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Introduction

Isometric inmmersions versus turbulence.
Two pictures. One of fully developed turbulence, the other of convex
integration solutions.



Isommetric inmmerssions

Definition.
Formulation as a partial differential relation.
DuTDu = g



H-Principle

If there exists a short map there exist infinitely many issometric
inmmersions.
Philosophy: If there is a solutions to a relaxed version of the problem
(being short), there exist a solution of the original problem.
Very important: In differential geometry.



Idea of Nash.
Formula de los steps.



The Euler equations

We consider weak solutions to the incompressible Euler equations with
constant density. Thus the evolution of the velocity of a fluid with
constant pressure iis given by
Conservation of Volumes.

div(v) = 0,

Conservation of momentum (Newton Second Law).

∂t(v) + div(v ⊗ v) = ∇p

and we consider distributional solutions in L2(Rn) with v(x , 0) = v0.
The Euler equations are like the isometries in the Nash theorem.



The Relaxed Euler equations (subsolutions)

Conservation of Volumes.
div(v) = 0,

Conservation of momentum (Newton Second Law).

∂t(v) + div(v ⊗ v) = ∇p + R

where R the reynold stress, satisfies that R ≥ 0 in the sense of symmetric
matrices. and we consider distributional solutions in L2(Rn) with
v(x , 0) = v0.
This are like the short maps in the Nash-theory.



Theorem

H principle for the Euler equations If there is a subsolution to the Euler
equations, there are infinitely many solutions to the Euler equations with
the same initial data.

Theorem (De Lellis-Székelyhidi)

(Non-uniqueness of weak solutions) There exists infinitely many solutions
with v ∈ L∞ ∩ L2 with v0 = 0.

There is no uniqueness of the Euler equations. This is a very powerful
machinary in modelling turbulence regimes in fluid mechanics where
classical ideas from P.D.E and Calculus do not work.



What we mean by Convex Integration

•. In this course, convex integration is a method to solve an special type
of partial differential relation that we call differential inclusions.
Abstractly, Given L a linear differential operator and D ⊂ Rd ,K ⊂ RN a
closed set, z(x) = (z1(x), ldots, zi (x), z(x) : D → RN solves an L,K

L(z) = 0, z(y) ∈ K

The idea of decomposing a non linear p.d.e as linear system, typically a
conservation law and a constitutive relation is the starting point of what
is today called as The Tartar Framework and it is intimately associated to
the theory of compensated compactness which will pervade the full
course.
The type of theorems we are seeing stems in Nash-Kuiper theory of
irregular isometric inmersions but it has found striking applications in
many other fields, as non linear elasticity, regularity of elliptic equations
and systems and mostly striking in De Lellis-Székelyhidi theory of weak
solutions in hydrodynamics, which will be at the core of the course.



Solutions of the differential inclusion in the course will arise as a
consequence of an H-principle. We compare the solutions of (1) with
that of

L(z) = 0, z(y) ∈ U

where U is called the relaxation, and it is typically an open (or relatively
open set) which represents the set of weak limits of the inclusion. Thus
during this week our holy grail will be the following type of theorems:

H-Principle (Meta-Theorem).

The set of solutions of the differential inclusion is dense in the set of the
solutions to the relaxed system. In particular if there exists a relaxed
solution, there exists at least one solution. Even more the solution share
many properties with the subsolution as for example the initial data.



Idea fo the Meta-Theorem As Juan Manfredi taught me once, the good
thing of Meta-Theorems is that you do not need to prove it but just give
a vague ”intution” about why they are true. The prototype of a sequence
going to zero is a highly oscillating sequence of solutions to L. Therefore
one might expect that given a relaxes solution if we substract from it,
suitably frozen, and localize in origin and domain and locally highly
oscillating sequences



Historical milestones

50.Nash-Kuiper Isometric immersion Problem.

80 Murat-Tartar invent the compensated compactness theory, which
is a theory to understand weak convergence methods in nonlinear
P.D.E and it shows that many aspects of it is a geometrical problem.

80 H-principle in differential geometry. Largely develop by Gromov
in his study of partial differential relation.

90 Müller- vSverák discovered that it yields unexpected solutions in
the Calculus of Variations in absence of lower semicontinuity.
Dacorogna-Marcellini Baire Category. Bernd Kirchheim Baire one
maps. Müller- vSverák unexpected counterexamples to regularity of
elliptic systems.

Systematic understanding of the Rank-one Geometry (Kirchheim,
Székelyhidi).

2008. De Lellis Székelyhidi bring together Tartar compensated
compactness and H-principle to deal with the Euler equations.

2010-2021 Intense research on the method in hidrodynamics lead to
solutions of various open problems.



Menu

Appetizers : Convex integration by hand (Emphasis on The
gradient case).

First course :The Baire category approach. H-principles in
hidrodynamics.

Second Course: Results in hidrodynamics. Lack of uniqueness and
modelling of inestabilities. (Animations!).

Dessert: Intro to MHD equations and convex integration with
constraints.



Two States.

A way to get introduced into the topic is as usual by considering the
easiest situation. Throughout the course we will focuse of first order
differential operators of the type

L(z) = Aijk∂jz
k

Namely that K consists only of two costant states z1, z2 ∈ Rn. A basic
but important land mark in M-T compensated compactness theory is
that there are certain special directions l ∈ Rn for which there exists
functions z such that

L(z) = 0 for a.e(x) ∈ Ω, z(x) ∈ l

We have controlled range!



The wave cone

Definition

Let L be a first order differential operator. Then l ∈ Λ = ΛL ⊂ RN if
there exists a direction ξ ∈ Rd such that for every h : R → R

L(h(⟨x , ξ⟩)l) = 0

• Notice that if L = Aijk∂jzk . Then
L(h(⟨x , ξ⟩)l) = h′(⟨x , ξ⟩)Aijkξj lk Thus l = (l1, . . . , lk , . . . , lN) ∈ Λ if there
exists ξ such that for every i ,Aijkξj lk = 0. • The model example is the
gradient case, where the differential operators is
curl (Aij) = ∂jAik − ∂kAij . • Exercise. Show that in the gradient case the
wave cone is the cone of rank-one matrices. i.e A = n ⊗ ξ.



Controlled range

Now supposed that l ∈ Λ. Then by definition we have that there exists
ξ ∈ Rd such that for every 1 dimensional h z(x) = h(⟨x , ξ⟩)l solves the
conservation law. With the new toy, there are at least two thing we can
do

Boundary conditions. For iteration it is convenient that h is

1-periodic and
∫ 1

0
h(s)ds = 0.

Choose h carefully. For example h could be only take two values
λ, λ− 1. h(x) = λχ(0,1−λ) + (λ− 1)χ(0,1−λ)

Because of 1, I can make it oscillate faster hj(x) = h(jx)

Then if z1 = λl , z2 = (λ− 1)l the problem is solved.

Unfortunately the boundary conditions are spoiled and it is very difficult
to iterate.



Potentials

The gradient case has an important property which is a Poincare lemma.
That is for L = curl ,B = ∇ locally it holds that

L(z) = 0 ⇐⇒ z = B(φ)

It turns out that this holds if and only if the operator L is of constant
rank (Raita, Guerra-Raita). However as we will see even if not of
constant rank there could exist differential operators B such that

LB = 0

The importance of the potentials is that the fix range condition
associated to the wave cone can negotiated to prescribing the support of
the solution at the price of satisfying the inclusion approximately. In the
next lemma we show in the gradient case, that the existence of potentials
allows for a careful choice of the domains Ω and the function h.



The Roof construction:No boundaries

In the gradient case, the following construction is standard.
Scalar functions as vector value functions. Let s : R → R and ξ,∈ Rn.
Then if we set f (x) = s(⟨x , ξ⟩), ∂i f = s ′(⟨x , n⟩)ξi . Moreover if a ∈ Rn

and we declare fa : Rn → R, fa(x) = f (x)a

∂j(fa)
i = s ′(⟨x , ξ⟩)ai ⊗ ξj , i .e Dfa = s ′(⟨x , ξ⟩)a⊗ ξ

Thus if for example s ′ = {λ, (λ− 1)}, D(fa)(x) ∈ {λa⊗ ξ, (λ− 1)a⊗ ξ}
a.e We notice that if s is periodic we can rescale the construction
declaring

faj(x) =
1

j
s(j⟨x , ξ⟩)a

This oscillating wave has the same gradient, but it is very small in L∞.



Exercise

Correcting the boundary conditions. The problem with this construction
is that it can not be iterated. The abstract solution is declaring
g = Ax + ηδfj where ηδ is a suitable bump function.

However we loose control on what is the values of Dg when ∇η ̸= 0.
This is not terrible and we can guarantee that the values are not far from
the rank-one segment but sometimes is useful to keep control on the
precise values



The Roof construction: With control on the boundary

We start by prescribing gradients of functions with zero boundary values.
It is not possible to have an exact value for two gradients.

Lemma (Roof-Lemma)

Let ξ ∈ Sn−1 a direction and let λ ∈ (0, 1) and Let ξ(1), . . . , ξ(J) ∈ Rn be
such that 0 ∈ int conv{ξ,−ξ, ξ(1), . . . , ξ(J)}. For any open bounded set
Ω ⊂ Rn with|∂Ω| = 0 and any δ > 0 there exists a piecewise affine
Lipschitz function f ∈ Lip0(Ω) with

∇f (x) ∈
{
−λξ, (1− λ)ξ, ξ(1), . . . , ξ(J)

}
a.e. x ∈ Ω, (1)

and
|{x ∈ Ω : ∇f (x) = −λξ or (1− λ)ξ}| ≥ (1− δ)n|Ω|. (2)

Notice that we could choose the auxiliar vectors ξ(1), . . . , ξ(J) ∈ Rn as
close to zero as we like.



Proof of the Roof-Lemma

Let s be the saw tooth function as before and set

P =
{
x ∈ Rn : x · ξ(j) > −1 for all j = 1 . . . J and |x · ξ| < 1

}
.

Then P is a convex open set containing 0. Moreover, for any N ∈ N the
function

fN(x) = min

{
min
j
(1 + x · ξ(j)), 1

N
s(Nx · ξ)

}
is Lipschitz, satisfies (1), and fN = 0 on ∂P.
Moreover, by choosing N, sufficiently large in terms of δ

1

N
h(Nx · ξ) < min

j
(1 + x · ξ(j)) on (1− δ)P,

and thus, fN(x) =,
1
N s(Nx · ξ) from which (2) follows.

Exercise 1. For a general Ω we apply a standard rescaling and
covering argument

Exercise 2. If we declare faN(x) = fNa Df (x) ∈ {λaξ̇, (1− λ)aξ̇, aξ̇j}
a.e



The Tent construction

The tent construction has the same starting point than the roof
construction. However now we have a solution which is always in a
neighborhood of the desired gradients.

Lemma (Tent-Lemma)

Let ξ ∈ Sn−1 a direction and let λ ∈ (0, 1) For any open bounded set
Ω ⊂ Rn with|∂Ω| = 0 and any δ > 0 there exists a piecewise affine
Lipschitz function f ∈ Lip0(Ω) with

min{|∇f (x)− (−λξ)|, |∇f (x)− (1− λ)ξ|} ≤ δ a.e. x ∈ Ω, (3)



Proof of the Tent construction

Now we choose an orthonormal basis so that en = ξ Now we start with
the same construction of f (x) = s(⟨x , ξ⟩) but consider initially the
domain

V = {x ∈ Rn : (ϵ(λ− 1) ≤ ⟨x , ξ⟩ ≤ ϵλ, |xi | ≤ 1}

By adding the constant −ϵ(λ)(1− λ) the function is zero in the xn
boundaries but not in the rest of ∂V .
Next, we add a function h(x) = ϵλ(1− λ)

∑n−1
i=1 |xi |. Then h is piecewise

linear and
∂ih = ϵλ(1− λ)sign(xi ), ⟨∇h, ξ⟩ = 0.

Moreover, |Dh| = ϵλ(1− λ)
√
n − 1 and more importantly f̃ = h + f ≥ 0

on V . Now if declare

U = {x ∈ V : f̃ −1 < 0}

we have that f̃ satisfies the requirements in U. The same covering
argument yields the result.



Solution in Balls from the tent constructions

A baby version of convex integration can be devised by solving

Du(x) ∈ B(A, ϵ) ∪ B(B, ϵ)

as an iteration of the tent construction. Namely we construct a sequence
{uk}∞i=1 ∈ LipAffine such that

Du(x) ∈ B(A, ϵ)∪B(B, ϵ)∪B(C , δ(
k∑

i=1

2−i ), )∥x ∈ Ω : Duk ̸= Duk−1
)∥ → 0

If such a sequence exists, the L∞ boundedness and the vanishing
measure condition implies that it is a Cauchy sequence in Lp.
The existence of the sequence is a direct corollary from the tent
construction: Given uk let DukχΩC+E

= C + E with |E | ≤ δ(
∑k

i=1 2
−i ).

Then as C + E = λ(A+ E ) + (1− λ)(C + E ) we are entitled to run the
tent construction in ΩC+E with error δ2−(k+1) and thus uk+1 has the
required properties.



PreLaminates(Splitting)

The previous game, gets much more interesting when we iterate. In
terms of measures code the above process by the notation,

δC︸︷︷︸
µ1

⇝ λδA + (1− λ)δB︸ ︷︷ ︸
µ2

and we say that µ2 is obtained by splitting µ1.
Given a discrete probability measure with finite support i.e

µ =
n∑

i=1

λiδAi

if A1 = λB + (1− λ)C ,A− C ∈ Λ such that A− C ∈ Λ, we say that

µ1 ⇝ µ2 = λ1λδB + (1− λ)λδC +
∑
i=2

λiδAi

We say that µ1 splits in µ2, that A1 is in a splitting sequence of µ2 and
that the segment [B,C ] is in an skelelton of µ



Laminates:Definition

Definition

The class of Prelaminates PL is the smallest class of probability
measures such that

It contains all probability measures.

It is closed after splitting.

Notice that the splitting sequence or the Skeletons of prelaminates are
not unique.

Definition

A measure is called an Lp-laminates if

It is the weak star limit of a laminate.

It holds that
∫
|λ|pdν <∞

Cool examples of laminates not prelaminates. Tartar squares and
staircase laminates.



Aproximation of Prelaminates

Lemma

Let ν =
∑
λiδAi ∈ PL, and ϵ > 0. Then

There exists f ∈ LipPaffine(Ω) with f − Cx ∈ Lip0(Ω) such that

|x : Df (x) ∈ B(Ai , ϵ)| = λi

There exists f ∈ LipPaffine(Ω) with f − Cx ∈ Lip0(Ω) such that
Df (x) ∈ {Ai} ∪ {B(Ci , ϵ)} a.e and

(1− ϵ)λi ≤ |x : Df (x) ∈ B(Ai , ϵ)| ≤ λi

where {Ci} is an splitting sequence of ν.

The proof of the lemma consists in reiterative use of the tent
construction for the first, and of roof construction and is left as an
exercise. We define PL(U) as those laminates for which there exists an
splitting sequence supported in U .
Where instead of the tent construction, we use the roof construction,
then we can guarantee that the sequence is in a neighborhood of an
Skeleton of µ.



The lamination hull

Given a set K we define various semiconvex envelopes.

Kco the convex hull.

KΛ,lc the lamination convex hull. K 1,Λ. Center of mass of
prelaminates supported in K
KΛ center of mass of laminates. Can be defined with cosets of
Λ-convex functions.



In approximation

The concept of in approximation was invented by Gromov in the
differential geometric context and extended by Müller and Sverák in the
Lipschitz context. We will see various other methods which a priori look
easier but in practise, they are as difficult as finding an in approximation.

Definition

Let K be an open set. We say that {Oi} is an in approximation for K . If
the following to condition holds

Oi ⊂ Olc
i+1

Oi → K In the sense that if Fi ⊂ Oi is precompact the limit lies in
K .



Theorem (Müller-Sverak 96)

Let v a piecewise affine map such that Dv(x) ∈ O1 a.e x ∈ Ω. Then
there exists a Lipschitz map u : Ω → Rm that satisfies

Du ∈ K, u = v on∂Ω

The proof follows by iteration of the tent-construction. By the
approximation lemma we can assume that the original u is piecewise
affine.
By the definition of lamination hull, approximating the prelaminates by
the tent construction we find sequences ui such that Dui ∈ Ui and
∥ui − ui+1∥L∞ ≤ δi .

The arbitrary smallness of δi is what ensures strong convergence
Notice that in particular we can solve the differential inclussion given by
K with any affine boundary value belonging to U = Oi



choice of scales

Let Ωi ⊂ Ω a nested sequence of open sets 1
i from the boundary. Then

We choose now a suitable rescaled bump function such that
∥ρϵi ⋆ Dui − Du1∥L1(Ωi ) ≤ 2−i with ϵi∥Dρϵi∥ ≤ C Then given δi ,

δi+1 ≤ ϵi (2
−i + δi

2 ) So that

∥Dρϵi ⋆ (u − ui )∥L1(Ωi ) ≤
c

ϵi

∞∑
j=i+1

δi ≤
δi
ϵi

Since the gradients are uniformly bounded, |Ω \ Ωi tend to zero and the
mollified gradients also converge the result follow. We arrive to one of
the cornerstones of the whole theory
”In general, weak convergence does not imply strong convergence...but
sometimes it does ”.



Tent construction with determinant constraints

As we will see later often we have an additional constraint that z ∈ M.
We discuss the case of equal determinant.
Since A and B have equal determinant it follows that A− B = ξ⊥ ⊗ ξ
where ξ⊥ is orthogonal to ξ. Let us assume that ξ⊥ = e1, ξ = e2
In order to have a constant determinant, we will chose u = φ1 to be the
flow corresponding to a suitable divergence free vector field v .

φ̇ = v(φ), φ0 = I

Thus by Lipschitz continuity in t

|φt(x)− x | ≤ t sup |v | (4)

As we want to prescribe the evolution of the differential, notices that
after differentiation Dφ obeys the nonlinear equation

Ḋφ = Dv(φ)D(φ)



•Now we choose v = ∇⊥H with H = ϵ2ηS( ⟨x,ξ⟩)ϵ ) = ϵ2ηS( x2ϵ ). Then this
divergence free vector field satisfies that,

v ≈ ϵηS ′(
x2
ϵ
),Dv ≈ ηS ′′(

x2
ϵ
)e1 × e2

Thus we directly estimate that |φt − x | ≤ ∥v∥∞ ≤ ϵ This is not enougth
to estimate the term S ′′( x2ϵ ) but happily |(φt − x)2| ≤ |v2| ≤ Cϵ2. Thus
Dv(φ̃) is ϵ close to Dv(x) and hence |φt − φ̃t | ≤ C where φ̃ solves the
linear system

˙Dφ̃ = Dv(x)D(φ̃),⇒ Dφ̃ = eη(x)s
′(

x2
ϵ )e1⊗e2

but since (e1 ⊗ e2)
n = 0, taylor expanding the last expression is

Dφ̃ = I + tη(x)s ′(
x2
ϵ
)

and the result follows.



Approximation via piecewise affine maps

Strategy.

It is enough to perform the approximation in big piece of the domain.

Big piece: |ΩPA | ≥ Θ|Ω|
The constraint M(Dũ) = 1
Approximation and boundary data. ∥u − ũ∥

W
1,∞
0

≤ δ

Thus by rescaling and changing variable the situation is reduced to
Ω the unit ball and Du(0) = I .

If φ is a bump function, by performing a linear interpolation
û = φx + (1− φ)u we can achieve affinity in B 1

2
(but we loose the

determinant constraint).

By a result of Dacorogna-Moser we can solve the boundary value
problem det(Dũ) = 1, ũ = û on the anulus B1 \ B 1

2
(This last step is

more delicate as we have to



Step 1 implies the approximation lemma

From an iterative use of step 1 in we construct a sequence {ui} such
that;

Big piece: |Ω \ ΩPA
| ≥ (1−Θ)i |Ω|

The constrain: M(Dũi ) = 1

Approximation and boundary data. ∥ui − ui+1∥W 1,∞
0

≤ 2−i−1δ



Proof of Corollary 6.5

The least clear part is the stablishing the proximity between the new and
the old maps.
It is crucial that it is assume that [Du]α < δ. Thus, for every x

|Du(0)− Du(x)| ≤ δ

and hence ∥u − Id∥ ≤ δ Moreover by the fact that L is smooth it holds
that

∥Lu − L(Id)∥C 1,δ = ∥L∥∥u − id∥δ



Since we only need to cover a big piece of the domain we can work in a a
compact set which is a finite union of cubes of sizes ρ, which includes
small balls of radious ρ. Now the norm [u]C 1,α ≤ C is uniformly bounded
and hence

|Du| ≤ C ≤ δρ−α



Easy construction by the roof

Theorem (Kirhcheim 03)

Let (K ⊂ U) satisfy that for all A ∈ U there exist, δ and a prelaminate
µA such that

⟨I , µA⟩ = A,

The splitting sequence of µA belongs to U and there exists YA ∈ K
with µ(YA) ≥ δ.

Then for every domain Ω,A ∈ U there exists f ∈ LipAx(Ω) such that
Df (x) ∈ K .



As before it is enough to show the result for a big piece of Ω. Namely the
following weaker stament implies the claim There exists f ∈ LipAx(Ω)
such that

Df (x) ∈ U ,K
|x ∈ Ω : Df (x) ∈ K | ≥ δ

2

The second claim is a direct application of the definition of prelaminates
and the roof construction (Exercise easy).



The rebirth of the convex integration theory, or the birth of the Lipschitz
theory is placed in the non-convex (or quasiconvex vectorial) calculus of
variations. There one looks for minimizers of energy functionals
I (f ) =

∫
Ω
W (Df )dx where W is invariant respect to rotations. That is

to say W (RA) = W (A) whenever R ∈ SO(n). The problem was
thoroughly studied since the 90s. In our context we consider the case
where the zero set of W is therefore

K = SO(2) ∪ SO(2)H

There is a dichotomy in terms of H. It might be that there is no
rank-one conection det(A− B) > 0 for all A,B ∈ K. It turns out that if
det(H) = 1 it can be shown that

Krc = K 2,lc = K c ∩M

where M = {A : det(A) = 1}.
Then it follows that if U = intK 2,lc and
Oi = {A ∈ U : 2i−1 < dist(A,K) < 2i}.



The space In all the section, we consider X0 a bounded in L2 and X will
be its closure respect to the weak L2 topology. Thus the weak topology
is described by a metric d and (X , d) is a complete metric space.
The functional We will consider a functional I : X → R+ which is
continuous respect to the strong topology but typically not continuous
respect to d . For a big proportion of the lecture we will consider the
following property.
Our goal Our goal is to find zero states of I , which will be the solutions
of our differential inclusions, perhaps with additional properties.
The properties of I . Our aim is tot show that some abstracts properties
of I in relation with weak convergence suffices to show that actually the
zero set of I is dense in X (respect to the weak topology d).



Definition (Properties of (X,I))

(X , I ) have the approximation property, (A), if for every u0 ∈ X0,
there exists {uj ∈ X} such that

lim
j→0

d(uj , u) + I (uj) = 0

(X , I ) have the perturbation property, (P), if there exists a
continuous function Φ such that for every u0 ∈ X0, with I (u0) > 0
there exists {uj} ∈ X0 such that

lim
j→0

d(uj , u) = 0, and lim inf
j→∞

∥uj∥2 ≥ ∥u∥2 +Φ(I (u0))



Theorem (Sz-Lecture notes)

If X has the approximation property, the set I−1[0] is dense,

By hipothesis, given w ∈ X , there exist u ∈ X0 with d(u1,w) < δ. We
will find a sequence uj such that

i) I (uj) ≤ 2−j

ii) |⟨uj+1 − uj , ul⟩| ≤ 2−j for l ≥ j

iii) d(uj + 1, uj) ≤ 2−jδ

Then we will find a convergence subsequence.



Namely, telescoping property [ii)] yields that

|⟨uj+m − uj , ul⟩| ≤
m∑
k=j

2−k

and Hilbert space geometry tells that

|∥uj+m − uj∥ − (∥uj+m∥2 − ∥uj∥2 = 2| ≤ 2|⟨uj+m − uj , ul⟩| (5)

Now by completeness of R there exists a nonrelabeled subsequence
∥uj∥L2 → α. Thus (5) and property ii) yields that such subsequence is
Cauchy in L2. By completeness of L2, definition of X follows that uj → u
in L2. Finally I (ω) = 0 by continuity of I and property i). Telescoping
property iii) yields the the proximity between u and w in (X , d).
Exercise: Do the Lp case, using convolutions.



Definition

Let X be a subset of L2. Then u is a point of continuity of X

uj ⇀ u ⇒ I (uj) → I (u)

The set of all points of continuity is called S .



Lemma

If X has the approximation property, then S ⊂ I−1[0].

Let u ∈ S , by definition of X there exists uj ⇀ u. By the approximation
property there exists ujk such that ujk → uj , I (ujk) → 0. Since the weak
topology is metrizable we can choose a diagonal sequence such that

lim
j→∞

d(ujk(j), u) + I (ujk(j)) = 0

and since u is a point of continuity I (u) = 0.



Theorem (Baire theorem)

The intersection of open and dense sets is dense

Proof
Let W be an open set Ui the collection of open and dense sets. By
density of U1 and openess of W and U1 there exists

B(x1, r1) ⊂ W ∩ U1

.
Now we claim that there exists a sequence B(xn, rn) ⊂ W ∩n

i=1 Ui .
Suppose it holds. Then by density of Un+1, B(xn, rn) ∩ Un+1 is a non
empty open set which yields the existence of the corresponding

B(xn+1, rn+1) ⊂ B(xn, rn) ∩ Un+1 ⊂ W ∩n
i=1 Ui ∩ Un+1

. (The axiom of choice was used here). Hence the induction hipothesis is
proven. By completness of X , xn → x∞ ∈ W ∩∞

i=1 Ui and the proof is
finished.



Baire Category

Various versions of Baire category were related to solving partial
differential inclussions, as for example described in the treatments of
Dacorogna-Marcellini based on earlier work of Cellina in the 90s.
However, the theory becomes particularly flexible and transparent with
the concepts of Baire one maps and points of continuity.

Definition

Given a metric space X , I is a Baire one map if it the pointwise limit of
continuous maps. That is to say

I (x) = lim
ϵ→0

Iϵ(x)

We all learn that the pointwise limit of xn is not continuous. However, a
crucial aspect brought to convex integration by B.Kirchheim is that
The set of points of continuity of Baire-1 map is residual
Recall, that residual sets are the large sets of category theory.



Residuality

Fix n and consider the nested sequence,
En,k = ∩i,j≥k{u ∈ X : |Ji (u)− Jj(u)| ≤ 1

n}. By continuity of Ji − Jj ,
En,k , as a countable intersection of closed setsis closed. Now for each u
Ji (u) → J(u) and thus for every n

X = ∪∞
k=1En,k

Now Baire theorem implies that the open set is Vn = ∪∞
k=1intEn,k is

dense. Indeed let W an open set and applied Baire theorem to
Y = X ∩ B. Then Y = En,k ∩ B and a direct application of Baire
theorem tell as that int(B ∩ En,k) ̸= ∅ for some k . But since
int(B ∩ En,k) ⊂ B ∩ int(En,k) it follows that Vn ∩ B ̸= ∅. That is Vn is
open an dense. By a second use of Baire theorem

Res = ∩Vn is open and dense.



Now suppose u ∈ Res. Fix n, we find k , δ1 = δ1(n, k , u) such that
B(u, δ1) ∈ En,k . Therefore if d(v , u) ≤ δ. It holds that

|(J − Jk)(v)|+ |J − Jk(u)| ≤
1

n

by continuity of Jk , exists δ2 = δ2(k , u) such that

|Jk(u)− Jk(v)| ≤
1

n

Thus if d(u, v) ≤ δ1 + δ2, triangle inequality yields

|J(u)− J(v)| ≤ |(J − Jk)(v)|+ |J − Jk(u)|+ |Jk(u)− Jk(v)| ≤
3

n



Continuous respect to strong:Baire-one respect to weak

Lemma

Continuous functionals respect to the strong topology are Baire-one
maps respect to the weak topology

Let ρi a suitable approximation of the identity and define
Ii (u) = I (ρi ⋆ u). Then we claim that

Ii (u) → I (u)

Ii (u) is continuous respect to the weak topology.

The first claim follows from the strong continuity of I since for a fix u it
holds that ρi ⋆ u → u strongly, as i → ∞. Furthermore, suppose that
uj ⇀ u. Then for a fixed i . ρi ⋆ u → ρi ⋆ u by definition of weak
convergence and by the strong continuity of I it follow that

Ii (uj) → Ii (u)



Theorem

If (X , I ) have the perturbation property and I be continuous respect to
the strong topology. Then I−1[0] is residual (i.e dense).

The aim is to show that the stable points belong to I−1[0]. Let u ∈ S .
Then since X is the weak closure of X0 and u is a point of continuity
there exists a sequence uj ∈ X0 such that

lim
j→∞

∥uj − u∥+ |I (uj)− I (u)| = 0

Now we can apply the perturbation argument, together with a diagonal
argument using the continuity of Φ to find a sequence such that uj ⇀ u
and

lim inf
j→∞

∥uj∥2 ≥ ∥u∥2 +Φ(I (u))

Since strong convergence implies convergence of the norms, the sequence
uj does not converge strongly and u is not a point of continuity.



The Tartar framework

Now we need to put together the explicit constructions from the first
lectures with the abstract Baire category nonsense. In particular we need
to relate the abstract space X with subsolutions and I−1[0] with solutions
to the differential inclusions. Even if the gradient case is easier, by almost
the same effort we can review the Tartar framework invented by Tartar
and Murat in the 70, which we will need later. This formalism allows on
one hand to to understand a nonlinear p.d.e as as differential inclusion (
often a constitutive relation) couple with a linear system (often a
conservation law). The prize is to augment the number of variables.
Abstractly, suppose that we have variables
y = (y1, . . . , yi, . . . , yN) : Rd → RN and we consider the equation

L(y,Fj(y))

where L is a constant coefficient differential operator and {Fj}mj=1 are
nonlinear functions. Then by declaring new variables
zj = Fj(y), z = (z1, . . . , zm) and K ⊂ RN+m,K = {y, z : zj = Fj(y) we
can recasted the above situation as the problem

L(y, z) = 0, (y, z)(x) ∈ K a.e x ∈ Ω

Note: The gradient case it is a particular instance of the above problem
since locally U = Df ⇐⇒ ∇× U = 0.



The Tartar structure

The domain and the variables

D ⊂ Rd , z : D → RN

The conservation law Let Ai be constant matrices. We consider the
linear system

U(z) =
d∑

i=1

Ai∂iz = 0

The pointwise constraint.

z(y) ∈ K , a.ey ∈ D

The relaxed problem A relaxation of K is given a suitable chosen open
(or relative open) set U , with K ⊂ U . The corresponding subsolutions are
defined by functions such that

L(z) = 0, andz ∈ U
The set of subsolutions often is described as the set of weak limits of
solutions with certain topology. It might be the problem is rigid and the
set of subsolutions coincide with that of solutions.
H-principles H-principle state that if there is a subsolutions, there are
infinitely many solutions with properties resemble that of the solution.



The wave cone

All versions of convex integration, starts with a subsolution u0 and form a
sequence of subsolutions uj with uj converging to the set K . uj − uj−1 is
typically an oscillating sequence which would converge to 0.
In the Tartar formalism, the problem becomes very geometric as starting
with z ∈ U we need to modify it to arrive to a map such that z ∈ K if we
do explicit construction or to show that the perturbation or approximation
property holds, which results in finding sequences converging to z but
remaining in U which still it is a pointwise constraint. Therefore we need
to control precisely the values of oscillating solutions to the conservation
law. This is precisely what Tartar wave cone describes.

Definition (The wave cone)

Let L as above. We say that z̄ ∈ Λ ⊂ RN if there exists ξ such that for
every h : R → R L(h(⟨x , ξ)z̄) = 0.

Exercise: Show that in the case of L(U) = ∇× U, Λ consist of rank-one
matrices.



Notice that from the point of view of differential inclusions, and our
perturbation property we see two advantages.

Controlled Range.
z(D) ⊂ (Range of h)z̄

A naive ansatz for the solution is to find z(x) =
∑
φihi (⟨x , ξ)z̄)

where φi are suitable chosen bump functions. Of course introducing
the bump function makes the situation complicated and introduces a
new error.

In searching the perturbation property, it is usefull that in principle
that if {hj} is a sequence such that

∫
|hj |2 ≥ C and hj ⇀ 0. The

corresponding zj ⇀ 0 and
∫
|zj |2 ≥ C . Thus if

A+ (Range of h)z̄ ⊂ u

the constant map A satisfies the perturbation property. (Again the
support of hj is an issue)



The relaxation:Definition

The relaxation is given by the set U . As we at the beginning from the
H-principle it holds that if z(x) ∈ U then we aim for z being a weak limit
for exact solutions. It turns out that even in the two matrices case for
gradients:

Df (x) ∈ {A1,A2}, rank(A1 − A2) = 0

when couple with affine boundary conditions, the relaxation is trivial
unless we allow to approximate solutions. That is we want to understand

K relaxed = {z : there exists zj ⇀ z

∫
dist(zj ,K ) → 0}

The lamination hull is an approximation from inside Therefore it
follows from the definition of laminates , that for every n

∪nK
n,Λ ⊂ K relaxed



Compensated compactness

A central aspect of the theory of compensated compactness initiated by
Murat and Tartar in the seventies, is to identify nonlinear weakly
continuous cuantities for solutions of linear p.d.e.s. The prime example is
the div-curl lemma which states for instance that if uj ⇀ u, with
div(uj) = 0 ∇φj ⇀ ∇φ then the nonlinear amount uj · ∇φj ⇀ u∇φ.
This follows by compactness of Sobolev embedding after integrating by
parts but hightlights the existence of such nonlinear weakly continuous
quantities for solutions of linear p.d.e.s
Indeed compensated compactness characterizes such quantities at least in
the case of quadratic functions. Recently there has been developments
FILLL



The relaxation: Outside Approximations

On the other hand by Mazur lemma (which follows by
Hahn-Banach), if zj ⇀ z , a convex combination of zj converges
strongly. Thus

K relaxed ⊂ K co

Weakly continuous nonlinearities. Indeed let M be weakly
continuous. We define the set KM ⊂ RN+1

KM = {(z ,M(z)) ∈ RN+1}

Again by Mazur, a convex combination of (zj ,M(zj)) converges
strongly and thus the weak limit of zj belongs pointwise to the set

KM,c = {z : (z ,M(z)) ∈ (KM)c

In the case of gradients, weakly continuous cuantities are
subdeterminants and the above notion is equivalent to
polyconvexity, central in the theory of nonlinear elasticity.



Now given L,K ,U we want to give conditions for which our Baire
approach works directly. These are three sufficient conditions:

1 Localize plane waves. There exists a set Λ such that if l ∈ Λ, for
every Ω there exists zj ∈ Cc(Ω) such that zj ⇀ 0 and
dist(zj(x), l) ≤ ϵ.

2 Quantitative lamination. For every z ∈ U , there exists ν ∈ PL(U)
with

∫
λdν = z ,

∫
|λ|2dν ≥ Φ(dist(z ,K ))

3 The space of subsolutions is not empty. There is a space of functions
X0 ⊂ L2 uniformly bounded, which is close under perturbation in U .
That is if z(y) ∈ U and w ∈ Cc(D) with z +w ∈ U then z +w ∈ X0

These conditions are a prototype of what suffices. Often they need to
experiment ad hoc modifications to be tailored to our specific situation.
Anyhow next we show why they suffices.



An H-Principle

After H1− H3 we declare (X , d) the closure of X , under L2 convergence
and d the metric.

Theorem

Assuming H1-H3 the set z ∈ X : z(y) ∈ Ka.e. ∈ D is residual.

Remark:
The definition of X0 is not canonical and indeed often is tailored to the
subsolution we are able to construct or to the properties we would like
the solution to enjoy. For example we could prescribe initial conditions
z(x , 0) = z0(x) in X0. In this way a typical H principle read as follows.
If there exists z(x , t) such that L(z) = 0, z = z0, z ∈ U and U has the
required properties there are infinitely many solutions such that
z(x , t) = z0. A priori finding a subsolution should be easier as U is larger
but it could be very difficult as in Muskat or the vortex sheet problem.



Steps of the proof

Proof. Step 1. Constant Subsolutions
Our aim is to show that defining I : X → R by I (z) =

∫
D Φ(z(x))dx ,

(X , I ) have the perturbation property. Indeed if there was a constant
z ∈ X0, the perturbation property follows directly from the assumption on
the corresponding prelaminate νz and the approximation theorem.
For a non constant element of X , we discretize it and apply the above.
Namely by rescaling for each B(x0, r0) there exists zj such that
zj ⇀ 0, z(x0) + zj ∈ U and

lim
j→∞

∫
B(x0,r0)

|zj |2 ≥ Φ(z(x0))|B(x0, r0)|



end of the proof

Proof. Step 2. Discretizing subsolutions Now since Φ(z) is in L1

there exist a finite collection of balls {Bi}Ni=1such that∫
Φ(z)dz ≤ 2

∑
|Bi |Φ(z(yi ))

Declaring zk = z +
∑l

i=1 z
i
kdy we obtain trivially that zk ⇀ 0 and

lim
k→∞

∫
|zk − z |2dy ≥

∫
Φ(z)dy

Now by openess of U , for each ball Bi , z
i
k − z(y0) ∈ U and therefore

again by openness of U for sufficiently small balls if y ∈ Bi

zk(y) = z(y)− z(y0) + z(y0) + z ik

is also in an open neighborhood.
Q1:Where is the small lie? Q2:Why it can be fixed?



Comments on the Λ-geometry

On the wave cone condition. For constant rank-operators there
exists potencials and property 1 is obvious. However in various
natural cases as the Euler equations or separate convexity such
property fails. Thus more complicated potentials have to be
constructed on an inverse divergence used. Also sometimes we want
to restrict to small cones.

On the distance function. Often it is required to work with another
function semiconcave function which acts a a distance, in the sense
that it is positive in U and its zero set is in K .

Condition 2 is not so aestethic as it needs for example the definition
of laminate. Often first order laminates are enough and then •
There exists a continuous function Φ with Φ(0) = 0 such that for
every state z ∈ U , there exist z̄ ∈ Λ such that

z ± Φ(dist(z ,K ))z̄ ∈ K

On the set K .Typically we might want to add some conditions to the
set K , the archetyipical choice being e.g prescribing the energy
density |v(x , t)| = e(t).



Comments on the functional analytic framework

The choice of the space X0 gives a lot of flexibility if we want to add
more conditions on the solutions. In practise one finds a subsolution
z and defines the space X0 tailored to z . In this way, one takes care
of prescribing the boundary conditions, turbulent regions. In fact it
can be shown quantitatively that the solutions will reproduce all
properties of solutions which are described by compensated
compactness quantities.

The boundedness of X in some Lp space, or boundedness after some
modification is necessary.

The functional. In the applications to fluid dynamics, typically one
deals with space-time domains. By considering functionals of the
type

sup
t∈I

∫
Φ(distK (t)(z(x , t)))dx ,

one can achieves results at every (as oppose to almost every) time.



The Euler equations in the Tartar framework. We consider weak solutions
to the Euler equations with constant density. Thus the evolution of the
fluid is given by

div(v) = 0, ∂(v)+div(v⊗v) = ∇p = ∂v+div(v ◦v) = ∇(p−|v |2) = ∇q

and we consider distributional solutions in L2(Rn) with v(x , 0) = v0.

Theorem

(Non-uniqueness of weak solutions) There exists infinitely many solutions
with v ∈ L∞ ∩ L2 with v0 = 0.

Results of this type were obtained by Scheffer and Schnirelman before
but the non-uniquess above is stronger and much more interesting the
method is so robust that allows for a wealth of more advance results that
we will review later on.



The Tartar framework for Euler equations

The conservation law. We swipe the nonlinearity under a new
variable. Thus we consider triples (v , , u, q) such that

div(v) = 0, ∂(v) + div(u) = ∇q

here u is a symmetric trace free part which corresponds to the
traceless part of v ⊗ v .

The differential inclusion restoring Euler would be that v ◦ v = u.
Since we want to keep control on the L∞ norm we prescribe
|v |2 = ē. In turns out that both equalities are nicely codified in the
inequality

v × v − u =
2

n
ēI

The relaxation. It is possible to directly see that the honest convex
hull (Sz Lemma 6.4 ) of the above is given by the inequality

v × v − u ≤ 2

n
ē



The wave cone

By definition (v̂ , û, q̂) belongs to Λ if there exists (ξx , ξt) such that

ξt v̂ + û(ξx) + qξ, ξ̇̂v = 0

By the second equation ξx ∈ v⊥. Therefore ξx = Pv̂ (ξx). Thus after
further applying ξx to the first equation it holds that

Pv̂ ûPv̂ (ξx) = −q̂ξx

In other words .
(v̂ , û, q̂) ∈ ΛEuler if and only if (−q) is an eigenvalue of (Pv̂ ûPv̂ )

• It can be also shown, though it does not follow from the general theory
that there exists differential operators such that

L[A(∂)(ϕ)] = 0

Thus for such operators A(∂)(ηh(⟨(x , t), (ξx , ξt)⟩))



The subsolutions

The Long Λ segments Notice that the condition for the hull only
speaks of (u, v). Therefore, we can choose a direction so (û, v̂) such that
|(û, v̂)| = dist((u, v),K ) and choose q̂ any eigenvalue of (Pv̂ ûPv̂ )
The boundedness of X0 Often, the boundedness of X0 is less trivial
than it seems and some elliptic operator is involved. Indeed by taking
traces v is L∞ bounded and similarly u
In order to bound the pressure we take divergence on the equation
∂tv + div(u) = ∇q to arrive to

∆q = div(divu)

which implies that q = R × R(u) were R = Ri is a matrix of Riesz
transforms.



From subsolutions to solutions

In the above theorem, we were using v ≡ 0 as a subsolution and using a
constant energy. In fact the choice of X0 can be adjusted to the
subsolution ad hoc to obtain various landmarks. This is an example

Theorem

Let ē ∈ L∞(Tn × (0,T )) and (v̄ , ū, q̄) be a subsolution. Let
Ωturb ⊂ Tn × (0,T ) a subdomain such that (v̄ , ū, q̄), ē are continuous on
Ωturb and

e(v̄ , ū) < ē on Ωturb, e(v̄ , ū) = ē off Ωturb

Then there exists infinitely many weak solutions v ∈ L∞(0,T ; L2(Tn)
such that

v = v̄ off Ωturb,
|v |2

2
= ē

Remark: In particular the solution has the same initial condition than the
subsolution. Therefore we have that If



LandMarks

As we will see in the other courses, smooth solutions preserve energy and
solutions to Navier-Stokes dissipate energy proportional to viscosity.
Thus even if in the vanishing viscosity limit some energy is dissipated due
to turbulence as predicted by Kolmogorov and Onsager, in no case energy
should be created. Thus a weak solution is called admissible if for all
times ∫

T
|v(x , t)2dx ≤

∫
T
|v(x , 0)2dx

Lack of uniqueness for any divergence free initial data. Wiederman.

The set of Initial data for which admissible weak solutions exists is
dense.

All time convergence.



IPM

The incompressible porous media equation in short (IPM) investigates
the movement of a fluid, through a porous media. There are many
models to study the phenomena because of importance in the engineering
community. Mathematically it is accepted as a model a simple system in
which the density of the porous is transported by a velocity field, which is
divergence free.

∂tρ+ div(ρv) = 0, div(v) = 0

Here ρ is an scalar. Such an equation are called active scalars and are
typically close with a relation between v and ρ. The fact that the media
is porous is typically codified in the Darcy´law

v = (0, ρ) +∇P



The augmented variables

(ρ̄, v̄ , m̄) ∈ C ([0,T ]; L∞w∗(R2; [−1, 1]× R2 × R2))

The conservation law.

∂t ρ̄+ div(ρ̄m̄) = 0, ρ(x , 0) = ρ0 (6a)

div(m) = 0 = 0, (6b)

∇⊥(v̄ + ρ̄(0, 1)) = 0, (6c)

The relaxation.

ρ̄ = ±1, m̄ = ρ̄v̄ on Ω±, (7a)

|2(m̄ − ρ̄v̄) + (1− ρ̄2)i | < (1− ρ̄2) on Ωmix. (7b)

In addition, it is required that

sup
0≤t≤T

∥v̄(t)∥L∞ <∞. (8)



Wave cone:Exercise.

Firstly the conservation of mass equation says that

ρ̂ξt + ⟨ξx , m̂⟩ = 0

implies that the wave cone is indepent on m. Since the two other have a
div-curl structure we get that

⟨û, û + ρ̂(0, 1)⟩ = 0,

which completing the squares yields to |û + (0, ρ̂2 )|
2 = ρ̂2

2
As notice by Szekelyhidi we can hide the lack of symmetry given by
gravity in a new variable v = 2u + (0, ρ) the wave cone is simply
|v |2 = ρ2. Indeed in these coordinates there is a nice Poincare lemma. In
the sense that there is a differential operator Bsuch that

Lz = 0 ⇐⇒ z = Bu

from which condition one follow with

z = B(ηψ(⟨(x , t), (ξx , ξt)

as in the gradient case.



The relaxation

The relaxation is actually the 2-λ hull of the set
K = {m = ρu, |ρ| = 1}.
The segment condition is satisfied.

If |v | ≤ M. Then there exists M ′ = M(M ′) such that
z ∈ (K ∩M)2,Λ

The boundedness in the corresponding X0 is trivial.

As a matter of fact. It is not necessary to find the full relaxation. In
[CFG] it is given a way to solve the problem with a much smaller set
U where the perturbation property holds.



Stationary IPM

The stationary IPM equations

∇ · (ρv) = 0, (9)

∇ · v = 0, (10)

v +∇p = −(0, ρ). (11)

are relaxed into the conservation laws

∇ ·m = 0, (12)

∇ · v = 0, (13)

∇⊥ · (v + (0, ρ)) = 0 (14)

and the constitutive set

K = {(ρ, v ,m) ∈ R× R2 × R2 : |ρ| = 1, m = ρv}, (15)



Hull has empty interior

The wave cone is

Λ = {(ρ, v ,m) : |v + (0, ρ/2)| = |ρ| /2, m·v⊥ = 0 and m·(v+(0, ρ)) = 0}

(see [HL21, Proposition 2.1]).
Three Λ-affine functions.

M1 = (ρ, v ,m) := m · v⊥ vanishes in K ∩ Λ, enforcing int(KΛ) = ∅.
M2 |v |2 + ρv2 and M3 = m · (v + (0, ρ))– these three functions
determine the wave cone.

Easy: If (ρ, v ,m) ∈ KΛ with v ̸= 0, then m · v⊥ = 0 yields m = kv for
some k ∈ R.



The main challenge in the computation of the lamination convex hull
K lc,Λ is the determination of the exact range of the constant of
proportionality k in m = kv The lamination convex hull is described
in Theorem below (see [HL21, Theorem 1.1]):

Theorem

K lc,Λ = ∪4
j=1Xj , where

X1 :=

{(
ρ, 0,

1− ρ2

2
[e − (0, 1)]

)
: |ρ| ≤ 1, |e| ≤ 1

}
,

X2 :=

{
(ρ, v , kv) : |ρ| ≤ 1, v ̸= 0, 1 ≤ k ≤ ρ− (1− ρ2)v2

|v |2

}
,

X3 :=

{
(ρ, v , kv) : |ρ| < 1, v ̸= 0, −1 < k = ρ− (1− ρ2)v2

|v |2
< 1

}
,

X4 :=

{
(ρ, v , kv) : |ρ| ≤ 1, v ̸= 0, ρ− (1− ρ2)v2

|v |2
≤ k ≤ −1

}
.



The relative interior of K lc,Λ with respect to the manifold
M := {(ρ, v ,m) : m · v⊥ = 0} is U := intM (K lc,Λ) = Y1 ∪ Y2, where

Y1 :=

{
(ρ, v , kv) : |ρ| < 1, v ̸= 0, 1 < k < ρ− (1− ρ2)v2

|v |2

}
,

Y2 :=

{
(ρ, v , kv) : |ρ| < 1, v ̸= 0, ρ− (1− ρ2)v2

|v |2
< k < −1

}
.

Question: Is this an instance where the relaxation is non trivial but c.i
fails?



Instabilities in fluid mechanics

A recurrent topic both, in the Euler equation and in the porous media
equation is to describe regimes which are mathematically unstable. That
is to say typically, is investigated the evolution of two fluids which at time
0 are separated by an smooth interface. Then there is a regime whether
there is a global in time analysis and a regime in which linear analysis
shows instability and experiments show a turbulent behaviour. Roughly
speaking the turbulent behaviour might be cause by a discontinuity of
the mass density (Rayleigh-Taylor in the Euler setting, and sometimes
called Saffman Taylor in the IPM context) or by a discontinuity of the
velocity field which is called Kelvin-Helmoltz.
The method of convex integration has been succesful in producing weak
solutions, which agree with the experiments. An interesting feature of
these solutions is that they recover the solutions obtained 15 years before
by Otto using a Lagrangian relaxation which set the foundation of the
mass transport approach for evolution p.d.e.s.



Mixing Solutions: The Muskat Problem

ρ◦(x) :=

{
ρ−, x ∈ Ω−,
ρ+, x ∈ Ω+,

(16)

for x = (x1, x2) ∈ R2. As in the Euler case, long desired solutions of the
porous media equation can be obtained from suitable constructed by
applying the H-Principle

In [Sz12], it is solve the case of flat interfase, recovering Otto
relaxed solutions obtained from mass transportation.

In [CCF21] it is solved the fully unstable solutions by constructing a
continuous subsolution.

In [FSz18], [NSz20] It is solve the fully unstable solution by
constructing a piecewise constant subsolution with a much handier
proof.

In [CFM21] It is solve the partially unstable case. This allows to find
a weak solution after the celebrated breakdown of Rayleigh-Taylor

and smoothness stability.



Classical Muskat

The classical Muskat problem amounts to solve an equation for the curve

(∂tz − (ρ+ − ρ−)B(z)) · ∂αz⊥

where B is a corrected Birkhoff-Rott operator whose expresion is as
follows. ASK FRAN.(SE LLAMA ASI)

B(t, α) :=
1

2π

∫ (
1

z(t, α)− z(t, β)

)
1

(∂αz(t, α)− ∂αz(t, β))dβ. (17)



Mixing zone

Such an equation is ill-posed in the unstable case and thus we search for
a convex integration solution. It turns out that all these problems are
solve in a similar way. Firstly one describes Mixing Zone is described as
an envelop of a curve evolving in time, that we call the pseudointerfase
with a certain speed of opening. That is we declare
At each time slice 0 < t ≤ T ≪ 1, the mixing zone is the open set in R2

given by
Ωmix(t) := {zλ(t, α) : c(α) > 0, λ ∈ (−1, 1)}, (18)

parametrized by the map

zλ(t, α) := z(t, α)− λtc(α)τ(α)⊥, (19)

where

τ⊥ is the direction of opening of the mixing zone.

c(α) is the speed of opening.

z is a curve evolving in time which a time 0 coincides with the initial
interfase.



partially unstable: Muskat type operators

Depending on our choice of ρ we need to deal with various opertors. The
building blocks are the interaction operators, which are analogous to B
but consider how the various boundaries interact with each others.
Interaction Operators

Bλ,λ′(t, α) :=
ρ+ − ρ−

4π

∫ (
1

zλ(t, α)− z ′λ(t, β)

)
1

(∂αzλ(t, α)−∂αzλ′(t, β))dβ.

(20)
and we replace ±1 by ±.
Discrete Average Operators In the c

Av(B) :=
1

2

∑
a=±

Ba, Ba :=
∑
b=±

Ba,b, (21)

continuous Average Operators For a continuous ρ = λ indeed the re
operators is

Ãv(B) =
1

2

∫ 1

−1

∫ 1

−1

∫
Bλ,λ′dλdλ′



The subsolutions

The current methods to find subsolutions make an ansatz for ρ (and also
m though this looks more inocent), then determine the velocity by
Bio-Savart and by defining a mixing zone create solutions.
So far in the literature either ρ = 0 in the mixing zone, piecewise
constant or ρ = λ.
Then an ansatz for m is natural is suggested by the fact that for
(x , t) ∈ Ωmix the triplet (ρ, v ,m) ∈ U . T
Since in the Muskat problem |2(m̄ − ρ̄v̄) + (1− ρ̄2)i | < (1− ρ̄2)
Thus, we write

m = (ρv − 1

2
(1− ρ̄2)i) + (1− ρ2)γerror

so that if |γ| < 1
2 we are in the hull (We still need to declare how it is

chosen).



The conservation laws

In the case of ρ constant the conservation of mass amount to z to solve
Muskat type equations in the stable part and in the upper and lower
boundaries of the Mixing zone.

(∂tz − Av(B)) · ∂αz⊥ = 0 on tc(α) = 0, (22a)

(∂tza − Ba − a(γa +
1
2 i)) · ∂αz

⊥
a = 0 on tc(α) > 0, (22b)

and the following conditions on Ωmix

∇ · γ = 0, (23a)

|γ| < 1
2 . (23b)

Notice that (22b) it is indeed a boundary condition for γ.



sufficient conditions

On the speed of opening

|2c(α) + ∂αz
◦
1 (α)| < 1, (24)

On the curve z In order to deal with the boundary conditions, we
prescribe the error in terms of the curve.
Ansatz for γ = ∇⊥g ,G = g(z(x , λ))

G (t, α, λ) :=

∫ α

α1

(∑
a=±

λ+ a

2
(∂tz − Ba) · ∂αz⊥a − (cτ + 1

2 ) · ∂αzλ

)
dα′.

(25)
Then The above G satisfies the conservation law, the boundary
condition and |γ| < 1

2 for small times if,

∂tz − Ba = o(1), (26a)

1

tc(α)

∫ α

α1

((∂tz − B) · ∂αz⊥ + tD · ∂α(cτ))dα′ = o(1), (26b)



Now it remains to find a curve z which satisfies all the above properties
and and the same time

zt = F (z , t)

has a solution, at least for small times. We will refrain for given more
details and do a couple of loose but powerful remarks.

In the mixing region it is enough to solve (??) approximately

∂tz = Av(B) + error on c(α) > 0,

Instead of the full Av(B) we can have the Taylor expansion.
error = B1) − Av(B) + error, where B1) denotes the first order
expansion in time of Av(B). This choice yields the following
well-defined evolution for z

∂tz = B1) + error on c(α) > 0. (27)

Gluing with a cutoff.

∂tz = ψ0B + ψ1B
1) + error on T,

where the error is supported on {c(α) > 0}.



Figure 3.



Getting rid of the up down interactions

Yet the energy inequalities that we obtain for the operator ψ0Av(B) (or
other modifications) yields a factor 1/c which blows up in the region
where c(α) tends to zero because of the terms B+,−. The way out of
this vicious circle is to treat the interaction between separate boundaries
as a perturbation. In this way, one can write B = E + error in such a way
that E = B++ + B−− yields good energy inequalities and the error is
small in the supremum norm and supported on {c(α) > 0}. Thus, the
perturbation can be absorbed in the relaxation even if its derivatives are
badly behaving. Av(B) = E + error in such a way that E

∂tz = ψ0E + ψ1E
1) + error on T,

which can be solved using ideas from the classical Muskat problem. It
remains to show that B+,− after correction is small in L∞ (very technical
and abuses of the argument principle).



Theorem

For every closed chord-arc curve z◦ ∈ H6(T;R2) there exist infinitely
many mixing solutions to IPM starting from (16)(??) with ρ± = ±1.

Theorem

For every open chord-arc curve z◦, either x1-periodic
z◦ − (α, 0) ∈ H6(T;R2) or asymptotically flat z◦ − (α, 0) ∈ H6(R;R2),
whose turned region {∂αz◦1 (α) ≤ 0} has positive measure there exist
infinitely many mixing solutions to IPM starting from (16)(??) with
ρ± = ±1.

Theorem 26 is the first result proving the continuation of the evolution of
IPM after the breakdown exhibited in the works of
Castro-Cordoba.Gancedo-Fefferman-



On the admissible regime

In the above calculations we were using arc length parametrization. Thus
in another parametrization the admissible regime for the growth-rate
c(α) of the mixing zone compatible with the relaxation of IPM. This is∣∣∣∣∣c(α) + σ(α)√

σ(α)2 +ϖ(α)2

∣∣∣∣∣ < 1 on c(α) > 0, (28)

which is characterized by the Rayleigh-Taylor function
σ := (ρ+ − ρ−)∂αz

◦
1 and the vorticity strength ϖ := −(ρ+ − ρ−)∂αz

◦
2

along z◦ Observe that (28) prevents the two fluids from mixing wherever
the initial interface is stable (σ(α) > 0) and there is not vorticity
(ϖ(α) = 0).



Vortex Sheet Initial data

Let z0 be an arc-length parametrization of sufficiently curve (the vortex
sheet) and ω0 be regular enough (but allowed to change sign as opposed
to previous work of Delort!), the vorticity strength so that

v0(x)
∗ =

∫
T

ω0(β)

x − z0(β)
dβ

Then, after initial work of Székelyhidi for flat interfases

Theorem (Mengual-Székelyhidi CPAM 2019)

There exist infinitely many solutions to the Euler system starting with
vortex initial data.

Proof: Find a subsolution and apply previous H-Principle Q.E.D.



The global rate of dissipation and expansion of the turbulence zone are
related via (N ∈ N fixed)

E (t2)− E (t1)

t2 − t1
= − 1

3
2N+1
2N−1

∫
T
c |ϖ◦|

(
2N−1
4N |ϖ◦| − c

)
dα+ O(t2),

for all 0 ≤ t1 < t2 ≤ T . Hence, the dissipation rate is maximized at t = 0

d

dt
E (t)

∣∣∣
t=0

= − 1

48
∥ϖ◦∥3L3(R2)

as

c(α) → 1

4
|ϖ◦(α)|

and N → ∞.



Atwood numbers (Mengual 2020)

In the case of fluids, where not only the densities but the viscosities
µ+, µ− are different. After rescaling we can arrive to a modified, Darcy’s
law can be written in terms of the phase θ as

v + θ(At+ i) = −∇p, (29)

where the Atwood number is defined by

At :=
µ+ − µ−

µ+ + µ− ∈ (−1, 1).

|2(1− θAt)(m − θv) + (1− θ2)(Atv + i)| < (1− θ2)|Atv + i |. (30)

Observe that (30) generalizes (??).
Notice that each slice UAt(θ, v) is an (open) disc of radius proportional
to (1− θ2)|Atv + i |. Thus, while for At = 0 the relaxation U0 only
narrows as |θ| ↑ 1 (i.e. z tends to K), for 0 < |At| < 1 a pinch singularity
arises at Atv + i = 0 far away from K.



In the Muskat problem the pinch singularity can be interpreted as lack of
both Rayleigh-Taylor and Kelvin-Helmholtz inestability. Namely if

[∇p] = −i
σ

∂sz∗
, [∇ψ] = −i

ϖ

∂sz∗
,

ϖ + σi = −[θ](Atv̆ + i)∗∂sz, (31)



The question

In my opinion, the biggest open question is the lack of uniqueness.

There are many subsolutions with the same initial data.

For each subsolution there are infinitely many solutions.

The second is understood in the coarse-grained language. It is known
that subsolutions arise essentially (Szekelyhidi-Wiederman for Euler) as
weak limits of solutions.
In [CFM19] we quantify the fact that subsolutions are weakly limits of
solutions. Rougly speaking we prove:
Compensated compactness quantities P of solutions agree with
subsolutions at every time slice

lim
Q↓•

−
∫
x(Q,t)

θ(x , t)dx = ±1 wildly lim
|Q|→∞

−
∫
x(Q,t)

P(θ(x , t))− P(θ̃(x , t))dx

where θ̃ is a subsolution.
X : R× (−1, 1)× (0,T ) : x(α, λ, t) = z(α) + λc(α)t.



For λ ∈ (−1, 1) and 0 < δ < 1 consider the rectangle
RδN(λ) = (−N,N)× (λ− 1

Nδ , λ+
1
Nδ ). This fits the contour line R× {λ}

when N → ∞. Then, such degraded mixing solutions display a perfect
linearly degraded macroscopic behaviour on contour lines x(R, λ, t)

lim
N→∞

−
∫
x(Rδ

N (λ),t)

ρ(x , t)dx = λ (32)

uniformly in λ ∈ (−1, 1) and t ∈ (0,T ].



MHD

Magneto hydrodynamics, combine Maxwell equations, Navier Stokes and
Ohm law to describe the evolution of a charged fluid. It is more or less
accepted as model for the evolution of plasma but It is particularly
relevant for astrophysics sun flares and tokamaks.
Mathematically, it is very interesting because, there are three integral
quantities preserved in time.



Basic Principles:Maxwell equation

The unknowns in MHD are the velocity of the fluid v and the magnetic
field B but it will be also important the electric field E, the electric
current j⃗ . The evolution of the magnetic field is given by the
homogenous Maxwell equations, that we call the Faraday system.

The Faraday system

div(B) = 0 (No magnetic monoles)

∂tB = ∇× E (Faraday law of induction)

Ampere law

∇× B = µ0 j⃗ (+
1

c2

∂E

∂t
)︸ ︷︷ ︸

≈=0

div(j⃗) ≈ 0. We study non relativistic plasmas and at those speeds we can
neglect the displacement current.



Basic electromagnetics

The Lorentz force The electrostatic and magnetic forces on a single
particle is FL = q(E+ v × B) and thus on on charge body with electric
density ρe

FL = ρeE+ j⃗ × B

Ohm law Lorentz force implies that in a frame at rest the force acting on
a particle is F = qEr . However if the particle is moving respect to
laboratory frame the forces is F = q(EL + v × B). Thus
Er = EL + v × B. On the other hand in electrostatics j⃗ = σEr . Thus we
arrive to Ohm law for a moving particle:

j⃗ = σ(E+ v × B)⇒ E︸︷︷︸ = −v × B

Thus in a in anearly perfectly conducting plasma 1
σ ≈ 0, thus what the

Electric field is considered a secondary quantity( that we will restore in
the relaxation).



Back to Lorentz Finally, by dimensional analysis it can be shown that if
τϵ =

ϵ0
σ is very small ρeE is negligible in comparison with j⃗ × B and thus

the forces is summarized into

F = j⃗ × B

The momentum equation and incompressibility

div(v) = 0 (Incompressibility)

∂tv + div(v × v) + ν∆v = −∇p + F (Navier Stokes)

We will consider the high Reynolds numbers, ν = 0 situation.
Then if in Ampere law we neglect the displacement current, we solve
j⃗ = 1

µ0
∇× B where µ0 (the permitivity of vacuum) can be taken 1 by

changing scales. Furthermore since B is divergence free, it holds
∇× B × B = div(B × B). Hence the momentum equation becomes,

∂tv + div(v × v) + ν∆v = −∇p +
1

µ
div(B × B)



MHD equations

We are just left to assuming σ as large as to consider E = v × B to write
the ideal MHD equation respect to some dimensionless parameters as

∂tB = ∇× (v × B)
div(B) = 0

∂tv + div(v ⊗ v)− B ⊗ B) = −∇π
div(v) = 0

Which is begging to be framed in the Tartar framework!.



Tartar Framework in MHD

∇ · v = ∇ · B = 0, (33)

∂tv +∇ · S = 0, (34)

∂tB +∇× E = 0 (in 3D), ∂tB −∇⊥a = 0 (in 2D), (35)

where in 3D, S ∈ R3×3
sym ,E ∈ R3, S ∈ R2×2

sym ,∈ R.
We call equations (33)–(35) Relaxed MHD

K := {(v ,S ,B,E) : S = v ⊗ v − B ⊗ B +ΠI , Π ∈ R, E = B × v}.

Note that if (u,S , b, a) satisfies (33)–(35) and takes values in K a.e.
(x , t), then (v ,B,Π) satisfies the MHD equations
As we did with Euler, or IPM, it is needed to consider normalizes suitably
the set K. We will do it later.
(v ,S) is called the fluid part of the subsolucion and (B,E) is called the
magnetic part.



Wave Cone

There exists (ξx , ξt)

ξx · v = ξx · B = 0, (36)

ξtv + Sξx = 0, (37)

ξtB + ξx × E = 0 (in 3D), ξtB + Eξ⊥x = 0 (in 2D). (38)

Abusing notation, we write (36)–(38) in the concise form V ξ = 0.
In 2D the two first equations amount to

vB⊥ = 0, and Sv⊥ =
|v |E
|B|

v . (39)

The wave cone for the Maxwell Faraday parts amount to

B · E = 0

In 3D, additional computation yields,

S(B × v) + (E · v)v = 0, (40)



Rigidity: The Λ hull has empty interior in 2D

The function f (v ,B,E) = E− v × E is Λ affine and vanishes on K .

If (v ,B,S ,E) ∈ KΛ then E = v × B.
KΛ has empty interior.

KΛ \ K is not trivial.

An obstruction for the direct application of the H-principle but there
exists compactly supported weak solutions?



Stream function in 2D

Let T > 0 and suppose u, b ∈ C ([0,T [; L2w (T2,R2))

∂tu + u · ∇u − b · ∇b +∇P = 0,
∂tb −∇⊥(b × u) = 0,
div u = div b = 0,∫
T2 u(x , t) dx =

∫
T2 b(x , t) dx = 0 ∀t ∈ [0,T ].

Then u and b have unique stream functions
ϕ, ψ ∈ Cw ([0,T [,W 1,2(T2,R2) (that is, −∇⊥ϕ = (∂2ϕ,−∂1ϕ) = u and
−∇⊥ψ = (∂2ψ,−∂1ψ) = b) with∫
T2 ϕ(x , t)dx =

∫
T2 ψ(x , t)dx = 0∀t ∈ [0,T [.

Theorem

The mean-square magnetic potential
∫
T2 |ψ(x , t)|2 dx is conserved in

time.

Corollary

Either b ≡ 0 or
∫
T2 |b(x , t)|2dx ≳

∫
T2 |ψ(x , t)|2 dx = C > 0 for every

t ∈ [0,T [.

Thus, there does not exists compactly spptd solutions to 2D MHD with b ̸= 0.



Stream function in 2D

Let T > 0 and suppose u, b ∈ C ([0,T [; L2w (T2,R2))

∂tu + u · ∇u − b · ∇b +∇P = 0,
∂tb −∇⊥(b × u) = 0,
div u = div b = 0,∫
T2 u(x , t) dx =

∫
T2 b(x , t) dx = 0 ∀t ∈ [0,T ].

Then u and b have unique stream functions
ϕ, ψ ∈ Cw ([0,T [,W 1,2(T2,R2) (that is, −∇⊥ϕ = (∂2ϕ,−∂1ϕ) = u and
−∇⊥ψ = (∂2ψ,−∂1ψ) = b) with∫
T2 ϕ(x , t)dx =

∫
T2 ψ(x , t)dx = 0∀t ∈ [0,T [.

Theorem

The mean-square magnetic potential
∫
T2 |ψ(x , t)|2 dx is conserved in

time.

Corollary

Either b ≡ 0 or
∫
T2 |b(x , t)|2dx ≳

∫
T2 |ψ(x , t)|2 dx = C > 0 for every

t ∈ [0,T [.

Thus, there does not exists compactly spptd solutions to 2D MHD with b ̸= 0.



Basic idea of the proof

∂tb −∇⊥(b × u) = ∇⊥(−∂tψ − J(ψ,ϕ)) = 0. ; ∂tψ + J(ψ,ϕ) = 0.

If b = −∇⊥ψ and u = −∇⊥ϕ are smooth, we compute

∂t

∫
T2

|ψ(x , t)|2dx = −2

∫
T2

ψ(x , t)J(ψ,ϕ)(x , t) dx

= 2

∫
T2

ϕ(x , t)J(ψ,ψ)(x , t) dx

= 0.

We are able to get the general case u, b ∈ Cw ([0,T ), L2(T2,R2)) because
of the Wente inequality:∫

T2

ψ(x , t)J(ψ,ϕ)(x , t) dx ≲ ∥ψ(·, t)∥BMO(T2)∥J(ψ,ϕ)(·, t)∥H1(T2)

≲ ∥∇ψ(·, t)∥2L2(T2)∥∇ϕ(·, t)∥L2(T2)

= ∥b(·, t)∥2L2(T2)∥u(·, t)∥L2(T2)

≤ ∥b∥2L∞
t L2

x
∥u∥L∞

t L2
x
.



An approximation argument is needed which uses that Jacobians of
W 1,2 maps are in the Hardy Space

The key issue is that the equation for b is weakly compact. Thus the
result also holds for subsolutions and weak limits of solutions. No
subsolutions with b ̸= 0 compactly supported exists.

Lack of existence of square integrable stream functions in R2(Similar
to not every Hardy function is the Jacobian of a Sobolev map by
Lindberg ARMA 2016)

Open Question: Is b determined uniquely by the initial data?



A Λ affine function in 3D

Let
P(v ,S ,B,E) := E · B,

P is Λ affine. Since P is quadratic, it suffices to show that E · B = 0
for all (B,E, v ,S) ∈ Λ.

(u,B,S ,E) ∈ KΛ, then P(E,B) = 0 (Non linear constraint).

P is weakly compact.

Formally ∂t(MH) =
∫
Pdx i.e ∂t(

∫
ψḂdx) =

∫
E · Bdx

Magnetic helicity is conserved by subsolutions and weak limits of
solutions for E,B ∈ L3.º

The solutions and subsolutions of Bronzi et all automatically
satisfies P(E,B) = 0.



Lemma

Any quadratic function Q satisfies that

Q(tA+ (1− t)B) = tQ(A) + (1− t)Q(B)− t(1− t)Q(A− B) (41)

Proof.

Recall that

(ta+ (1− t)b)2 = ta2 + (1− t)b2 − t(1− t)(a− b)2

Indeed the right hand side is
t2a2 + (1− t)2b2 + 2(t)(1− t)ab + t(1− t)(a2 + b2 − 2ab) =
t2a2 + t(1− t)a2 + (1− t)2b2 + t(1− t)b2 =
(t + (1− t)ta2 + ((1− t) + t)b2 = ta2 + (1− t)b2

Now, a quadratic form Q : Rm → R by definition, can be expressed as
[Q(x) = ⟨Mx , x⟩ for a symmetric matrix M and therefore obeys that
Q(A+ B) = Q(A) + Q(B) + 2⟨MA,B⟩ Then exactly as above when
dealing with (ta+ (1− t)b)2. (41) follows



Lemma

Any quadratic function Q which vanishes on Λ is Λ affine, that is if
A− B ∈ Λ

Q(tA+ (1− t)B) = tQ(A) + (1− t)Q(B)

Lemma

If Q is λ affine and vanishes on Λ and on K , then it vanishes on KΛ,lc

When we apply this to MHD and to P we discover that the Λ hull has
empty interior (does not have non-empty interior). This is a problem for
all known versions of c.i in fluid mechanics.
Is this an artificial problem? Is there any interpretation of this product.
(this question already appear in Tartar studies of the Maxwell equation).



The electromagnetic potentials

Potentials. Since B is divergence free there exist many potentials such
that

∇× ψ = B

ψ is the magnetic potential (vectorial) and thus exchanging ∇× and ∂t
in the induction equation

∇× (∂ψ − E) = 0, i .e∂tψ = E +∇g

g is the electric potential



Magnetic Helicity

Given any solution to the Faraday system div(B) = 0 and ∂tB = ∇× E
the following quantity has shown to be very important as it describes (to
some extent ) the evolution of the magnetic lines

MH(E ,B)(t) =

∫
Tn

ψ · Bdx

Apart from its physical interpretation magnetic helictiy is preserved even
by weak solutions as oppose to energy. This makes MHD very special
and the main example of what is called the self-organization conjecture.
Let us look at its conservation from the view point of our weakly
continuous quantity.



∂tMH(t) =

∫
∂tψ · B + ψ · ∂tB = E +∇g · B + ψ · ∇timesE

Now we integrate by parts. For the the curl using that

div(F1 × F2) = F1 · ∇ × F2 − F2 · ∇ × F1

thus by the divergence theorem (fill details) we get that

∂tMH(t) =

∫
E · B +

∫
∇ψ · E = 2

∫
E · Bdx



Lemma

Let E (t),B(t) vector fields solving the Faraday system such that
E · B = 0 then Magnetic helicity is conserved

Since for solutions of ideal MHD E = u × B, solutions of ideal MHD
preserve helicity. Moreoever subsolutions also preserve MHD.





Conservation of magnetic helicity and c.compactness

Proof.

Suppose E,B ∈ L3(T3×]0,T [;R3), S ∈ L1loc(T3×]0,T [;S3×3) and
E ∈ L3/2(T3×]0,T [;R3) solves linearized and that takes values in KΛ a.e.∫ T−ϵ

ϵ

∂tη(t)

∫
T3

Ψ(x , t) · B(x , t) dx dt

=

[∫ T−ϵ

ϵ

η(t)

∫
T3

(
E(x , t)−

∫
T3

E(y , t) dy −∇g(x , t)

)
· B(x , t) dx dt︸ ︷︷ ︸

div(B)=0

+

∫ T−ϵ

ϵ

η(t)

∫
T3

Ψ(x , t) · ∇ × E(x , t) dx dt

]
︸ ︷︷ ︸

Integrate by parts

= 2

∫ T−ϵ

ϵ

η(t)

∫
T3

E · B dx dt

= 2

∫ T−ϵ

ϵ

η(t)

∫
T3

E(x , t) · B(x , t) dx dt = 0,



Thus, we have a situation where even if the hull is very large, the interior
is empty. However there is hope.



Two forms formalism

F := B1dx
2 ∧ dx3 + B2dx

3 ∧ dx1 + B3dx
1 ∧ dx2

+ E1dx
1 ∧ dt + E2dx

2 ∧ dt + a3dx
3 ∧ dt

(42)

We write F ∼= (B,E ). Then, Gauss’ law and Maxwell-Faraday law are
written concisely via differential forms:

∇ · B = 0 and ∂tB +∇× E = 0 ⇐⇒ dF = 0, (43)

i.e., F is an exact two-form called Maxwell two-form or electromagnetic
two-form. This readily yields a 4 dimensional potential α such that

dα = F

Indeed α = Aidxi + gdt where A is a magnetic potential ∇× A = B and
g is an electric one ∇g = ∂tA− E .



Compensated compactness and simple forms

Recall that in addition to (43), we also need E and B to satisfy
E · B = 0. We express the latter condition in the language of bivectors:

B · E = 0 ⇐⇒ F ∧ F = 2b · a dx1 ∧ dx2 ∧ dx3 ∧ dx4 = 0

⇐⇒ F = v ∧ w for some v ,w ∈ R4

The Faraday 2 form is simple.



Lemma

It turns out that ξ = (ξx , ξt) is a Λ direction for (E ,B) if and only if
F ∧ ξ = 0. Suppose that F0 and F ̸= 0 are simple bivectors and that
F ∧ ξ = 0, where ξ ∈ (R3 \ {0})× R. The following conditions are
equivalent:

(i) F0 + tF is simple for all t ∈ R.
(ii) F0 ∧ F = 0.

(iii)We can write F = v ∧ ξ and either F0 = v0 ∧ ξ or F0 = v ∧ w0.

We will see next that in order to find potential, F0 = v0 ∧ ξ is a bad case,
and F0 = v ∧ w0 is a good case.



Clebsch variables

F = dα. Here the so-called electromagnetic four-potential α is of course
not unique. We specify a choice of α below. Recall from (43) that our
potential α is required to satisfy

dα ∧ dα = 0.

set
α = φ dψ,F = dα = dφ ∧ dψ;

here ϕ, ψ ∈ C∞(R4) are called in the literature Clebsch variables or Euler
potentials.
Remark: It is not a Poincare lemma. Thus we need to find specific
potentials for the planar waves This we can not do for all lines F0 + tF .
Namely if F0 = v0 ∧ w0 and Φℓ(x , t) = x + ℓ−1h′(ℓx · ξ)a
Φ∗(v0 ∧ w) = Φ∗v0 ∧ Φ∗w0 = dψ ∧ dφ

dφℓ(x , t)∧dψℓ(x , t) = v0∧w0+χ(x , t)h
′′(ℓ(x , t)·ξ) (c2v0 − c1w0)︸ ︷︷ ︸

=w

∧ξ+O

(
1

ℓ

)
,



Λ good segments

Unfortunately this does not work for all Λ lines (not directions). If ξ
is the direction of oscillation of F and F0 = w ∧ ξ,we can not
construct potentials for the plane wave taking values in the line
F0 + tF

Thus, segments (F0,F ) are divided in Λg (segments) and Λb

(segments). Similarly we can speak of Λg laminates and of Λg

lamination hull, where only good segments are involved.

Lemma

Let O an M-open set and Let ν be a Λg Laminate supported in U , with
an Skel(ν) ⊂ O and mass centered at V0. Then there is Vj such that:
L(Vj) = 0, V (x , t) ∈ O and Vj converging weakly to V0.



A heart breaking discovery KΛg is rigid. E = u × B.
Two good news.

For open sets Olc,Λ = OΛg ,lc

If O is M-open then OΛ,lc is M-open



Lamination hulls of open sets in M
We neglect the fluid part as the non-linearity is on the magnetic side. By
induction is suffices to show the statement for the first lamination hull.
Let

seg = [ω0 − λω, ω0 + (1− λ)ω]

be a Λg segment.
We consider the case ω ∧ ξ = 0 ̸= ω ∧ ξ. Since ω ∧ ω0 = 0 because
ω0 + tω ∈ M and ω is a Λ direction we can further assume that there are
4-vectors such that

ω0 = v ∧ w0, ω = v ∧ ξ

Now if |ω̃0 − ω| ≤ δ is close to ω. Then it can be shown that
ω̃0 = ṽ ∧ w̃0 with |v − ṽ |+ |w0 − w̃0| ≤ δ. Thus, if we declare ω̃ = ṽ ∧ ξ,
it satisfies that

ω̃ ∧ ω̃0 = 0, ω̃ ∧ ξ = 0

Therefore the Λg segment

˜seg = [ω̃0 − λω̃, ω̃0 + (1− λ)ω̃]

belongs to M and is δ close to seg



OΛ,lc = OΛg ,lc

For open sets, the Lamination hull is its good lamination hull
Suppose that we are in the canonical bad situation: Let

seg = [ω0 − λω, ω0 + (1− λ)ω]

be a Λb segment, bad segment because ω = v ∧ ξ, ω0 = v0 ∧ ξ and
assume further that ω, ω0 are not parallel. This results into
ξ /∈ span{v0, v}, and therefore v0 ∧ v∧ ≠ 0.
Choose then ωϵ = ϵv0 ∧ v and declare ω̃0 = ω0 + ωϵ. Then we a segment
with the same direction but slightly shifted to pass through ω̃0. Then,

segϵ = [ω̃0 − λΩ, ω0 + (1− λ)ω]

Thus we still have ω ∧ ξ = 0 but now (ω̃ ∧ ϵ = v0 ∧ v ∧ ξ ̸= 0 = and thus
segϵ ∈ Λg .
The other bad cases are dealt with similarly.



An strategy which do not require explicit computations

In order to prescribe the energy density and cross helicity densities. It is
convenient to use what are called Elssaser variables.
z+ = v + B, z− = v − B And thus we declare

Kr ,s = {|z+| = r , |z−| = s,Ur ,s = intKΛ,lc
r ,s

An interesting remark is that we do not compute the Λ hull of a
constraint set Kr ,s but we show that for any 0 < τ0 < 1

Ur ,s = ∪BM(Kτ r ,τs , ϵτ )
Λg = ∪τ0<τ<1 ∪ K lc

τ r ,τs

The construction is indeed closer in spirit very to the in-approximation
(think that Oτ = BMKτ r,τs ,ϵτ ) and
that instead of Oτ → K and Oτ ⊂ Oτ+1 we have that
(∪τ0<τ<1Oτ )

lc = Ur ,s and Oτ converges to K in the sense of a
generalize distance D.



Easy and rather General Part

Ur ,s ⊂ ∪τ0<τ<1K
lc
τ r ,τs

First we onitce that V ∈ Ur ,s , τV ∈ Ur ,s ,V ∈ (τ(Kr ,s)
lc

Now by symmetry of K (z+, z−,S ,E ) ∈ K , imply that
±τ(Kr ,s) ⊂ (K√

τ r ,
√
τs)

1,lc

(µz+, µz−, µz+ ⊗ z− +ΠI ) = λ(
√
µz+,

√
µz−, µz+ ⊗ z− +ΠI )

+ (1− λ)(
√
µz+,

√
µz−, µz+ ⊗ z− +ΠI )

which shows the claim.



Very difficult

0 ∈ BM(Kτ r ,τs , ϵτ ) ⊂ Ur ,s

(u, b,Su,b +ΠI , b × u) ∈ K lc,Λ
r ,s whenever |z+| < τ r + ετ , |z−| < τs + ετ

and |Π| < rs. (i) V = (u, b,Su,b +ΠI , b × u) ∈ K lc,Λ
r ,s .

(ii) V = (u, b,Su,b + e ⊗ e +ΠI , b × u) ∈ K lc,Λ.

(iii) V = (u, b,Su,b + S +ΠI , b × u) ∈ K lc,Λ
r ,s .

(iv) V = (u, b,Su,b + S +ΠI , b × u + b × g) ∈ K lc,Λ
r ,s .

(v) V = (u, 0,Su,0 + S +ΠI , e × f ) ∈ K lc,Λ
r ,s .



Easy+Very difficult imply that

Ur ,s ⊂ ∪τ0<τ<1K
Λ
τ r ,τs ⊂ ∪τ0<τ<1BM(Kτ r ,τs , ϵτ )

Λ ⊂ Ur ,s

Ur ,s = ∪BM(Kτ r ,τs , ϵτ )
Λ = ∪τ0<τ<1K

Λ
τ r ,τs

Now it holds that for every V ∈ Oτ |v |2 + |B|2 ≥ τ (r2+s2)
2 − ϵτ and by

convexity of the norm for every V0 ∈ Ur ,s (|v |2 + |B|2) ≤ η (2+s2

2 for
η < 1. Therefore for all such V essentially holds that

D(V0,K) ≤ 2(|V |2 − V0)

which give us the required perturbation argument.



Thus we have every ingredient to use our recipe and obtain the following
beautiful theorem by choosing for example r = 1, s = 2 and noticing that
0 ∈ Ur ,s .

Theorem

There exists bounded MHD solutions compactly supported in space and
time

The proof is an interesting last exercise. A couple of interesting issues at
the level of the convex integration schemes. We run convex integration
at the level of the factors of the bivectors and do a inner variation
argument to assume that we work with locally constant maps to avoid
the bad situation v ∧ w = 0 with |v |+ |w | ≠ 0


	Abstract Baire-Category
	The Baire category approach
	Tartar Framework
	Examples from fluid dynamics
	Inestabilities in fluid mechanics
	MHD

	2.Plus: 
	2.Reset: 
	2.Minus: 
	2.EndRight: 
	2.StepRight: 
	2.PlayPauseRight: 
	2.PlayRight: 
	2.PauseRight: 
	2.PlayPauseLeft: 
	2.PlayLeft: 
	2.PauseLeft: 
	2.StepLeft: 
	2.EndLeft: 
	anm2: 
	2.333: 
	2.332: 
	2.331: 
	2.330: 
	2.329: 
	2.328: 
	2.327: 
	2.326: 
	2.325: 
	2.324: 
	2.323: 
	2.322: 
	2.321: 
	2.320: 
	2.319: 
	2.318: 
	2.317: 
	2.316: 
	2.315: 
	2.314: 
	2.313: 
	2.312: 
	2.311: 
	2.310: 
	2.309: 
	2.308: 
	2.307: 
	2.306: 
	2.305: 
	2.304: 
	2.303: 
	2.302: 
	2.301: 
	2.300: 
	2.299: 
	2.298: 
	2.297: 
	2.296: 
	2.295: 
	2.294: 
	2.293: 
	2.292: 
	2.291: 
	2.290: 
	2.289: 
	2.288: 
	2.287: 
	2.286: 
	2.285: 
	2.284: 
	2.283: 
	2.282: 
	2.281: 
	2.280: 
	2.279: 
	2.278: 
	2.277: 
	2.276: 
	2.275: 
	2.274: 
	2.273: 
	2.272: 
	2.271: 
	2.270: 
	2.269: 
	2.268: 
	2.267: 
	2.266: 
	2.265: 
	2.264: 
	2.263: 
	2.262: 
	2.261: 
	2.260: 
	2.259: 
	2.258: 
	2.257: 
	2.256: 
	2.255: 
	2.254: 
	2.253: 
	2.252: 
	2.251: 
	2.250: 
	2.249: 
	2.248: 
	2.247: 
	2.246: 
	2.245: 
	2.244: 
	2.243: 
	2.242: 
	2.241: 
	2.240: 
	2.239: 
	2.238: 
	2.237: 
	2.236: 
	2.235: 
	2.234: 
	2.233: 
	2.232: 
	2.231: 
	2.230: 
	2.229: 
	2.228: 
	2.227: 
	2.226: 
	2.225: 
	2.224: 
	2.223: 
	2.222: 
	2.221: 
	2.220: 
	2.219: 
	2.218: 
	2.217: 
	2.216: 
	2.215: 
	2.214: 
	2.213: 
	2.212: 
	2.211: 
	2.210: 
	2.209: 
	2.208: 
	2.207: 
	2.206: 
	2.205: 
	2.204: 
	2.203: 
	2.202: 
	2.201: 
	2.200: 
	2.199: 
	2.198: 
	2.197: 
	2.196: 
	2.195: 
	2.194: 
	2.193: 
	2.192: 
	2.191: 
	2.190: 
	2.189: 
	2.188: 
	2.187: 
	2.186: 
	2.185: 
	2.184: 
	2.183: 
	2.182: 
	2.181: 
	2.180: 
	2.179: 
	2.178: 
	2.177: 
	2.176: 
	2.175: 
	2.174: 
	2.173: 
	2.172: 
	2.171: 
	2.170: 
	2.169: 
	2.168: 
	2.167: 
	2.166: 
	2.165: 
	2.164: 
	2.163: 
	2.162: 
	2.161: 
	2.160: 
	2.159: 
	2.158: 
	2.157: 
	2.156: 
	2.155: 
	2.154: 
	2.153: 
	2.152: 
	2.151: 
	2.150: 
	2.149: 
	2.148: 
	2.147: 
	2.146: 
	2.145: 
	2.144: 
	2.143: 
	2.142: 
	2.141: 
	2.140: 
	2.139: 
	2.138: 
	2.137: 
	2.136: 
	2.135: 
	2.134: 
	2.133: 
	2.132: 
	2.131: 
	2.130: 
	2.129: 
	2.128: 
	2.127: 
	2.126: 
	2.125: 
	2.124: 
	2.123: 
	2.122: 
	2.121: 
	2.120: 
	2.119: 
	2.118: 
	2.117: 
	2.116: 
	2.115: 
	2.114: 
	2.113: 
	2.112: 
	2.111: 
	2.110: 
	2.109: 
	2.108: 
	2.107: 
	2.106: 
	2.105: 
	2.104: 
	2.103: 
	2.102: 
	2.101: 
	2.100: 
	2.99: 
	2.98: 
	2.97: 
	2.96: 
	2.95: 
	2.94: 
	2.93: 
	2.92: 
	2.91: 
	2.90: 
	2.89: 
	2.88: 
	2.87: 
	2.86: 
	2.85: 
	2.84: 
	2.83: 
	2.82: 
	2.81: 
	2.80: 
	2.79: 
	2.78: 
	2.77: 
	2.76: 
	2.75: 
	2.74: 
	2.73: 
	2.72: 
	2.71: 
	2.70: 
	2.69: 
	2.68: 
	2.67: 
	2.66: 
	2.65: 
	2.64: 
	2.63: 
	2.62: 
	2.61: 
	2.60: 
	2.59: 
	2.58: 
	2.57: 
	2.56: 
	2.55: 
	2.54: 
	2.53: 
	2.52: 
	2.51: 
	2.50: 
	2.49: 
	2.48: 
	2.47: 
	2.46: 
	2.45: 
	2.44: 
	2.43: 
	2.42: 
	2.41: 
	2.40: 
	2.39: 
	2.38: 
	2.37: 
	2.36: 
	2.35: 
	2.34: 
	2.33: 
	2.32: 
	2.31: 
	2.30: 
	2.29: 
	2.28: 
	2.27: 
	2.26: 
	2.25: 
	2.24: 
	2.23: 
	2.22: 
	2.21: 
	2.20: 
	2.19: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	1.Plus: 
	1.Reset: 
	1.Minus: 
	1.EndRight: 
	1.StepRight: 
	1.PlayPauseRight: 
	1.PlayRight: 
	1.PauseRight: 
	1.PlayPauseLeft: 
	1.PlayLeft: 
	1.PauseLeft: 
	1.StepLeft: 
	1.EndLeft: 
	anm1: 
	1.60: 
	1.59: 
	1.58: 
	1.57: 
	1.56: 
	1.55: 
	1.54: 
	1.53: 
	1.52: 
	1.51: 
	1.50: 
	1.49: 
	1.48: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


