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Graph-structured data provide a comprehensive description of complex systems,
encompassing not only the interactions among nodes but also the intrinsic features that
characterize these nodes. These features play a fundamental role in the formation of
links within the network, making them valuable for extracting meaningful topological
information. Notably, features are at the core of deep learning techniques such as Graph
Convolutional Neural Networks (GCNs). GCNs aggregate information from the neigh-
borhood of each node in a graph, allowing them to propagate information and capture
the graph topology. An implicit assumption made by GCNs is that there must exist cor-
relations between connected (or topologically close) nodes in the graph so that they are
similar, and similar nodes should share common features. Only when this is the case,
GCNs can detect patterns in the data. Despite their undeniable effectiveness, GCNs are
criticized for their lack of explainability, a problem referred to as the black box prob-
lem. To solve the black box problem, we must first understand in detail the structure of
the data that feeds GCNs.

In this paper [1], we introduce a simple yet comprehensive framework to describe
real graph-structured datasets. It employs the S1 model, also known as the geometric
soft configuration model [2, 3], to describe the network between nodes G n, reflecting
the topology. The key aspect of our proposed framework is to treat features as tangible
entities and to view the set of nodes and their features as a bipartite graph Gn, f connect-
ing nodes to features. The objective is to develop a model for this bipartite graph Gn, f
that is correlated with the network of topology Gn. To achieve this, we propose a geo-
metric model called the bipartite-S1 model [4, 5] where the similarity space is shared
between Gn and Gn, f . In this model, similar to the S1 model, each node is assigned two
hidden variables (κn,θn), where κn denotes the expected degree of the node in the bi-
partite graph, and θn is its angular coordinate on a one-dimensional sphere, equal to that
of the node in Gn. Similarly, features are equipped with two hidden variables (κ f ,θ f ),
indicating their expected degrees and angular positions in the common similarity space.
Then, nodes are connected to features with a probability depending on their distance.
As the S1 model is isomorphic to a purely geometric model in the hyperbolic plane, the
H2 model, we can map the bipartite-S1 model to the hyperbolic plane as well.

Through this framework, we can identify correlations between nodes and features
in real data and generate synthetic datasets that mimic the topological properties of their
connectivity patterns. The approach provide insights into the inner workings of GCNs
by revealing the intricate structure of the data. In the experimental results, we compare
the topological properties of real networks, including Cora, Facebook, Citeseer, and
Chameleon with their synthetic counterparts generated by the bipartite-S1 model and



demonstrate that the model accurately replicates the topological features of these real
networks.
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