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1Departament de Fı́sica de la Matèria Condensada and Institute of Complex Systems (UBICS)

Universitat de Barcelona, 08028 Barcelona, Spain
22Center for Collective Dynamics of Complex Systems, Binghamton University, Binghamton, NY 13902-6000, USA

3Waseda Innovation Lab, Waseda University, Shinjuku, Tokyo 169-8050, Japan

We consider a system composed of i = 1, N agents
embedded in a fully connected graph, where links repre-
sent social ties. Each agent possesses an internal network
consisting of n beliefs on different topics labeled as µ =
A,B,C, .... Beliefs sharing the same label form a complete
graph, but there are no connections between beliefs with dif-
ferent labels belonging to different agents (see Fig ??(Top)).
We assume that beliefs can internally influence each other,
and that are connected forming one of the following three
structures:

• Complete graph: All beliefs within an agent are intercon-
nected.

• Ring: An example of a very sparse belief system.

• Star: One core belief, and all other beliefs are attached to
it.

Fig. 1. (Top) Illustrative scheme of two connected agents
with three internal beliefs A,B, and C forming a triangle.
(Bottom) Contributions to the total energy for every possible
pair of connected beliefs. Colors represent the belief states.
J is the coupling factor, z is the average number of connec-
tions (different for the external and the internal terms), and
α is the neutrality parameter.

The total belief adjacency matrix can be represented by
the Cartesian product of the external and internal networks:
Aext�Aint. Beliefs can exist in one of the following states,
represented by two-dimensional vectors (introduced in [? ]):

• Sµ = (1, 0); positive

• Sµ = (0, α); neutral

• Sµ = (−1, 0); negative

Here, α is a dimensionless parameter, and the index µ
refers to any belief in the system into any agent of the sys-
tem. Interactions between pairs of connected beliefs aim to
minimize the following Ising-like Hamiltonian:

H = − J

zext

∑
〈µ,ν〉ext

Sµ · Sν − J

zint

N∑
i=1

∑
〈µ,ν〉int

Sµ · Sν, (1)

Fig. 2. Absolute average value for the magnetization of a
particular belief in the stationary state as a function of the
temperature T for a system of N = 500 agents with an in-
ternal belief network being (a) a clique, (b) a ring, (c) a star
(core), and (d) a star (periphery). Line points correspond to
results obtained by averaging 100 Metropolis Monte Carlo
simulations, while continuous lines in (a) and (b) correspond
to the annealed mean-field approximation.

Here, zext is the external number of connections (N − 1)
between agents, and zint corresponds to the average inter-
nal number of connections, which depends on each internal
topology. The first term of the Hamiltonian extends over
connected beliefs in different agents, while the second term
covers the internal connections of all agents.

We calculate the contribution to the energy of each pair
of connected beliefs as the scalar product of the two opinion
vectors, summing all contributions to compute the global in-
ternal energy (see Fig. 1(Bottom)). The positive coupling
constant J is set to one for simplicity, but we normalize it by
the average number of connections in each term to maintain
comparability between internal and external contributions.
As the Hamiltonian operates over nearest neighbors, its form
reflects the idea that holding an opinion different from those
of your connected peers has a cost, whereas agreement with
neighbors decreases the system’s energy asymmetrically for
extremists and neutral agents. Having internally different



connected belief states has also an energy cost, in this case,
related to the phenomenon of cognitive dissonance. By reg-
ulating the parameter α, we investigate the effects of neutral
beliefs on the state of the system.

We introduce temperature to the model to account for ex-
ternal social agitation and high inner cognitive dissonance.
The stationary state and dynamics of the model are studied
using analytical approaches and Monte Carlo simulations.

A significant increase in the critical point is observed by
merely adding a second internal belief to the agents. Beyond
this point, adding more beliefs changes the critical tempera-
ture, depending on the internal topology of the system (see
Fig. 2).

Additionally, we perform Monte Carlo simulations near

the critical temperature with a mix of 50 percent agents of
two different internal topologies. We find that the same type
of agents behaves differently depending on whether they are
mixed with one or another type.
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