + ε2( f (τ ) + f (w)) − 2d
+ 2d

τ + w + ε( f (τ ) + f (w))

ε(τ + w) + ε2( f (τ ) + f (w)) − 2d
τ .

Since |ε| < 1
2 and ‖ f ‖C1+β < 1 we get that g3 is a bounded function. Moreover

|g2(ε, f )(w)| ≤ 2
ˆ
T

∣
∣
∣

Im{(τ − w)( f (τ ) − f (w))}
(τ − w)(τ − w + ε( f (τ ) − f (w)))

f ′(τ )

∣
∣
∣|dτ |

+ 2
ˆ
T

∣
∣
∣
Im{(τ − w)( f (τ ) − f (w))}( f (τ ) − f (w))

(τ − w)2(τ − w + ε( f (τ ) − f (w)))

∣
∣
∣|dτ | ≤ C,

where in the last inequality we use again that |ε| < 1
2 and ‖ f ‖C1+β < 1. To prove that T1

is a C1 function it suffices to check that the partial derivatives of g2(ε, f ) and g3(ε, f )
are continuous functions on (− 1

2 ,
1
2 ) × B0

1 . Observe that,

∂εg2(ε, f ) = − 2i
 
T

Im{(τ − w)( f (τ ) − f (w))}
(τ − w)(τ − w + ε( f (τ ) − f (w)))2

( f (τ ) − f (w)) f ′(τ )dτ

− 2i
 
T

Im{(τ − w)( f (τ ) − f (w))}
(τ − w)2(τ − w + ε( f (τ ) − f (w)))2

( f (τ ) − f (w))2dτ.



Existence of Corotating and Counter-Rotating Vortex Pairs 733

It is easy to verify that the kernels involved in the above integral operators satisfy the
conditions of Lemma 1 and so we can conclude that ∂εg2(ε, f ) is a continuous function
from (− 1

2 ,
1
2 ) × B0

1 to R. For any direction h ∈ X0 straightforward computations yield

∂ f g2(ε, f )(h) = 2i
 
T

Im{(τ − w)(h(τ ) − h(w))}
(τ − w)(τ − w + ε( f (τ ) − f (w)))

f ′(τ )dτ

+ 2i
 
T

Im{(τ − w)( f (τ ) − f (w))}
(τ − w)(τ − w + ε( f (τ ) − f (w)))

h′(τ )dτ

− 2iε
 
T

Im{(τ − w)( f (τ ) − f (w))}
(τ − w)(τ − w + ε( f (τ ) − f (w)))2

(h(τ ) − h(w)) f ′(τ )dτ

+ 2i
 
T

Im{(τ − w)(h(τ ) − h(w))}
(τ − w)2(τ − w + ε( f (τ ) − f (w)))

( f (τ ) − f (w))dτ

+ 2i
 
T

Im{(τ − w)( f (τ ) − f (w))}
(τ − w)2(τ − w + ε( f (τ ) − f (w)))

(h(τ ) − h(w))dτ.

− 2iε
 
T

Im{(τ − w)( f (τ ) − f (w))}
(τ − w)2(τ − w + ε( f (τ ) − f (w)))2

× ( f (τ ) − f (w))(h(τ ) − h(w))dτ.

Again the kernels involved in the integral operators satisfy the conditions in Lemma1 and
so ∂ f g2(ε, f )(h) defines a continuous function from (− 1

2 ,
1
2 ) × B0

1 to R. Reproducing
similar computations one can prove that g3(ε, f ) is a C1 function from (− 1

2 ,
1
2 ) × B0

1
to R, and so we get that the function �0(ε, f ) is C1.

Part II: case α ∈ (0, 1) As in the first part of the proof, the condition imposed to � to
guarantee that the component of e1 in the Fourier expansion Gα vanishes is

 
T

Gα
(
ε,�, f (w)

)
dw = 0.

According to the decomposition (15) this assumption is equivalent to

A1 = A2 − A3, (53)

with

A j = −2i
 
T

G j
(
ε,�, f (w)

)
dw.

Note that A j is the Fourier coefficient of e1 = Im(w) in G j and when G j = Im(Fj )

then

A j =
 
T

Fj
(
ε,�, f (w)

)(
w2 − 1

)
dw.

Looking for the Fourier expansion of Im
{
�

(
εw − d

)
w

(
1 + ε|ε|α f ′(w)

)}
we deduce

that the coefficient of e1 is

�d
(
1 + ε|ε|α

 
T

f (τ )dτ
)
.
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In a similar way the Fourier coefficient of e1 in �ε2|ε|αIm
(
f (w)w

(
1+ ε|ε|α f ′(w)

))
is

�ε3|ε|2α
 
T

f (w) f ′(w)
(
w3 − w

)
dw.

Consequently,

A1 = �d
(
1 + ε|ε|α

 
T

f (τ )dτ
)

+ �ε3|ε|2α
 
T

f (w) f ′(w)
(
w3 − w

)
dw

≡ �d + �ε|ε|αR0(ε, f ) (54)

withR0 : (− 1
2 ,

1
2 ) × B0

1 → R. We point out that for any (ε, f ) ∈ (− 1
2 ,

1
2 ) × B0

1

|R0(ε, f )| ≤ d‖ f ‖L∞ + 2|ε|2+α‖ f ‖L∞‖ f ′‖L∞

≤ d + 2|ε|2+α (55)

which means that the functionR0 is well-defined. It is clear that it is differentiable with
continuity in the ε-variable and moreover the function is polynomial in f and f ′ and so
its derivative satisfies the required assumption. Therefore we conclude that R0 is a C1

function from (− 1
2 ,

1
2 ) × Bα

1 to R. Now we shall compute the quantity A1 associated to
G1 which is described by (37) and (35). Thus

−A2 =
 
T

I11(ε, f (w))
(
w − w3)dw +

 
T

I12(ε, f (w))
(
w − w3)dw

+ ε|ε|α
 
T

[
I11(ε, f (w)) + I12(ε, f (w))

]
f ′(w)

(
w − w3)dw

≡ A11 + A12 + ε|ε|αA13.

To calculate A11 we use (35) which yields

A11 = Cα

 
T

 
T

f ′(τ )
(
w − w3

)

|τ − w|α dwdτ + Cα

 
T

 
T

f ′(τ )
(
w − w3)K (τ, w)dwdτ

with

K (τ, w) = 1

|φ(τ) − φ(w)|α − 1

|τ − w|α , φ(w) = w + ε|ε|α f (w).

From the Fourier expansion (47) we conclude that

 
T

 
T

f ′(τ )
(
w − w3

)

|τ − w|α dwdτ = 0

and therefore

A11 = Cα

 
T

 
T

f ′(τ )
(
w − w3)K (τ, w)dwdτ.
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According to (39) we get

A11 = Cαε|ε|α
 
T

 
T

f ′(τ )
(
w − w3)K (ε, τ, w)dwdτ. (56)

For the term A12 recall from (35) that

I12(ε, f (w)) = Cα

 
T

K (ε, τ, w)dτ.

Combining (39) with (28) we get

K (ε, τ, w) = −α
Re

(
(τ − w)

(
f (τ ) − f (w)

))

|τ − w|2+α

+ α(2 + α)ε|ε|α
ˆ 1

0

ˆ 1

0

K̂ (t, ε, τ, w)

|τ − w + stε|ε|α( f (τ ) − f (w))|4+α
dtds

− αε|ε|α
ˆ 1

0

t | f (τ ) − f (w)|2
|τ − w + tε|ε|α( f (τ ) − f (w))|2+α

dt,

with

K̂ (t, ε, τ, w) ≡ Re
(
(τ − w)

(
f (τ ) − f (w)

))

×
[
tRe

(
(τ − w)

(
f (τ ) − f (w)

))
+ st2ε|ε|α| f (τ ) − f (w)|2

]
.

Thus

I12(ε, f (w)) = −αCα

 
T

Re
(
(τ − w)

(
f (τ ) − f (w)

))

|τ − w|2+α
dτ + ε|ε|αI12(ε, f (w)).

Using that the function I12 is a sum of terms defined by integral operators and those
operators have kernels satisfying the conditions of Lemma 1, we can conclude that
I12 : (− 1

2 ,
1
2 ) × Bα

1 → Y α is a C1 function. Now using (45) we deduce that

 
T

 
T

Re
(
(τ − w)

(
f (τ ) − f (w)

))

|τ − w|2+α
(w − w3)dτdw = 0

which implies that

A12 =
 
T

I12(ε, f (w))
(
w − w3)dw

= ε|ε|α
 
T

I12(ε, f (w))
(
w − w3)dw.

Finally we get

− A2 = A11 + A12 + ε|ε|αA13

= Cαε|ε|α
 
T

 
T

f ′(τ )
(
w − w3)K (ε, τ, w)dwdτ

+ ε|ε|α
 
T

I12(ε, f (w))
(
w − w3)dw + ε|ε|αA13

≡ −ε|ε|αR1(ε, f ). (57)
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Analyzing carefully all the terms in A2, as in the foregoing cases, one may conclude
that R1 : (− 1

2 ,
1
2 ) × Bα

1 → R is C1. So, it remains to compute A3 which is described
by (53) and (34),

A3 =
 
T

F3(ε, f (w))(w2 − 1)dw

=
 
T

αCα

2(2d)1+α
(w3 − w)dw − εR2(ε, f )

= − αCα

2(2d)1+α
− εR2(ε, f ) (58)

and we can check that R2 : (− 1
2 ,

1
2 ) × Bα

1 → R is well-defined and C1. Combining
(53) with (54), (57) and (58) we deduce that,

�
(
d + ε|ε|αR0(ε, f )

)
= αCα

2(2d)1+α
+ ε|ε|αR1(ε, f ) + εR2(ε, f ).

According to (55), since d > 2 then for any (ε, f ) ∈ (− 1
2 ,

1
2 ) × Bα

1 we obtain

d + ε|ε|αR0(ε, f ) ≥ d − d|ε|1+α − 2|ε|3+2α

≥ d

4
·

Therefore

� = �(ε, f )

=
αCα

2(2d)1+α + ε|ε|αR1(ε, f ) + εR2(ε, f )

d + ε|ε|αR0(ε, f )

≡ �sing +Rα(ε, f ), �sing = Ĉα

(2d)2+α
,

whereRα : (− 1
2 ,

1
2 )×Bα

1 → R isC1 because it is obtained as an algebraic combination
of C1 functions without zeros in the denominator. Obviously Rα(0, f ) = 0 for any
f ∈ Bα

1 and this achieves the proof of the proposition. ��

4.3. Proof of the main Theorem-(i). In this section we will give a precise statement
of the first part of the main theorem which describes the structure of the solution in a
neighborhood of the point vortex pairs. Recall from Proposition 2 that the existence of
solutions to the V-states equation can be transformed into the resolution of

Ĝα(ε, f ) = 0, (ε, f ) ∈ (−1

2
,
1

2
) × Bα

1

with Ĝα being the functional defined by

Ĝα
(
ε, f (w)

) = Gα
(
ε,�α(ε, f ), f

)

and �(ε, f ) has been introduced in Proposition 2. The main result is the following.

Proposition 3. Let α ∈ [0, 1), then the following holds true.
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1. The linear operator ∂ f Ĝα(0, 0) : Xα → Ŷ α is an isomorphism and

∂ f Ĝ
α(0, 0)h(w) =

∑

n≥1

an γ̂nen+1

with

γ̂n = Ĉα�(1 − α)

4�2(1 − α
2 )

(
2(1 + n)

1 − α
2

−
(
1 + α

2

)

n(
1 − α

2

)

n

−
(
1 + α

2

)

n+1(
1 − α

2

)

n+1

)

.

2. There exists ε0 > 0 such that the set
{
(ε, f ) ∈ [−ε0, ε0] × Bα

1 , s.t. Ĝα(ε, f ) = 0
}

is parametrized by one-dimensional curve ε ∈ [−ε0, ε0] �→ (ε, fε) and

∀ ε ∈ [−ε0, ε0]\{0}, fε �= 0.

3. If (ε, f ) is a solution then (−ε, f̃ ) is also a solution, where

f̃ (w) = f (−w), ∀ w ∈ T.

4. For all ε ∈ [−ε0, ε0]\{0}, the domain Dε
1 is strictly convex.

Proof. (i) From the composition rule

∂ f Ĝ
α(0, 0)h(w) = ∂α

�G
α(0,�α

sing, 0) ∂ f �
α(0, 0)h(w) + ∂ f G

α(0,�α
sing, 0)h(w).

By virtue of the expansion in ε of �α(ε, f ) given in Proposition 2 we deduce that

∂ f �
α(0, 0) = d

dt
�α(0, th(w))|t=0

= 0

and therefore

∂ f Ĝ
α(0, 0)h(w) = ∂ f G

α(0,�α
sing, 0)h(w).

Combining this identity once again with Proposition 1 we deduce the desired result.
(ii) As we have seen before in Proposition 2, Ĝα : (− 1

2 ,
1
2 ) × Bα

1 → Ŷ α is C1 and
the linear operator ∂ f Ĝα(0, 0) : Xα → Ŷ α is invertible. Therefore we can conclude
using the implicit function theorem. It remains to check that fε �= 0 for ε �= 0. For
this purpose, we will prove that for any ε small enough and for any � we can not get a
solution with f = 0. So, it means that for ε �= 0 we should get

Gα(ε,�, 0) �= 0.

We shall start with the case α = 0 which is much more simpler. It is easy to check from
(9) that

F1(ε,�, 0) = 2�
(
ε − d w

)
and F2(ε, 0) = 0.
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However to compute F3 we proceed by Taylor expansion as follows,

F3(ε, 0) = −w

 
T

τ

ε(τ + w) − 2d
dτ

= w
∑

n∈N

εn

(2d)n+1

 
T

τ(τ + w)n dτ

=
∑

n∈N

εn

(2d)n+1
wn+1,

which gives in turn

F3(ε, 0) = w

2d − εw
· (59)

Consequently

G0(ε,�, 0) = Im
{

− 2d�w +
w

2d − εw

}
.

and this quantity is not zero if ε �= 0 is small enough.
Let us now move to the case α ∈ (0, 1). One finds using (15), (25), (37) and (40),

that

G1(ε,�, 0) = −�d Im(w) and G2(ε,�, 0) = 0.

To compute G3(ε, 0) it is enough to calculate I2(ε, 0) because I1(ε, 0) = 0. The exact
computations turn out to be much more involved. Thus we shall give the expansion of
I2(ε, 0) at the order one in ε. Applying (32) one gets

I2(ε, 0) = αCα

2(2d)1+α
− αCαε

2(2d)2+α

 
T

|τ + w|2dτ

+
αCα(2 + α)ε

2(2d)2+α

 
T

(
Re

[
τ + w

])2
dτ + ε2O(1)

= �α
singd − Ĉαε

2(2d)2+α
w +

Ĉα(2 + α)ε

4(2d)2+α

(
w + w) + ε2O(1),

and so

G3(ε, 0) = Im{I2(ε, 0)w}.
Therefore the V-states equations becomes

Im
{(

I2(ε, 0) − �d
)
w

}
= d(�α

sing − �)Im(w) + ε
Ĉα(2 + α)

4(2d)2+α
Im(w2) + ε2O(1)

= 0

and this equation is impossible for 0 < ε ≤ ε0 with ε0 small enough depending on d
and α.

(iii) We shall only present the proof for the case α = 0 and for the same proof
works as well for α ∈ (0, 1). Using the definition of f̃ one can check that Ti (−ε, f̃ ) =
−Ti (ε, f ), for i = 1, 2 and so by (52) we obtain that

�(ε, f ) = �(−ε, f̃ ).
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Taking the decomposition of F0 = F1 + F2 + F3 given in (9) we only need to check that
Fi (ε,�, f )(−w) = −Fi (−ε,�, f̃ )(w), for i = 1, 2, 3. Since f̃ ′(w) = − f ′(−w)we
have

F1(−ε,�, f̃ )(w) = 2�
( − εw + ε2 f̃ (w) − d)w(1 − ε f̃ ′(w)

) − f̃ ′(w)

= −[
2�

(
ε(−w) + ε2 f (−w) − d)(−w)(1 + ε f ′(−w)

) − f ′(−w)
]

= −F1(ε,�, f )(−w).

Straightforward computations will lead to the same properties for the functions F2 and
F3. It follows that,

F0(ε,�, f )(w) = −F0(−ε,�, f̃ )(−w)

and therefore (−ε, f̃ ) defines a curve of solutions for 0 < ε < ε0.

(iv) As before we shall restrict the discussion to the case α = 0 because the proof
in the case α ∈ (0, 1) follows exactly the same lines. First we shall make the follow-
ing comment about the regularity of the conformal mapping. As it was mentioned in
Remark 6 one can reproduce the preceding proofs and replace β by n + β with n ∈ N.
Therefore the implicit function theorem ensures that the function fε belongs to Cn+1+β

for any fixed n. Of course, the size of ε0 is not uniform with respect to n and it shrinks to
zero as n grows to infinity. Now to prove the convexity of the domain Dε

1 we shall imple-
ment the same arguments of [22]. Recall that the exterior conformal mapping associated
to this domain is given by

φ(w) = εw + ε2 fε(w)

and the curvature can be expressed by the formula

κ(θ) = 1

|φ′(w)| Re
(
1 + w

φ′′(w)

φ′(w)

)
.

It is plain that

1 + w
φ′′(w)

φ′(w)
= 1 + εw

f ′′(w)

1 + ε f ′(w)

and so

Re
(
1 + w

φ′′(w)

φ′(w)

)
≥ 1 − |ε| | f ′′(w)|

1 − |ε| f ′(w)| ≥ 1 − |ε|
1 − |ε| ,

which is non-negative if |ε| < 1/2. Thus the curvature is strictly positive and therefore
the domain is strictly convex. ��

5. Existence of Counter-Rotating Vortex Pairs

In this section we will prove the existence of planar translating pairs of vortex patches
with velocity U in the direction (OY ) for the (SQG)α with α ∈ [0, 1). The proof is
similar to that of the corotating pairs and therefore we shall skip many details and focus
on the significant variations.
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5.1. Extension and regularity of Gα . This section is devoted to the study of the regularity
of the functions Gα appearing in (18) and (23).

Proposition 4. Let α ∈ [0, 1), then the following holds true.

(i) The function Gα can be extended from (− 1
2 ,

1
2 ) × R × Bα

1 → Y α as a C1 func-
tion. Moreover, for any U ∈ R, the operator ∂ f Gα(0,U, 0) : Xα → Ŷ α is an
isomorphism. More precisely, for h = ∑

n≥1 anw
−n ∈ Xα , we get

∂ f G
α(0,U, 0)h(w) = −

∑

n≥1

an γ̂nen+1,

with

γ̂n = Ĉα�(1 − α)

4�2(1 − α
2 )

(
2(1 + n)

1 − α
2

−
(
1 + α

2

)

n(
1 − α

2

)

n

−
(
1 + α

2

)

n+1(
1 − α

2

)

n+1

)

.

(ii) Two initial point vortex πδ0 and −πδ(2d,0) move uniformly in the direction (OY )

with the speed

Uα
sing ≡ Ĉα

2(2d)1+α
·

Proof. (i) The proof is quite similar to (i) of Proposition 1. The only slight difference
is in the treatment of G1 which is clearly C1 in the variable ε and moreover it has a
polynomial dependence in �, f, f ′, and so its derivatives in these variables are also
continuous. Note that G2 and G3 are exactly the same functions of the rotating case, see
(15). Now we shall compute the linearized operator and we restrict ourselves only to
α ∈ (0, 1). The case α = 0 can be done separately or by taking the limit when α → 0+.
It is easy to see that

∂ f G1(0,U, 0) = 0,

and so

∂ f G
α(0,U, 0) = ∂ f G1(0,U, 0) + ∂ f G2(0, 0) + ∂ f G3(0, 0)

= ∂ f G2(0, 0) + ∂ f G3(0, 0).

On the other hand by (31) ∂ f G3(0, 0) = 0, and so this operator coincides, after a change
of sign, with the linearized operator in the rotating case and whose formula was stated
in Proposition 1.

(ii) Obvious computations yield

G1(0,U, 0) = Ue1.

According to (34) one finds

G3(0, 0) = − αCα

2(2d)1+α
e1.

Using (35), (37) and (40) we obtain

G2(0, 0) = 0.
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Therefore we get

Gα(0,U, 0) =
(
U − αCα

2(2d)1+α

)
e1

and consequently Gα(0,U, 0) = 0 if and only if

U = Uα
sing ≡ Ĉα

2(2d)1+α
·

��

5.2. Relationship between the speed and the boundary shape. As for the rotating case
the image of the space Xα by Gα(ε,U, ·) is contained in Y α and not necessary in Ŷ α.

Therefore to apply the implicit function theorem we should impose a constraint between
U, ε and f which guarantees a range contained in Ŷ α. The main result reads as follows.

Proposition 5. Let α ∈ [0, 1). There exists a C1 function Rα : (− 1
2 ,

1
2 ) × Bα

1 → R

such that with the choice

U = Uα(ε, f ) = Uα
sing +Rα(ε, f ),

the function Ĝα : (− 1
2 ,

1
2 ) × Bα

1 → Ŷ α given by

Ĝα(ε, f ) ≡ Gα
(
ε,U (ε, f ), f

)

is well-defined and is C1. Moreover,

∀ f ∈ Bα
1 , Rα(0, f ) = 0 and Ĝα(0, 0) = 0.

Proof. We shall follow the same strategy of the Sect. 4.2. According to Proposition 4
the linear operator ∂ f Gα(0,U, 0) is an isomorphism from Xα to Ŷ α , and the latter space
is strictly contained in Y α. Note also that the image of the functional Gα lies in Y α and
therefore we shall choose U in such a way that the range of Gα is contained in Ŷ α. To
this end we should impose a nonlinear constraint on U such that the coefficient of e1
vanishes in the Fourier expansion of Gα(U, ε, f ). This constraint reads

 
T

Gα
(
ε,U, f (w)

)
dw = 0. (60)

Case α = 0. According to (18), the above condition is equivalent to
 
T

F0(U, ε, f (w)
)(

w2 − 1
)
dw = 0. (61)

Note that by residue theorem
 
T

F1
(
U, ε, f (w)

)
w2dw = 2U
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and
 
T

F1
(
U, ε, f (w)

)
dw = 2Uε

 
T

w f ′(w)dw

= −2Uε

 
T

f (w)dw.

Consequently

 
T

F1
(
�, ε, f (w)

)(
w2 − 1

)
dw = 2U

(
1 + ε

 
T

f (w)dw
)
.

Now we shall calculate the contribution of F3. First we make the decomposition

F3(ε, f (w)) = F̂3(w)w
(
1 + ε f ′(w)

)
,

with

F̂3(ε, f (w)) ≡
 
T

τ + ε f (τ )

ε(τ + w) + ε2
(
f (τ ) + f (w)

) − 2d

(
1 + ε f ′(τ )

)
dτ.

Now one may write

τ + ε f (τ )

ε(τ + w) + ε2
(
f (τ ) + f (w)

) − 2d
= − τ

2d
+ ε

f (τ )

ε(τ + w) + ε2
(
f (τ ) + f (w)

) − 2d

+
ε

2d

τ + w + ε( f (τ ) + f (w))

ε(τ + w) + ε2
(
f (τ ) + f (w)

) − 2d
τ

≡ − τ

2d
+ εg3(ε, τ, w).

Thus we find

F̂3(ε, f (w)) = − 1

2d
+ ε

ˆ
T

g3(ε, τ, w)
(
1 + ε f ′(τ )

)
dτ.

Hence
 
T

F3
(
�, ε, f (w)

)
w2dw = − 1

2d
+ ε

 
T

 
T

g3(ε, τ, w)
(
1 + ε f ′(τ )

)
w

(
1 + ε f ′(w)

)
dτdw

 
T

F3
(
�, ε, f (w)

)
dw = ε

2d

 
T

f (τ )dτ + ε

 
T

 
T

g3(ε, τ, w)
(
1 + ε f ′(τ )

)
w

(
1 + ε f ′(w)

)
dτdw.

It follows that
 
T

F3
(
�, ε, f (w)

)(
w2 − 1

)
dw = − 1

2d
− ε

2d

 
T

f (τ )dτ

+ ε

 
T

 
T

g3(ε, τ, w)
(
1 + ε f ′(τ )

)

× (w − w)
(
1 + ε f ′(w)

)
dτdw.
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On the other hand using residue theorem we get

F2(ε, f (w)) = ε

 
T

AB − AB

A(A + εB)
f ′(τ )dτ w

(
1 + ε f ′(w)

)

+ ε

 
T

(
AB − AB

)
B

A2(A + εB)
dτ w

(
1 + ε f ′(w)

)

≡ εg2(ε,w)w
(
1 + ε f ′(w)

)
.

Thus
 
T

F2
(
�, ε, f (w)

)
w2dw −

 
T

F2
(
�, ε, f (w)

)
dw

= ε

 
T

g2(ε,w)(w − w)
(
1 + ε f ′(w)

)
dw.

The Eq. (61) becomes

2U
(
1 + ε

 
T

f (w)dw
)

= 1

2d
+

ε

2d

 
T

f (τ )dτ

+ ε

 
T

g2(ε, w)(w − w)
(
1 + ε f ′(w)

)
dw

+ ε

 
T

 
T

g3(ε, τ, w)
(
1 + ε f ′(τ )

)
(w − w)

(
1 + ε f ′(w)

)
dτdw

≡ 1

2d
+

ε

2d
T1(ε, f )

which may be written in the form

U = U 0(ε, f )

= 1

4d

1 + εT1(ε, f )

1 + εT2( f )

= U 0
sing +

ε

4d

T1(ε, f ) − T2( f )

1 + εT2( f )

≡ U 0
sing +R0(ε, f ), (62)

with

T2( f ) =
 
T

f (w)dw.

Case α ∈ (0, 1). From the splitting (23) the assumption (60) is equivalent to

A0 = −A1 − A2, (63)

with

A j = −2i
 
T

G j
(
ε,�, f (w)

)
)dw.
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Note that A j is the Fourier coefficient of e1 = Im(w) in G j ≡ Im(Fj ), then

A j =
 
T

Fj
(
ε,�, f (w)

)
)
(
w2 − 1

)
dw.

The computation of A1 is easy,

A1 = −U
 
T

(
1 + ε|ε|α f ′(w)

)(
w3 − w

)
dw.

Since

f (w) =
∑

n≥1

anw
n and f ′(w) = −

∑

n≥1

nanw
n+1,

then
 
T

f ′(w)
(
w3 − w

)
dw = −a1

= −
 
T

f (τ )dτ.

Consequently

A1 = U
(
1 + ε|ε|α

 
T

f (τ )dτ
)
. (64)

Combining (63) with (64), (57) and (58) one gets

U
(
1 + ε|ε|α

 
T

f (τ )dτ
)

= αCα

2(2d)1+α
+ εR2(ε, f ) − ε|ε|αR1(ε, f ).

Thus

U = Uα(ε, f )

≡
αCα

2(2d)1+α + εR2(ε, f ) − ε|ε|αR1(ε, f )

1 + ε|ε|α ffl
T
f (τ )dτ

≡ αCα

2(2d)1+α
+Rα(ε, f ).

Similarly to the rotating case, Rα : (− 1
2 ,

1
2 ) × Bα

1 → R is well-defined and C1. More-
over, by construction one can see thatRα(0, f ) = 0. This will imply that Ĝα(0, 0) = 0.

��

5.3. Proof of the main Theorem-(ii). Recall that the V-states equation can be written in
the form
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Ĝα(ε, f ) = 0, (ε, f ) ∈ (−1/2, 1/2) × Bα
1 ,

with Ĝα being the functional defined by

Ĝα
(
ε, f (w)

) = Gα
(
ε,Uα(ε, f ), f

)
.

The proof of the existence of translating pairs stated in the Main Theorem follows from
the next proposition whose proof is quite similar to that of Proposition 3 and so is left
to the reader.

Proposition 6. Let α ∈ [0, 1). The following holds true.

(i) The linear operator ∂ f Ĝα(0, 0) : Xα → Ŷ α is an isomorphism and

∂ f Ĝ
α(0, 0)h(w) = −

∑

n≥1

an γ̂nen+1

with

γ̂n = Ĉα�(1 − α)

4�2(1 − α
2 )

(
2(1 + n)

1 − α
2

−
(
1 + α

2

)

n(
1 − α

2

)

n

−
(
1 + α

2

)

n+1(
1 − α

2

)

n+1

)

.

(ii) There exists ε0 > 0 such that the set
{
(ε, f ) ∈ [−ε0, ε0] × Bα

1 , s.t. Ĝα(ε, f ) = 0
}

is parametrized by one-dimensional curve ε ∈ [−ε0, ε0] �→ (ε, fε) and

∀ ε ∈ [−ε0, ε0]\{0}, fε �= 0.

(iii) If (ε, f ) is a solution then (−ε, f̃ ) is also a solution, where

f̃ (w) = f (−w), ∀ w ∈ T.

(iv) For all ε ∈ [−ε0, ε0], the domain Dε
1 is strictly convex.
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