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 Integrable and chaotic motions of four vortices

 I. The case of identical vortices

 BY H. AREFt AND N. POMPHREYI

 t Division of Engineering, Brown University, Providence,
 Rhode Island 02912, U.S.A.

 1 Center for Studies of Nonlinear Dynamics, La Jolla Institute,
 La Jolla, California 92038, U.S.A.

 (Communicated by J. T. Stuart, F.R.S. - Received 26 June 1981)

 It is shown that the three-vortex problem in two-dimensional hydro-
 dynamics is integrable, whereas the motion of four identical vortices is not.
 A sequence of canonical transformations is obtained that reduces the
 N-degree-of-freedom Hamiltonian, which describes the interaction of N
 identical vortices, to one wvvith N - 2 degrees of freedom. For N = 3 a
 reduction to a single degree of freedom is obtained and this problem can be
 solved in terms of elliptic functions. For N = 4 the reduction procedure
 leads to an effective Hamiltonian with two degrees of freedom of the form
 found in problems with coupled nonlinear oscillators. Resonant inter-
 action terms in this Hamiltonian suggest non-integrable behaviour and this
 is verified by numerical experiments. Explicit construction of a solution
 that corresponds to a heteroclinic orbit in phase space is possible. The
 relevance of the results obtained to fundamental problems in hydro-
 dynamics, such as the question of integrability of Euler's equation in two
 dimensions, is discussed. The paper also contains a general exposition of
 the Hamiltonian and Poisson-bracket formalism for point vortices.

 1. INTRODUCTION

 We present analytical and numerical results on the motion of four point vortices

 in a plane. Our study includes three different cases: (i) the motion of four identical

 vortices, (ii) the advection of a passive marker particle (a 'vortex' of strength zero)

 by three (identical) vortices and (iii) the collision of two neutral vortex pairs. The

 present paper is concerned with problem (i) and also contains a review of the

 general theory of point vortex dynamics. In a sequel, currently in preparation,

 problems (ii) and (iii) will be considered. We show here that the motion of four

 identical vortices displays chaotic or stochastic solutions. We identify the source

 and discuss the implications of stochastic behaviour.

 The work reported in this study, short accounts of which have appeared elsewhere

 (Aref & Pomphrey i98o a, b), relates to several currently active areas of theoretical
 mechanics including the theory of turbulence. There is an obvious connection with

 the theory of dynamical systems (see the entire volume edited by Jorna (1978)) as

 [ 359 1
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 360 H. Aref and N. Pomphrey

 applied, for example, to the three-body problem in celestial mechanics, and the

 methods and terminology of that theory will be used throughout the paper. There

 is a more tenuous connection with the theory of two-dimensional turbulence (see

 the review by Kraichnan & Montgomery I980). There are analogies (in the collision

 dynamics of vortex pairs) to the theory of solitons (see Scott et al. I973).

 In the widest possible definition two-dimensional turbulence comprises all

 stochastic solutions of the equations of motion of two-dimensional hydrodynamics.

 As we shall see, four point vortices suffice to produce such stochastic solutions. On

 the other hand, any kind of fully developed turbulence of necessity involves more

 than four degrees of freedom. Thus, it is more accurate to describe the stochasticity

 in four-vortex motion as a 'transition' to statistical mechanics as the number of

 degrees of freedom is increased. Although stochasticity can be achieved in both

 dissipative (Lorenz I963) and conservative (Henon & Heiles I964) systems with a

 few degrees of freedom, any distinctions between equilibrium and non-equilibrium

 behaviour involve the limit of many degrees of freedom. In particular any notion of

 a turbulent cascade in the statistical dynamics of four vortices would appear

 misplaced.

 This is not to say that the results obtained are of no interest to turbulence theory.

 The fact that four-vortex motion can display chaotic behaviour in some region of

 phase space suggests a new view of the predictability problem (as mentioned

 briefly by Novikov & Sedov 1978). Traditionally the arguments for unpredict-

 ability of two-dimensional fluid flow involve the notion that inaccurate knowledge

 of small-scale motions cascades to larger scales in a finite time (see Lorenz I969;

 Leith & Kraichnan I972). The results here suggest that matters may be much

 worse: there are already regimes in the phase space of the large scales where the flow

 is intrinsically unpredictable. Inaccuracies do not have to propagate from small

 scales.

 Previous work on the four-vortex problem by Novikov & Sedov (I978, I979 b) and

 Inogamov & Manakov (I979) has emphasized connections with the literature on

 integrable systems and solitons by phrasing the question: 'Is two-dimensional,

 inviscid, incompressible hydrodynamics an integrable dynamical system?' In

 the papers cited the argument advanced is (i) that the four-vortex problem can be

 considered to be embedded in the full continuum fluid equations, (ii) that the

 integrability or non-integrability of four-vortex motion can be decided by the

 methods of analytical dynamics and finally (iii) that stochasticity in the four-vortex

 problem implies afortiori stochasticity of two-dimensional (inviscid, incompressible)

 flow in general. Although this line of reasoning seems basically sound, it should be

 stressed that the point-vortex problem is intrinsically more singular than the

 continuum problem. In particular, there are initial configurations for three point

 vortices that lead to a singularity after a finite time (the vortices collide at a point).

 These motions (for details see Aref (I979); for generalizations to more than three

 vortices see Novikov & Sedov (1979a)) have no counterpart in the dynamics of a
 smooth (listribution of vorticity owing to a classical theorem by Wolibner (I933)
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 Integrable and chaotic motions of four vortices. I 361

 (see the review by Rose & Sulem (1978) for discussion). This simple observation

 suggests that steps (i) and (iii) of the above argument need clarification. The alter-

 native would be that the N-vortex problem is non-integrable for every N,

 4 < N < c, but that the Euler equation, which presumably arises in the limit

 N -x oo, remains integrable. (We are indebted to Professor A. J. Chorin for comments
 on this point.) As an example of an analogous situation, recall that if the exponential

 interactions between particles in the integrable three-body Toda lattice are expanded

 in a power series, one obtains by truncating this expansion at successive orders a

 sequence of Hamiltonians, the first non-trivial one being the non-integrable

 Henon & Heiles system (see the article by M. V. Berry in Jorna (1978)). In ? 7 we

 return to a discussion of integrability of the Euler equation in two dimensions.

 The remaining sections of our paper are organized as follows: In ? 2 we review the

 dynamics of point vortices and develop the Hamiltonian formalism. We prove anew

 that the three-vortex problem is integrable for arbitrary vortex strengths. In ? 3

 we provide a sequence of canonical transformations that reduces the problem of

 N identical vortices to one with N -2 degrees of freedom. In ? 4 we use these trans-

 formations to reduce the three-vortex problem to one with a single degree of

 freedom. A solution of this problem in terms of Jacobi elliptic functions is obtained.

 In ? 5 the problem of four identical vortices is reduced to one with two degrees of

 freedom. The effective Hamiltonian of the reduced problem can be interpreted as

 the interaction of two nonlinear oscillators with resonant couplings. Such systems

 can produce stochastic solutions by a mechanism known as 'resonance overlap'

 (Chirikov (I979); see also the article by J. Ford in Jorna (I978)). A family of exact
 solutions that qualitatively correspond closely to the motions of three vortices are

 discussed. Among these are some that correspond to heteroclinic orbits of the

 reduced Hamiltonian. In ? 6 we present results of numerical simulations of four-

 vortex motion. We calculate phase trajectories and Poincare sections for both the

 (apparently) integrable and chaotic regimes. Some other quantities and diagnostics

 are also discussed. Finally ? 7 contains a discussion of the results obtained.

 2. THE DYNAMICS OF POINT VORTICES

 In this section we review the dynamics of a system of point vortices and establish

 our notation (compare the treatments by Lamb (I945); Sommerfeld (I964);
 Friedrichs (I966) and Batchelor (I967)). We identify the flow plane with the

 complex z-plane and describe each vortex a, = 1, ..., N by a position za = xa + iya
 and a strength Ka. The strengths (or circulations) are constant in time. The motion

 of the point vortices is governed by the equations

 fN Kf
 ZM- 27tif;1Z .; a= 1..fNl (2.1)

 where the asterisk denotes complex conjugation, and the prime signifies that the

 singular term / = ca is omitted from the sum. A point vortex does not contribute to
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 362 H. Aref and N. Pomphrey

 its own velocity. Equation (2.1) follow immediately from Helmholtz's vorticity

 theorems. They define a many-body problem of remarkable formal simplicity.

 Kirchhoff (I 883) noticed that equation (2. 1) may be written as

 KLaXta OH K a 9LX OH (2.2)
 where

 H = -4 - KaK6ln lza zfl. (2.3)
 4, a,

 These may be brought entirely into Harniltonian form by defining

 q Kixa pa = K4yi for Ka> K 0 (2.4a)
 qa = IKaI Ya, pa = IKaI Xa for Ka < 0. (2.4b)

 Written in terms of the qa and pa, equations (2.1) become Hamilton's canonical

 equations with q., pa canonically conjugate variables for x = 1, . . .,N and H the
 Hamiltonian. The system has as many degrees of freedom as there are vortices. We

 note that the definitions (2.4) are not unique. Any linear relation

 [qP] [a(l) a(2)] [Ya] (2.5)

 with the property

 det [al) a()] = Ka (2.6)

 will do. In our definition the canonically conjugate variables have the same physical
 units.

 The Hamiltonian (2.3) is invariant under the continuous transformation group

 of translations and rotations of the coordinates. These symmetries yield by well
 known methods the integrals

 XKaZa - Q+iP (2.7)
 a

 (where Q, P are real) and
 2 Ka Iza12 =-L2. (2.8)
 a

 The equations of motion (2.1) are also invariant under certain discrete trans-

 formations. For example if (in an easily understood notation) {Ka,, Za} is a solution of
 (2.1) then so is {Ka, - za} and {-Ka) Z*.} These dWscrete symmetries do not yield
 generally conserved quantities like (2.7) and (2.8) but, as is easily seen, they do have

 the property that if they are satisfied by the initial configuration they are preserved

 for all future times. For example, if we initially have a configuration of four vortices

 with K, = K2 = -K3 = -K4 and z4 = z*, = Z4 then these relations are obeyed for
 all future times. Such symmetries will lead to analytically solvable cases of four-

 vortex motion, a property already used by Love (I894). We shall make use of a

 discrete symmetry of this type in ? 5 b.

 To proceed with the formal development we define the Poisson bracket [f, g] of
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 Integrable and chaotic motions of four vortices. I 363

 two quantities f and g depending on the vortex positions (and strengths) by (cf.
 Landau & Lifshitz I969)

 If, g] - a Oqx (2.9)
 It is then easy to show, with the aid of (2.4) (or in fact any of the possibilities (2.5)),
 that

 If, g] = a-lfiCa (8ZadYa aYa8Xcc)(2.10)

 The fundamental Poisson brackets are

 [Za, Zfl] = 0, [za, z] = - 2iMa,/Ka. (2.11)

 We next consider the Poisson-bracket algebra for the conserved quantities P, Q
 and L2 characterized by

 [H,P] = [H,Q] = [H,L2] = 0. (2.12)
 Using (2.11) we obtain

 [Q, P] = Ka) (2.13a)
 a

 [Q,L2]= 2P, (2.13b)

 [P, L2] =-2Q, (2.13c)
 whence

 [P2 + Q2, L2] = 0. (2.14)

 It follows that H, L2 and p2 + Q2 are analytic integrals in involution regardless of

 the values of the vortex strengths (cf. Novikov & Sedov 1978). Since a Hamiltonian

 system with N degrees of freedom is integrable if it has N integrals in involution (see

 Whittaker 1937), we are guaranteed that the motion of three vortices is integrable
 for any values of the vortex strengths. This result was known to Kirchhoff (I883)

 and to Poincare (1 893) but a full elucidation of the general properties of three-vortex
 motion is more recent (Novikov '975; Aref 1979). We shall return to the motion of
 three identical vortices in ? 4.

 In the solution of the problem of three identical vortices the ratio of arithmetic to

 geometric mean of the vortex separations is a decisive parameter (Novikov I975).
 For arbitrary N we define ~~~~ fl N iN(N-1)I N o-N(N-l)a ~E= iza-Z / L, -ZZfl (2.15)

 It is easy to show that if the origin of coordinates is chosen as the position of the

 centre of vorticity, i.e. if P = Q = 0 in (2.7), and units are chosen such that all the

 (identical) K. are unity, we have

 N

 I 1ZaZZflj = 2NL2. (2.16)
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 364 H. Aref and N. Pomphrey

 Furthermore, from (2.3)
 N

 II I Za Z, - e-4nH. (2.17)

 Thus
 2 lN(-1)

 = ( ) L N(AT-1)e4nHl (2.18)

 In particular for N = 3

 = L6 e4nH (2.19a)

 and for N = 4

 & = (2)6 L12 e4atH. (2.19b)

 By the Cauchy-Schwarz inequality & >, 1. For N = 3 this minimum value is
 attained for an equilateral-triangle configuration. For N = 4 the minimum value

 of & is (4) - 210/36 = 1.40466 attained for a square configuration. The problem

 of determining the minimum value @(N) of 0 for arbitrary N is related to

 the wider problem of finding uniformly rotating configurations with N

 identical vortices (cf. Campbell & Ziff 1979). We shall address this problem

 in a separate study. For use in later sections we define

 A - (0(N)/&)I, (2.20)

 which lies in the range 0 < A < 1.

 3. REDUCTION OF DEGREES OF FREEDOM BY

 CANONICAL TRANSFORMATIONS

 We have alluded to the important role played by the isolating integrals L2 and

 p2 + Q2: their existence guarantees integrability of a system with three vortices. In
 this section we use these integrals to construct canonical transformations that

 greatly simplify the discussion of the dynamics of a small number of identical

 vortices. In general these transformations reduce by two the number of effective

 degrees of freedom whatever the number of vortices. The use of analytic integrals

 for reducing the number of degrees of freedom of a HIamiltonian system is discussed

 by Synge (I960). If C(q, p) is a known integral for a Hamiltonian H(q, p), a Hamilton-

 Jacobi differential equation is constructed from C(q, p) by replacing the momentum,

 p, by 8S(q, P)/1q. Then S(q, P) is a solution of the Hamilton-Jacobi equation that
 generates a canonical transformation to new coordinates and momenta (Q, P) such

 that one of the new momenta has the constant value C. Its conjugate variable is

 therefore cyclic (absent) in the transformed Hamiltonian, H(Q, P), and a reduction

 of degrees of freedom by one is accomplished.

 To apply this method to the vortex dynamics of ? 2 is in principle straight-

 forward since both the integrals L2 and P2 + Q2 are just quadratic in coordinates and
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 Integrable and chaotic motions of four vortices. I 365

 momenta. For identical vortices of unit strength (which we shall consider from
 now on)

 N

 L2 = (q2 +p2), (3.1a)

 N

 P2+Q2= = (qxqfi+pxpfi). (3.tb)

 The actual construction and solution of the Hamilton-Jacobi equation associated

 with equation (3.1) can, however, be pre-empted by observing that a simple
 rotation of coordinates,

 N

 Q,+iP = N- l ei(2nn/N)(@-l)Z,; n = O,1,...,N-1, (3.2)
 a=z1

 diagonalizes both quadratic forms. We note that (3.2) is a discrete Fourier transform

 of the positions thought of as an array of complex data. (This transformation was

 suggested to us by Dr R. G. Littlejohn.) It is easily verified and anticipated in the

 notation that the variables Q., P. are canonically conjugate:

 [Qn+iPn, Q1+iP1] = 0, (3.3a)

 [Qn+?iPn Q1-iP1] = 251n . (3.3 b)
 Furthermore, we see that

 QO + iPo = N-A(Q+ iP) (3.4)

 (whence Q2 + p2 = N(Q2 + Po)). Thus Qo and PO are both constants of the motion and
 will not appear in the transformed Hamiltonian. We may choose Qo = Po = 0 with
 no loss of generality. By Parseval's theorem, which expresses the conservation of

 norm under the discrete Fourier transform (3.2), we then see that

 N

 E Q -+Pn=L2. (3.5)
 n=1

 The transformation inverse to (3.2) is given by

 N-1

 za = NA I e-i(2rn/N)(a-1) (Q + iPn) (3.6)
 n=O

 Next introduce polar coordinates or 'action-angle' variables Jn, Ofn through

 (2Jn)2ei0n = Qn+iPn; n = 1, ...IN- 1. (3.7)

 The remaining integral is linear in the new action variables:

 N-1

 E) J_= - L2. (3.8)
 n=1

 We also notice that since the Hamiltonian depends only on the separations

 IZ- zA it may be written entirely in terms of J1, ..., eJA- and the angle differences
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 366 H. Aref and N. Pomphrey

 01- ON-1, ON-2 - N-1. This suggests a final transformation to a new set of
 canonical variables I1,***, 'N-1))1 0*' N-1 so that

 N-1

 IN-1 = I J'. (3.9)
 n=1

 We use a generating function of type F3 (Goldstein I950):

 N-1

 F CklJkOl, (3.10)
 k,t=i

 where the Ck1 make up a regular matrix of constant coefficients. Apart from the

 further restriction that all Ck, N-, be equal, there is some flexibility in the choice of
 these coefficients. We shall see in ?? 4 and 5 that specific choices lead to variables of

 simple geometrical significance.

 The equations of transformation associated with (3.10) are

 N-1

 Ik = Cl k Jt' (3.11a)
 1=1

 N-1

 Ok = ECkl 01, (3.1 1b)
 1=1

 The angle q)N-1 is cyclic since IN-1 is conserved.
 In summary, we have achieved for the problem of N identical vortices a reduction

 by successive canonical transformations to one with N -2 degrees of freedom. This

 is particularly useful for N = 3 and N = 4.

 4. THE CASE N = 3: MOTION OF THREE IDENTICAL VORTICES

 We now present details of a solution for the case N = 3 that uses the canonical

 transformations of ? 3. This problem was solved recently by Novikov (1975) using

 a graphical method. Our analysis confirms essentially all of these earlier results but

 it also leads immediately to explicit expressions (involving Jacobi elliptic functions

 and complete elliptic integrals) for many of the quantities that Novikov (I975)

 could only give as integral formulae. Although our equations and results could be

 obtained by reworking the equations in Novikov's paper, the algebra involved in

 such a derivation appears very tedious. In any event the derivation presented here

 provides a useful example of the general formalism in ? 3.

 We first use the transformation equations (3.2) and (3.7) and then introduce

 F3(J1, J2,01-02) = 21J2(02 + 01) + 2J1(02 - 01), (4.1)
 so that

 1S = 12 A -01), -12 = 12 ?O + j1) (4.2a)

 '01 = 02 -01) 0.2'= 02 + 01 (4.2 b)
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 Integrable and chaotic motions of four vortices. 1 367

 The problem is now reduced to a one-degree-of-freedom Hamiltonian H(Ih, 01). The
 merit of the transformation (4.2) is that J1 has a simple geometrical interpretation.

 Indeed, it is easily shown that

 I1-3 123 123' (4.3)

 where o-123 is the orientation (+ 1 for 123 arranged clockwise) and A123 is the area of
 the triangle spanned by the three vortices.

 Using the transformation formulae, equation (3.6), with a straightforward calcula-

 tion we derive that

 H(1, 01) =-(4X)-1 In {16[I6(I22 + 3I2) - (I2-I2)i cos (301)]} (4.4)

 where I2 = L2 is a constant. We shall omit the details of the derivation of (4.4) since

 the analogous but more complicated calculation for N = 4 is displayed in ? 5.

 The equation of motion for I1 then is

 = H 12e 4n
 =-a? = (I2-I2)? sin(3q$1). (4.5)

 Squaring both sides of (4.5) and using (2.19a) and (2.20) we obtain

 (dI/dr)2 -I[I3+ 6I2+ 3(3 - 8A2) I + 8A2(2A2 - 1)], (4.6)
 where

 I--(1/12)2, (4.7)
 and

 3 K

 TV=A2L2t2t (4.8)
 is a scaled time variable.

 The roots of the cubic on the right-hand side of (4.6) are always real and are

 given by

 I(n)= 2{(1 + 8A2)1 cos [(2nt+6)]-1}, n=0,1, 2, (4.9)
 where

 cos6= (-8A4-20A2 +?1)/(1 + 8A2)&. (4.10)

 As A varies from 0 to 1, 6 varies from 0 to i. We always have I(1) < I(2) < (?). The

 root J(2) increases from -3 (when A =0) to 1 (when A = 1) crossing 0 when A = 12
 If we let

 0 1(O), (4.1 1a)

 >1= max{O,I(2)j,> (4.11b)

 2= min{0,I(2)}, (4.11c)

 -O3 = I(1) (4.1 1 d)

 then J3 < f2 < <f r < 0 and jf < I < Jo during the motion. The solution to
 equation (4.6) may be written (cf. Byrd & Friedman I97I)

 0 - J3 a 2sn2 (wr)
 1-CX2 sn2 (wT) (4.12)
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 368 H. Aref and N. Pomphrey

 where

 2 _ 3)X (4.13)

 C)2 [ (A0-2) (JA1- 3]'DI (4. 14)

 and the modulus of the Jacobi elliptic function is

 m2 = ( (a - A)/(O-2) (Af-f) (4.15)

 0 0.02 0.08 0.18 0.33 0.51 0.73 1.0
 2 X,//

 0 0.5 1 1.0
 A

 FIGURE 1. The dimensionless period KT/L2, equation (4.19), against A (bottom) or A2 (top).
 The relative motion of three identical vortices has period T for A < 1 period 3T for
 1 < A < 1.

 For the period of the pulsations of the area variable I we have

 T 4irA2L2K(m)2, for 0 <A <v (416 T = 3 _ ( ) /t 2) (4.16)

 3 K (iJ~~1 for <zA < 1 where K is the complete elliptic integral of the first kind. For A = :2 the vortex
 triangle collapses to a collinear configuration. This motion is aperiodic. In the

 present variables it is given by the simple formula

 I = [1+ 3 cosh (r13)] (4.17)

 A general qualitative discussion of the three regimes 0 < A < , A =-1 and

 V2 < A < 1 appears in the earlier papers (Novikov '975; Aref I979) and will not be
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 Integrable and chaotic motions of four vortices. I 369

 repeated here. We include in figure 1 a plot of the dimensionless period KT/L2

 against A. A similar plot for N = 4 appears as figure 8. The period has a (logarithmic)

 singularity at the 'critical' value A = A1(3) = ;. The period for the relative motion

 equals T, equation (4.19), for 0 < A < ;p' but equals 3T for 2 < A < 1. (The period
 for relative motion must clearly always be a multiple of the period for pulsations in
 the area variable I). The resulting expressions have the correct limits in the explicitly

 calculable cases A -O 0 (a single pair far removed from the third vortex) and A -- 1
 (small pulsations of an equilateral triangle; it is a classical result that this period

 equals the period of rotation of the triangle).

 5. THE CASE N = 4: MOTION OF FOUR IDENTICAL VORTICES

 By using the technique of ? 3 the four-vortex Hamiltonian may be reduced to one

 with two degrees of freedom. This section provides details of the reduction process

 (? 5 a) and also a discussion of a special class of solutions including some that corre-

 spond to heteroclinic points in phase space (? 5 b). The form of the Hamiltonian,

 equations (5.8)-(5.12), has been available to us for some time and was discussed in

 our earlier paper (Aref & Pomphrey Ig8oa). Meanwhile Khanin (I980) has derived
 independently a reduction of the four-vortex problem to one with two degrees of

 freedom. His derivation does not immediately generalize to N > 4 but it does

 accommodate the case where all vortex strengths are of one sign without being of

 equal magnitude. The case of N = 2n vortices, n with the strength + K and n with

 strength-K, has also been reduced to one with N -2 degrees of freedom. Details

 for this case will appear in a forthcoming paper on the collision dynamics of vortex

 pairs.

 (a) Derivation of the Hamiltonian

 Let Qn + iPn, n = 0, 1, 2, 3, (see ? 3) be denoted by Cn and assume 0 0 without
 loss of generality. Then

 Z1 =2 (C1 + ~2 + ) 2 =2 (- iC - 2 + iC3), 51 ,b

 z = -(-1 +2-3)' z4 - 2(it -2-i(3). (5.1 c, d)
 It is easy to derive from these equations that

 (z-z3) (z2-z4)= i(C-2 _ 2), (5.2 a)

 (z1 - z2) (Z1-Z4) (Z2-Z3) (Z3-Z4) = 1 (5.2 b)

 We consider the generating function

 F3(Jl, 2 J3, 01 02 03) = 0J1 - J3) + 02(J1 + J3) + 03(J1 + J2 + J3) (5.3)

 The corresponding equations of transformation are

 = 10 ~~~~~~~~~~~~(5.4a) 01 =2O1-+203; 01 = 01+02+03;(5.4)

 02 = 101-2+ 03;0-3 (5.4 b)
 03 =2O; 03==-01+02+03; (5.4c)

 I3 Vol. 380. A
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 370 H. Aref and N. Pomphrey

 and

 11 = J1-J3; j1 = 12I + 122; (5.5a)
 12 = j1 + J3; J2 = -12 + 13; (5.5 b)

 I3 = J1+J2+J3; J3 =-2Ii+ 122 (5.5c)

 Note that I1 < 12 < I3. From these definitions it is easily seen that

 12 = i(IZ1i_z312 + Iz2-z412). (5.6a)
 Furthermore if subscript zero corresponds to the origin (centre of vorticity)

 A o-012A012 + 023Ao23 + 034A034 + 0o041A041, (5.6 b)

 where (see equation (4.3)) Ao,PA is the area of the triangle with vertices at the origin,

 z. and zA, and or0jc6; is its orientation. If the quadrilateral spanned by the four vortices
 is convex and the vortices appear in clockwise order, '1 is clearly the area of the

 quadrilateral and I2 is one quarter of the sum of squares of the diagonals.

 We substitute for?C,, n = 1, 2, 3, its expression in terms of Jn and n, n- (2Jn)t ei0n,
 and then substitute for 01, 02 and 93 their expressions in terms of 01, 02, 03. After
 factoring out a term 2i e6i(02+03) we obtain

 rlI Zk-Zl 2 |{J J3(JI-J3) COS 20I + (J13-J3) COS 6II + 4J1 J2 COS (20,-402 1 Sk < 1<, 4

 24JJ3 cos (201 + 402) -8J1 J2J COS (23 1-

 + 8JiJ2J3 COS (2qS1 + 20S2)

 + i[(J3 + J3) sin 601 + J1J3(J1 + J3) sin 201

 + 4J1J2sin (20, - 402) + 4J2J3sin (2qS1 + 402)

 -8J1 J2J3 sin (201- 202) - 8J2 J3 sin (201 + 202)]}).

 The modulus on the right-hand side involves terms that are products of at most

 two trigonometric functions with coefficients depending on the Jn. Thus the whole

 expression may be written as a sum of terms of the form fm, n(Jl, J2, J3) x
 cos (mq! + nO2) where m, n are integers. The fi n are algebraic functions of J,, J2
 and J3. Using the transformation formulae (5.5) we may reexpress them in terms of

 I,, 12 and 13. We shall not reproduce here the tedious algebraic manipulations
 effecting these transformations but simply write the final Hamiltonian:

 H(I1, J2,01,0 s2) == _(4ir)-1lInh(11,42, 01,02), (5.7)

 where h is of the form

 h(Ih, I2, 01, 02) = hl(Il, 01)

 - (13-I12) [h2(I1, I2, 02) + h12(Vl, 12, 01, 02)] (5.8)
 with

 hl(1l, 12, 01) = 4(12 cos2 201 + I2 sin2 201)

 x {1 6(I3-I2)2 [(I 12] + (1sin22 201 + I2 cos2 201)2}, (5.9)
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 Integrable and chaotic motions of four vortices. I 371

 h2(I,1 2, 02) = 4(12 +1)(I2-2)2

 x {[1 6(I3 2 2 +I2I1] cos 202 -(13- 12) (I2-I1 ) cos 4021 5.0
 and

 h,2(I,, '2' s, 02) = g12(11, '2, 01, 02) + g12(-I1, I2, q, - (5.11)
 where

 g12(11, 12, 01' 02) = 8(I3-I2) (I2-11)21,I2cos 4(01-q2)
 -(-I1) (I2 - _[ [11 I2(12- 11) + 4(I2 + 11) (I3- )1

 x cos (40, - 202) -2(I2 -I1) (2- I1)2 cos (80,-2q2)

 Jr2(I2 -1 (I-2) (I 2- I,)' cos (801- 402)' (5.12)

 Note that 13, which is a constant of the motion, appears as a parameter in these

 expressions. We recall from equation (3.8) that I3= L2 = J, +J2+J3where L2 is
 given in terms of the vortex positions by equation (2.8). Note also that the argument

 of the logarithm, h, acts as an effective Hamiltonian: any equation of motion

 derived from H involves a logarithmic derivative of h, e.g. the pair

 OH 1 Oh 1 Oh
 01 - I =-4ithU1'; 1 = (5.13)

 Now h is constant and so introducing a scaled time variable t* = t/4ih we get

 doS, Oh dI, Oh Dh14
 dt* =-IU dt* = 1. (5.14)

 Hence for initial conditions with a given value of H we may just as well use h as the
 Hamiltonian. The form, equations (5.8)-(5.12), derived for h is reminiscent of

 Hamiltonians that arise in problems with coupled nonlinear oscillators. Such

 systems often display stochasticity due to the phenomenon of resonance overlap

 (see Chirikov (I979), and the article by J. Ford in Jorna (I978)). Thus it is eminently
 plausible, and will be made more so by the numerical work to be described in ? 6,

 that the four-vortex problem considered has chaotic solutions. The individual

 'oscillators' in our case are of course given by the pieces h, and h2 of the effective
 Hamiltonian h while the resonance overlap terms are embodied in the 'interaction'

 h12. There are several more resonant interaction terms in our Hamiltonian than in
 the model problems commonly considered in the work referred to above.

 The Hamiltonian (5.7)-(5.12) displays a number of discrete symmetries in its

 independent variables hi, I2, 01, 02. For example, if I, is replaced by - I and 01 by
 i - 01 the expression for h is unchanged. Such invariances are related to the
 invariance of the original problem under arbitrary permutations of vortex indices.

 Indeed one may calculate the transformation of 1, ~2' 3 (and hence of Jn, O,n or In
 qS) induced by any particular permutation. It turns out that the obvious sym-
 metries of H (those that involve sign changes of I, or changes of 01 by ? Pt or
 both) are induced by a subgroup D4 of the full symmetry group S4. The group D4 is

 isomorphic to the symmetry. group of a square. Table 5.1 summarizes the results by
 13-2
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 372 H. Aref and N. Pomphrey

 giving the permutations and the corresponding transformations of I, and q1. (In
 the notation used in table 5.1 (1432) means a permutation that maps 1-4, 4-3, 3-2

 and 2-1.)

 TABLE 5.1. INDEX PERMUTATIONS D4 AND CORRESPONDING

 TRANSFORMATIONS OF I1, 1

 (1)(2)(3)(4)
 (1234)
 (1432) +
 (12)(34) +
 (13)(24) I1
 (14)(23) -I
 (13)(2)(4)
 (1)(3)(24) -1

 (b) A class of exact solutions

 There is a simple discrete symmetry of the problem of four identical vortices

 which leads to a class of exactly calculable solutions (see the discussion following

 equation (2.8)). The existence of these solutions was mentioned in Novikov's (I975)

 paper. It is easily verified from equation (2. 1) that if initially Z3 = - z1 and Z4 -Z2
 then these relations are preserved by the equations of motion and thus it is only

 necessary to determine as a function of time the positions z1 and Z2 of vortices 1 and 2
 in order to solve the problem. In terms of the variable Cn these special (initial)

 conditions correspond to ~2 = 0 or J2 = 0 or 12 = 13. In this case

 ?H 1 ?h I ?h1 0
 I2 = -8a,fi2 = 47:h02 = 4 = 0. (5.15) 12 02 4ithaq00- 4ith1?q52

 In the last step but one the decomposition (5.8)-(5.12) of h, and the condition

 I2 = I3 were used. Thus we have shown that if 12 = I3 initially, it remains fixed at
 that value in accordance with the preservation of the discrete symmetry.

 Let us now analyse the motion in detail. We introduce canonical variables

 R, = (I?+ I3)-2 cos 201, (5.1 6 a)

 P1 = (11 + I3)1 sin 2.:1, (5.1 6 b)

 although for plotting purposes we shall use their scaled counterparts

 R._ R1/(2I3)1, PI-= P1/(2I3)1. (5.17)

 In terms of these variables the level curves (trajectories) of the effective Hamiltonian

 for this case (i.e. h of equations (5.8)-(5.12) with 12 = 13) appear as

 [4112(p2 2R1)+ ][4P2 + 12 1 + 1]2_=12 (5.18)

 Since A < 1 the physically meaningful region of the RI, PI-plane is bounded by the
 unit circle centred at the origin. In figure 2 a we show several level curves of equation

 (5.18). We have also labelled the maximum 0, the minima T, T', P and P' and the
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 Integrable and chaotic motions of four vortices. I 373

 -1 ~ 1

 FIGURE 2 (a). Level curves of the reducedl Hanijiltonliar, equlation- (5.18), for various values
 of AL. The steady-state solutions corresponding to pOiltS (, T, T', P, 1", L1 L2, L3, L4
 and circle C are shown in figure 2 b. Values of A are iiidic ted, sulperscript plus (mninus)
 means hl > 0 ('1 < 0). The dashedl circle corresponds to collinear configulrationls.

 points 2' 3'2

 saddle ponsL1, IL, L, L4 of the function on the left-hand side of (5.18) . In figure 2 b

 we display scale drawings of the vortex configur4Xions that correspond to these

 points and to the unit circle C. WVe note thcat both 0 and C correspond to a squlare

 configuration with the vortices 1 2 3 4 appearing, counter-clockwise for 0, clockwise

 for C. The poinlts T, T', P, P' correspond to unrealizable configurations of infinite

 energy with at least one pair of vortices at thle same location. The saddle points
 L1, ..., L4 correspond to collinear configurations. Collinearity for the special sym-

 mnetry being discussed here means simply I1 0 , or in terms of R1, F1,

 R1 At P21 = 2.(5.19)
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 374 H. Aref and N. Pomphrey

 This circle, shown by the dashed line in figure 2a, passes through P, P', T, T' and
 ,, ..., L4.Let us mention that for arbitrary N there is a unique (up to permutation
 of vortices) uniformly rotating configuration with all the (identical) vortices on a
 line. The positions along the line are given by the zeros of the Nth Hermite poly-

 nomial (see Calogero I977).
 A qualitative interpretation of the regimes of motion apparent in figure 2a is

 straightforward and bears a remarkable similarity to the case of three identical
 vortices (Novikov I975; Aref I979). The square configurations (O or C) correspond

 (b) 1 4 1 2

 0 C

 2 3 4 i3

 T T- T * T
 1 2,4 3 2 1,3 4

 P 3 Pt 3

 1,4 2,3 1,2 3,4

 Li * * * *0L3*
 1 2 4 3 2 3 1 4

 L2 L4 * p
 2 1 3 4 3 2 4 1

 FIGURE 2 (b). Real space configurations of vortices corresponding to points 0, T, T', P, P', L1,
 L2, L3, L4 and circle C of figure 2a. Units are chosen suCh thatK= L2 = 1.

 to A = 1. As A is decreased we obtain periodic pulsations of a vortex rectangle.
 Since the phase trajectory (surrounding 0 or skirting C) for sufficiently large A
 never intersects the dashed circle, equation (5.19), the vortices never become
 collinear and the orientation of the configuration is a constant of the motion (corre-
 sponding to the non-holonomic constraint that the enclosed area remain positive).
 For small A the motion takes place along a phase trajectory surrounding one of the
 points P, P', T, T', i.e. entirely within one of the four lobes bounded by the separatrix.
 These trajectories cross the dashed circle twice each period. At each crossing the
 vortices are collinear but their relative positions on the line are different. On the
 separatrix that borders these two regimes we find the aperiodic relaxation in
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 Integrable and chaottc motions of four vortices. 1 375

 infinite time to the steadily rotating collinear configurations (the analogue of the

 solution (4.17)). In the Appendix we present calculations of the period of pulsation.

 The asymptotic collinear vortex states L1, ..., L4 and their saddle connections

 are of special interest because their behaviour under arbitrary (symmetry breaking)

 perturbations is intimately tied to the existence of chaotic motion in the general

 four-vortex problem. M. V. Berry (in an article in Jorna (I978)) and Holmes (I980)

 1 . I

 Pi

 %

 PII R

 -1 1

 iR1

 FIGURE 3. Apparently regular Poincare-section curves for A = 0.746 245 (< 2A,).

 review the complicated manner in which the stable and unstable manifolds con-

 necting saddle points can intersect (at an infinite set of heteroclinic points). Phase
 trajectories must weave through the tangled web of intersections, and sensitive

 dependence on initial conditions (i.e. chaos) results. The mathematical description

 of this behaviour is generic for Hamiltonian systems and is by now reasonably well
 understood. It is however usually difficult to establish analytically the existence of
 heteroclinic (or homoclinic) points.

 6. NUMERICAL EXPERIMENTS

 The analysis in ?5 has shown that the effective Hamiltonian describing the
 relative motion of four vortices has the form that one would expect for a system of

 two coupled nonlinear oscillators with resonant interactions. Furthermore the
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 376 H. Aref and N. Pomphrey

 exact solutions of ? 5 (b) revealed the possibility of heteroclinic points in phase space.

 We should not be surprised, therefore, that Poincare sections indicating chaotic
 solutions can be readily produced by numerical simulation. The appearance of

 such sections with regular 'islands' of tori in a stochastic 'sea' is by now rather

 well known (see Henon & Heiles (I964) for an early example or the articles by
 M. V. Berry, J. Ford and L. J. Laslett in Jorna (I978)).

 1 I'"'''",i.. ''@tt I

 PI~~~~~~~~~~~~~

 FIGUR 4Apar * . P' * * * . , 5t s * Ow

 * ~ ~~~~~~~~~~~~~~~~~~~~ 4S

 2 1 1) i 202 (6 'a

 withconju v I . : , . . : . :**!%*%'** * *
 * .* .,.;* @'*. w-'*
 I 1. s *b,

 , I , . a I
 -1 1

 FIGURE 4. Apparently chaotic Poincare section for A = 0.381 197 ( < Ac).

 The Poincare sections considered here arise directly from the two-degree-of-

 freedom Hamiltonian of ?5. We define R1, P1 and g1f P1 as in equation (5.16) and
 (5.17) and compute the section 1?2 - 0, P_ <0O where

 R2= (I3-J2) sin 2r2 (6.1 a)
 with conjugate variable

 P2 = (I3-J2)W cos 2A2 (6.1 b)

 Figures 3 and 4 provide two examples of such sections. The first of these with

 A = 0.746245 shows apparently regular, crescent-shaped tori, the second with

 A = 0.38 1 197 shows chaotic splatter. (The parameter A - (&(4)/&)2 was defined in
 ? 2.) To put these results in perspective we note that there are just three different

 types of steadily rotating configurations for four identical vortices. These are
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 Integrable and chaotic motions of four vortice8. I 377

 the square (A = 1), the face-centred equilateral triangle (A = 4/3 = 2A,; see
 Appendix) and the collinear configurations mentioned in ? 5 (b) (A = A, = 3 3)
 Of these the square is stable, the triangle marginally stable and the line unstable.

 On the basis of these observations Novikov & Sedov (Ig79b; see also Novikov
 I980) postulated that the motion of four vortices would be quasiperiodic for

 1

 _,~ ~ .
 i * . ' **E

 * . - _ I

 -1 1

 RI

 FIGURE 5. 'Islands' of crescent-shaped tori in 'chaotic sea' for A = 0.736 842.

 2A1 < A < 1 and chaotic for A, < A < 2A,. For A < A, they again postulate
 quasiperiodicity now on the grounds that the available phase space is severely

 limited. They claim to corroborate aspects of this picture by numerical experiments.

 From our point of view the motion of four identical vortices is equivalent to a

 two-oscillator system which in action-angle variables has a rather conventional but

 complicated form. Although it is not clear to us whether a sharp onset of chaos (or

 a sharp disappearance) as the control parameter A is decreased is in fact ruled out

 by general considerations, such behaviour runs counter to the basic framework of

 understanding that has been constructed around the K.A.M. theorem (cf. J. Ford's

 article in Jorna (1978)). We believe in accordance with K.A.M. theory that chaotic

 solutions enter on a set of initial conditions whose measure goes to zero as A -* 1.

 Numerical experiments such as the construction of a Poincare section should then

 predominantly (but not exclusively) detect regular islands of tori for A slightly less
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 378 H. Aref and N. Pomphrey

 than 1. The notion that 'large-scale chaos' in the Poincare section sets in when

 A < 2A, is probably roughly correct but it is definitely only an approximate
 criterion. Indeed the smooth section curves of figure 3 correspond to a value of A

 that is somewhat less than 2A,(= 0.769800).

 y

 I I I I I I I , I
 x

 FIGURE 6(a). Trajectory of one vortex for a solution of the type discussed in ?5(b). The
 initial state was a rectangle configuration with aspect ratio 1.75, A 0.597 410.

 In similar fashion figure 4 points out the approximate nature of the assumption of
 quasiperiodicity for A < Ac: The value of A used for that seemingly chaotic section
 was somewhat less than A, ( = 0.384 900). It is worth emphasizing that the argument
 for more regular motion as A decreases is not based on stability considerations but
 solely on the characteristics of the available phase.space region. As the energy is
 increased for a fixed value of L2 at least two of the vortices must come together. The
 four-vortex problem then degenerates to an approximate three- or even two-vortex
 problem. This follows in the general case much as the trapping in lobes surrounding
 T, T' or P, P' (see figure 2 a) for small A occurred for the special symmetry in ? 5 (b).
 Since the two- and three-vortex problems are integrable, approximate integrability
 of the four-vortex problem should ensue. There is no reason to believe that this
 should happen suddenly at some specific value of A. Moreover by this argument
 gradual disappearance of stochasticity at high energies would not in general
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 Integrable and chaotic motions of four vortices. I 379

 be expected to occur for N > 5 since an effective four-vortex problem could

 result.

 To conclude this discussion we present figure 5 which we believe represents the

 general situation. All states in this section have A = 0. 736 842. The crescent shaped

 tori correspond to slight perturbations of the exact solutions from ? 5 (b). (The exact

 solutions of ? 5 (b) have phase trajectories confined to the section plane as shown in

 figure 2a and cannot be used for the section). The splatter of points around these

 crescents was generated by a single perturbation of the face-centred triangle con-

 figuration adjusted to have the same value of A. This coexistence of tori and chaos

 is in accord with experience from other Hamiltonian systems.

 I I , , I I - I I I

 y

 I I I I I ~~~~~I I I I

 x

 FIGURE 6 (b). Trajectory of one vortex for a solution in the chaotic regime. The initial state
 was a slightly perturbed rectangle configuration 'with aspect ratio 2, A = 0.64.

 Poincare sections with the use of the vortex separations as independent variables

 have been published previously (see Aref & Pomphrey i98oa; also Novikov &
 Sedov 1979 and Inogamov & Manakov 1979). Those sections were produced by

 integrating in time the original vortex equations (2.1), whereas figures 3-5 resulted

 from integrating the equations of motion derived from the Hamiltonian, equations

 (5.7)-(5.12). We have continually cross-checked results obtained by the two methods
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 380 H. Aref and N. Pomphrey

 1244
 time

 FIGuRE 7. Time series of k, equation (6.2), for a solution in the
 chaotic regime. The initial condition was as in figure 6b.

 for consistency. Furthermore runs indicating chaos have been time-reversed to

 reproduce satisfactorily the initial state from the final one.

 Calculation of objects less abstract than a Poincare section is equally illuminating.

 Rates of separation for orbits with close initial states have been computed with the

 expected results (see also Novikov & Sedov I978). We show in figures 6a and b the

 trajectory in real space of one of the vortices. According to ? 2 this can also be

 thought of as the projection of the phase-space trajectory onto the plane spanned by

 a pair of canonically conjugate variables. The trajectory in figure 6a was obtained

 for one of the solutions in ? 5 (b). It consists of a regular precession motion bounded by

 two circles. For A > A, such circles always exist, and the width of the annulus in
 which the motion takes place is (LIVK) (1 _ 12)-. This is easily derived by using the
 formulae in the Appendix. The trajectory in figure 6b on the other hand was

 obtained for a case in which the Poincare section appeared chaotic. This trajectory

 is significantly different from the one in figure 6 a with loops of inany different shapes

 and sizes. The simple qualitative difference between the paths of a vortex in regular

 and chaotic motion displayed by figures 6 a and b may be of greater consequence to

 hydrodynamics than anything else in this paper.

 We conclude this section by mentioning one other diagnostic with an interesting

 physical interpretation. Consider for an assembly of N identical vortices the

 quantity
 k- E za -z<I-1N (6.2)

 1< <,8 <1V
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 Integrable and chaotic motions of four vortices. I 381

 which defines an average wavenumber for the flow. This quantity was ilntroduced by

 Novikov (I975) who noted that k is proportional to the average of all the mutually
 induced speeds within the vortex assembly. Thus, argued Novikov (I 975), the phase
 point describing the state of the vortex assembly will spend a relatively long time in

 regions of phase space where k is small (speeds are low on average). Hence in a time

 average these low k-values will receive proportionately greater weight, anld
 statistically an apparent transfer of excitation to low wavenumbers will result.

 This suggests a mechanistic (albeit qualitative) explanation of a very important

 characteristic of two-dimensional flow (cf. Fjortoft '953; Merilees & Warn

 '975).
 It was thus considered worthwhile (certain remarks in ? 1 notwithstanding) to

 monitor k(t) for initial conditions in the chaotic region. A sample result is shown in

 figure 7. It is seen that after an initial transient a very complicated time series

 develops. No particular tendency for k to spend a long time in low values is observed.

 It should be mentioned in this connection that for almost all cases of three-vortex

 motion and for the solutions of ? 5 (b) (with A # A,) k will be a periodic function of
 time, and the arguments given for its decrease fail. Murty & Rao (I970) monitored

 the variation in time of the mean value of the vortex separations for vortices inside

 a circular boundary. They report periodic variations of this quantity for N = 2 (as

 expected) but random variations for N = 3, 4 and 5. (For N = 3 the mean value of

 the separations and k are simply related.) For N > 40 Murty & Rao (1970) find a
 smooth monotonic increase in the average separation. Sedov (I976) reports an

 initial sharp increase followed by a slower systematic decrease in computations of k

 using 100 identical vortices.

 7. DiscussION

 To discuss the implications of our main result, that a system of four identical

 vortices is non-integrable, we return to the question raised in the Introduction

 about the integrability of Euler's equation in two dimensions. Renewed interest in

 this question arose from a brief paper by Hald (I976) in which it was shown that

 certain truncated Galerkin approximations to the two-dimensional Euler equation

 with very few degrees of freedom were integrable. As is well known the equations of

 motion for the Fourier components of vorticity are first-order, ordinary differential

 equations with quadratic couplings. The models considered by Hald (I976) arise by

 treating couplings between a chosen set of modes exactly and omitting reference to

 all other modes. This is a standard procedure for deriving such models. All models

 have integrals of energy and enstrophy but for integrability also others which Hald

 (I976) gives explicitly. The question arises whether Galerkin approximations of the

 size typically used in two-dimensional flow simulations also have as yet undis-

 covered additional integrals. After all, the two-dimensional Euler equation con-

 serves the vorticity of every fluid particle and thus has an infinity of constants of

 the motion.
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 382 H. Aref and N. Pomphrey

 This problem was reexamined by Kells & Orszag (I978) who performed numerical

 experiments with similar models but with a larger number of modes. The main

 conclusion of this work was that if truncations in Fourier space are done isotropi-

 cally, systems with more than about 20 modes behave chaotically. It is presumably

 still possible to preserve integrability by sparse coupling of wave triads (cf. Meiss

 I979). From the point of view of deciding for or against integrability of Euler's

 equation in two dimensions, truncated Galerkin models are open to the criticism

 that they destroy most of the circulation integrals of the full continuum equation.

 The omission of such integrals could in itself destroy integrability.

 The main virtue of the point vortex decomposition, which leads to equation (2.1),

 is precisely that it preserves all circulation integrals by construction while keeping

 the number of degrees of freedom finite. Furthermore, if the vortices all have

 strengths of the same sign, the collapse to a point in a finite time mentioned in the

 Introduction cannot occur. We therefore believe that the present approach can be

 extended to prove rigorously that Euler's equation with vorticity all of one sign is

 non-integrable. The vortex decomposition makes use of the important property

 that if a flow is started at time t = 0 with N vortices it will in general continue to

 contain exactly N vortices. By contrast a flow that initially is represented by a

 finite number of Fourier modes will in general spread excitation to all modes as time

 progresses. Since only a finite number of modes are retained in a truncated Galerkin

 model, errors will inevitably result when the omitted modes should have been

 excited. In this sense one may argue that the chaos seen in a model such as

 that of Lorenz (I963) need not reflect properties of the Boussinesq equations,

 whereas the chaotic motion of four vortices does reflect properties of Euler's

 equation.

 Our result that for unbounded flow N = 4 is the minimum number of identical

 vortices needed to produce chaotic solutions can be sharpened in the following way.

 If we consider instead of the fourth vortex a marker particle, i.e. a 'vortex' of

 vanishing strength, it has been shown that the motion of this particle as it is

 advected by the unsteady flow due to the three vortices is non-integrable (Aref &

 Pomphrey ig8oa; Ziglin I980). We shall return to this problem in a subsequent
 paper. If boundaries or an imposed potential flow are present, the number, N,, of
 vortices necessary for chaotic solutions is reduced. For boundaries with no particular

 symmetry we expect the two-vortex problem to be non-integrable, and a single

 vortex should suffice to produce chaotic motion of an advected passive marker.

 Thus N, is reduced from 4 to 2 (cf. Novikov I980). For vortices in a half-space
 bounded by an infinite wall or for vortices in a region bounded by a circle, N, = 3
 (Murty & Rao I970; Novikov & Sedov I979 b). Similar arguments applied to the
 pressure fluctuations at a point on the boundary (which follow from the unsteady

 Bernoulli equation) suggest that these will be qualitatively different for N < N,
 and N > N,. This is of interest in considering the forces on the boundaries in a
 vortex-dominated flow.

 Finally we mention the intriguing fact that there are dynamical systems of a form
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 Integrable and chaotic motions of four vortices. I 383

 very similar to the equations we are considering here that are integrable for an

 arbitrary number of particles. For example the system

 K N

 Za = 2 i E (Za -Zfl) n (7.1)

 which differs from (2.1) for identical vortices only by the absence of complex con-

 jugation on the left-hand side, is integrable for all N. The reason for this is basically

 that equations (7.1) are related to the Burgers equation by 'pole decomposition'

 (cf. Choodnovsky & Choodnovsky 1977) and the Burgers equation can be integrated

 by using the Cole-Hopf transformation (see Whitham 1974). Alternatively, the

 solutions to (7.1) are embedded among those of

 Zz = 2 (-) E (Za-3 (7.2)

 which is known to be integrable (see the article by J. Moser in Jorna (I978)). It is an

 interesting question whether one can use the similarity of equations (2.1) and (7.1)

 and the integrability of the latter to elucidate the properties of a many-vortex

 system.

 We are indebted to A. J. Chorin and R. G. Littlejohn as mentioned in the text

 and to P. J. Holmes for helpful discussion on the significance of heteroclinic points.

 We thank G. K. Morikawa for his interest and encouragement and E. A. Novikov

 for keeping us up to date on research in the Soviet Union. One of us (H. A.) would

 like to thank J. D. Meiss and E. A. Spiegel for discussions on pole decompositions

 and (non)integrability during the 1980 Summer Study Program in Geophysical

 Fluid Dynamics at the Woods Hole Oceanographic Institution.

 This work was supported in part by National Science Foundation grant CME

 78-22127 and by research funds from Physical Dynamics. Computing time provided

 by the Scientific Computing Division at the National Centre for Atmospheric

 Research (NCAR) for some of the numerical work is gratefully acknowledged.

 NCAR is sponsored by the National Science Foundation.

 APPENDIX

 We consider quantitative details of the solutions described in ? 5 (b). Let

 z, = rei, Z2 = se (A l)

 The positions of vortices 3 and 4 are then given by Z3 =-Zl, Z4 =-Z2 We assume
 that all vortices have strength K. It is clear from equation (2.8) that

 K(r2+82) = UL2 (A2)
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 384 H. Aref and N. Pomphrey

 Hence, we may define an angle X, 0 < X < i, such that

 L 1L_ r(2 )cosX, s = sin (A3)
 (2K)i 2X* A3

 The constraint of constant energy takes the form

 sin x( -sin2 X cos2 Vf) = A (A 4)

 where Vf = - 1, and A = (O(4)/0)j was introduced in ? 2. The basic differential
 equation of motion, which is most easily derived by using equation (2. 1), is

 = (2K/7tAL2)sin2 X sin 2yi~. (A 5)

 The pair of equations (A 4) and (A 5) allows the problem of relative motion to be

 reduced to quadratures in this special case. The connection with the canonical

 formalism employed in ? 5 is given by the following formulae (wherein K = 1 in

 accordance with the conventions in ? 5):

 I,-UL2sinx sin , (A6)

 I2=I3= U2 (A 7)
 and

 e2i=, = (cos X + i sin X cos Vfr)/(1 -sin2 X sin2 fr) (A 8)

 From (A 5) we may derive a differential equation for X = A/sin X:

 dX A2c X=--2cosXsin2V. (A9) dt sin x I

 Squaring this and using (A 4) we obtain

 (dX/dT)2 = ( -X) (X2A2) (-X2 + X3) (A 10)
 where

 4 Kt -
 T = -L-2,1-. A(A l l)

 The solution of (A 10) in general leads to a hyperelliptic integral of the first kind.

 The nature of these solutions may, however, be seen at once if we notice that

 equations (A 10) resembles the total mechanical energy for an imagined point mass

 moving in one dimension in a potential

 ,VA(X) = (X- ) (X2 -A2) (A2-X2 + X3). (A 12)

 For the particular motions given by (A 10) the total energy vanishes. The potential

 YIA(X) vanishes at X = 1, X = + A and at the real roots of the cubic A2 - X2 + X3.
 This cubic has three roots XO,1, which for 0 < A < A, = 2-3 are all real and
 are given by

 Xn= A+2cos (2nn + 8) (A13a)
 with

 cos a = 1 -- 2(AI/A)2. (A 13 b)
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 Integrable and chaotic motions of four vortices. I 385

 For A < A, we have X1 < X2 < X0. For A = A, the roots X2 and X0 coincide. For
 A > A, the only real root of the cubic, X1, is negative and thus of no interest since
 we must have X > A.

 A2

 0 0.16 0.64 1.00

 2-

 0 0.2 A, A * 0.8 1.0

 FIGURE 8. The dimensionless period KT/L2, equations (A 15)-(A 16), against A (bottom) or
 A2 (top). This is the period of relative motion for four identical vortices for the special
 symmetry discussed in ?5 (b). Al = -23, A* = 2i1CA.

 A more detailed investigation shows that X oscillates between A and 1 for A > A,.
 For A < A, on the other hand X oscillates in one of two intervals: either A < X < X2
 or X0 < X < 1. The former corresponds to motions in the lobes around points P and

 P' in figure 2 a, the latter to the lobes around T and T'. The separatrix in figure 2 a

 arises for A = A,, and the corresponding motions are aperiodic. For A * A, the
 period of the relative motion, T, is given by the hyperelliptic integral of the first kind
 (cf. Byrd & Friedman I97I)

 Lb

 F(A; a,b) dX[(1 -X) (X2-A2) (A2-X2+X3)]-i (A 14)

 as follows: for A > A,
 T= 22(A2L2/K)F(A; A, 1); (A 15)

 forA <A,
 T = (7A2L2/K)F(A; A, X2), (A 16a)

 for oscillations about the P, P'-type configurations in figure 2 a and

 T = (nrA2L2/K) (A; Xo, 1), (A 16b)
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 386 H. Aref and N. Pomphrey

 for oscillations about the T, T'-type configurations. These formulae produce the

 correct limiting expressions for T as A -- 1 and A -- 0, respectively. We have
 evaluated the integral F numerically by using Chebyshev polynomials to produce
 the graphs in figure 8 of the non-dimensionalized period KT/L2 against A for the

 three regimes. The analogous graphs for three vortices appeared as figure 1. We find

 numericallythattheperiodforA > Ac has a minimum atA = A* = V2Ac - 0.54433.
 W e have no intuitive, mechanistic explanation for the existence of such a minimum.
 The existence of this minimum in the period seems to preclude any simple corre-

 spondence (such as a direct mapping) between the three-vortex problem and this

 special case of four-vortex motion although, as we have already noted, qualitative
 features of the relative motion are very similar for the two cases.

 The aperiodic case, A = Ac, which shows up as a singularity of the period in

 figure 8, can be solved in terms of elliptic integrals of the third kind. The resulting
 formulae are lengthy and not very informative and will not be reproduced here.
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