Title:

Equations of Duffing type with a finite number of periodic solutions

Abstract:

In 1983 Nakajima and Seifert proved that the equation

$$u'' + cu' + \alpha u + \beta u^3 = B\sin t$$

has a finite number of 2π -periodic solutions if c > 0 and $\beta > 0$. After presenting the original proof I will discuss some variants of the result obtained recently in collaboration with Xingchen Yu.

As a consequence, for the nonlinear equation, $\beta \neq 0$, we can conclude that the number of 2π -periodic solutions is finite if $c \neq 0$ or if c = 0, $\beta < 0$ and $\alpha \leq 1$. These conditions on the parameters are optimal, as can be checked in the autonomous equation (B = 0).