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All dynamical systems in nature display transient dynamics, where a system experiences a

regime shift after crossing a tipping point or critical threshold (Sche�er 2009; Strogatz 2015). The

emergence of marine photosynthetic bacteria 2.5 billion years ago triggered a transition from low

to high oxygen in the atmosphere (Margulis and Sagan 1997; Lyons et al. 2014), and the disruption

of the thermal-haline marine current in the Atlantic 12000 years ago (the Younger-Dryas period)

reversed the recovery from the last Glaciation period (Sche�er 2009; Cheng et al. 2020). Even

the periodic dance of planets around the Sun is predicted to derive into a chaotic dynamic in two

billion years, likely leading to a collision between Earth, Mars, Venus, or Mercury (Laskar and

Gastineau 2009; Hayes 2007), although by then the Sun will have expanded as a red star and will

likely engulf the rocky planets (Schroder and Smith 2008; De et al. 2023). Transient dynamics

are, thus, unavoidable in the study of natural systems. However, it is very di�cult to predict the

tipping points causing a regime shift(Seekell 2016; Sche�er et al. 2009).

Here, we introduce a new theoretical framework to predict tipping points. The approach builds

on two assumptions. First, a process in a dynamical system is considered active if it changes

substantially within a �nite observational timescale that depends on the speci�c study of interest.

Second, the substantial change is normalized to a reference value of the variable impacted by the

process. As a consequence, processes governing the dynamics of a system can become inactive over
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an observation time, and tipping points are reached when the processes switch o� or on. These

two principles were encoded mathematically, de�ning dynamic weights: contributions relative to

reference values of the dynamic processes to the rate-of-change of agents in the system for a �nite

observational time. Operationally, processes were considered active if their weights were above a

critical threshold. Tipping points were de�ned as reaching critical thresholds that activated or

inactivated processes. This Finite Observational Dynamics Analysis Method (FODAM) method

predicted that a system with n underlying dynamic processes could display 2n di�erent dynamic

regimes.

We illustrate the application of the general method using a classic predator-prey system mod-

eled by a Lotka-Volterra dynamical system. To make the choice of conditions more speci�c, we

focused on the interaction of bacteria and bacteriophages. The approach identi�ed 16 (24) dynamic

regimes depending on which processes were active within the observational timescale of the study.

The critical thresholds obtained were also applied to investigate the resilience of the system to

perturbations, showing a dramatically di�erent response when perturbations crossed these values.

The discussion section further elaborates on how to use this approach to investigate real systems

with many variables. We also elaborated on how the assumptions lead to bounded theoretical

errors that can be reduced based on the needed experimental resolution.
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