
 

 

Spiking neuronal networks (SNNs) are widely used in computational neuroscience, from biologically realistic modeling of local cortical 
networks to phenomenological modeling of the whole brain. Despite their prevalence, a systematic mathematical theory for finite-sized 
SNNs remains elusive, even for idealized homogeneous networks. The primary challenges are twofold: 1) the rich, parameter-sensitive 
SNN dynamics, and 2) the singularity and irreversibility of spikes. These challenges pose significant difficulties when relating SNNs to 
systems of differential equations, leading previous studies to impose additional assumptions or to focus on individual dynamic regimes. 
In this study, we introduce a Markov approximation of homogeneous SNN dynamics to minimize information loss when translating 
SNNs into ordinary differential equations. Our only assumption for the Markov approximation is the fast self-decorrelation of synaptic 
conductances. The system of ordinary differential equations derived from the Markov model effectively captures high-frequency partial 
synchrony and the metastability of finite-neuron networks produced by interacting excitatory and inhibitory populations. Besides 
accurately predicting dynamical statistics, such as firing rates, our theory also quantitatively captures the geometry of attractors and 
bifurcation structures of SNNs. Thus, our work provides a comprehensive mathematical framework that can systematically map the 
parameters of single-neuron physiology, network coupling, and external stimuli to homogeneous SNN dynamics. 
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