MORE LIMIT CYCLES FOR COMPLEX DIFFERENTIAL EQUATIONS WITH THREE MONOMIALS

M.J. Álvarez

Departament de Matemàtiques i Informàtica, Institut IAC3, Universitat de les Illes Balears.

In 2015 it was proved that for complex differential equations with three monomials, $\dot{z} = Az^k \bar{z}^l + Bz^m \bar{z}^n + Cz^p \bar{z}^q$, with k, l, m, n, p, q non-negative integers and $A, B, C \in \mathbb{C}$, there is no upper bound for their number of limit cycles. More concretely, if $N = \max(k+l, m+n, p+q)$ and $H_3(N) \in \mathbb{N} \cup \{\infty\}$ denotes the maximum number of limit cycles of the above systems with this restriction, it was proved that for $N \geq 3$ odd, $H_3(N) \geq (N+3)/2$.

In this talk I will present some improvements of this lower bound, proving that for $N \ge 4$, $H_3(N) \ge N-3$ and that for some values of N this new lower bound is N+1. Finally, I will show our attempts to determine $H_3(2)$.

This is a join work (still in progress) with B. Coll, A. Gasull and R. Prohens.