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In the recent years, network science has put the focus on the development of a general framework comprising group inter-
actions for the study of collective behaviors well beyond the limitations of pairwise interactions. In particular, it has provided
a natural pathway towards explosive transitions [2], with examples spanning social contagion, synchronization or game theory.
In this work [1] we show that the sole presence of higher-order interactions could not be sufficient to lead to explosive transi-
tions. What is also crucial is the way in which the nodes interact in groups, and how many nodes of a group are also present in
other groups of the same size. To quantify this, we introduce the intra-order hyperedge overlap T (m), a metric which quantifies
the overlap among the hyperedges of a higher-order network by evaluating the number of nodes shared among the different
hyperedges of the same order m. The metric is well bounded between T (m) = 0 when there is no overlap, and T (m) = 1
when the overlap is maximum. Equipped with this metric, we first study hypergraphs describing higher-order interactions in
various real complex systems, showing that they exhibit a large variety of values of intra-order hyperedge overlap. We then
investigate if and how the different level of intra-order hyperedge overlap of a system affects the emergence and properties of
its collective behavior. In order to do so, we generate a set of synthetic regular structures for all the set of intra-order hyperedge
overlap values {T (2)}. We focus on two radically different dynamical processes, namely social contagion and synchronization
of coupled dynamical systems. The social contagion dynamic is modelled as a higher-order SIS model where the transition from
susceptible S to infectious I can happen via 1−hyperedges with a probability β(1), or via 2−hyperedges with a probability β(2).
As in the standard SIS model, an infected individual can recover with probability µ, and we define the rescaled infectivities as
λ(m) = β(m)/µ. The order parameter is the stationary fraction of infectious population ρ⋆. The second dynamic is a higher-order
Kuramoto model with a different coupling term for each interaction order. In our case, we have 1−hyperedges coupling with
strength σ(1) and 1−hyperedges coupling with strength σ(2), and the order parameter ⟨r⟩ measures the degree of synchroniza-
tion. In Fig. 1, we show that hypergraphs with low intra-order hyperedge overlap undergo explosive transitions, characterized
by a bistable region where both an active/synchronized state and an absorbent/incoherent state coexist. Conversely, hypergraphs
with a intra-order hyperedge overlap larger than a critical value can only exhibit continuous transitions. The similitude between
both phase diagrams in Fig. 1.(a) and Fig. 1.(b) highlight the universal effect generated by intra-order hyperedge overlap in
higher-order structures. In particular, these results reveal that the structural organization of hyperedges shapes the way collective
behaviors emergence in systems with higher-order interactions.
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FIG. 1. Universal effect of intra-order hyperedge overlap on emergent phenomena. (a) Phase diagram for the SIS model. Three phases
emerge as a function of λ(1) and of the hyperedge overlap T (2): an absorbent phase with ρ⋆ = 0, an active phase with an endemic stationary
state ρ⋆ ̸= 0, and a bistability phase, where the stationary state depends on the initial conditions. (b) Phase diagram for the Kuramoto model.
Three phases emerge as a function of σ(1) and T (2): an incoherent phase with low values of ⟨r⟩, a synchronized phase with large ⟨r⟩, and a
bistability phase where the system can be synchronized or not depending on the initial conditions.
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[2] F. Battiston, E. Amico, A. Barrat, G. Bianconi, G. Ferraz de Arruda, B. Franceschiello, I. Iacopini, S. Kéfi, V. Latora, Y. Moreno, et al.,
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