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This session will have two main parts:

@ An Introduction to data fitting methods
@ An application example to the data from the paper Social
copying drives a tipping point for non-linear population
collapse.
For the first part we will heavily (and rather literally) use the paper

PHILOSOPHICAL THE ROYAL A
TRANSACTIONS ¢y~ ['Epy /)

Fitting ordinary differential equations to short time
course data
Daniel Brewer, Martino Barenco, Robin Callard, Michael Hubank and Jaroslav

Phil. Trans. R. Soc. A 2008 366, doi: 10.1098/rsta.2007.2108, published 28
February 2008

To avoid plagiarism, almost literal pieces of this paper
will be written in italics, in quotation mode and different

colour (as this text).



Introduction

Ordinary differential equations (ODEs) are one of the
most popular frameworks for describing the temporal evo-
lution of a wide variety of “real life”. Such models take
the form

d x(t)
dt

where x(t) is a vector of variables evolving with time; f is
a vector field; and « denotes an (in principle optional) set
of parameters.

= f(x(t), t,a)

Depending on the model, some parameters can be set empirically,
derived from first principles, or measured directly. However, in
real-life problems, it is often usual, that many parameters cannot
be determined by either of these approaches.
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Introduction (continued)

In such situations, one can attempt to estimate the
unknown parameters from experimentally measured data.
In most cases, these data consist of time series, or time
courses, of repeated measurements of one or more experi-
mental variables.

One can fit such data by systematically varying the pa-
rameters to determine a set of parameters which minimize
the difference between a solution of the differential equa-
tion and the data.

A variety of approaches exists to fit data to ODE mod-
els. Unfortunately, many of these are poorly documented
in the literature, and may only be described in the context
of specific applications in specialist publications.
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Introduction (continued)

Such methods can be classified in a distinction simi-
lar to that between shooting and collocation methods for
boundary value problems as follows:

@ The ODE is solved using a conventional iterative
numerical integrator (such Runge—Kutta)

@ or whether a global solution is approximated using
splines or related methods.

Although global methods are now generally preferred
for solving boundary value problems, they are poorly de-
veloped in the context of fitting ODEs to data. In such
cases, shooting is generally more popular and well known.
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The hour of truth

Any method for estimating model parameters from
data requires two main ingredients.

@ An error function Ep(«) that quantifies the
difference between a model with parameters o and
the (observed) data, and

@ an optimization method that finds the value of «
that minimizes Ep(c).
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The hour of truth: minimizing the error

Except for error functions that have particular features
(such as those occurring in linear least squares problems),
the minimization stage requires an iterative approach.

Typically, the minimization method can be chosen in-
dependently of the construction of the error function.

In some cases, however, an integrated approach can
have advantages.

LI. Alseda (UAB) Introduction to data fitting methods 5/41



The hour of truth: minimizing the error

A wide variety of standard minimization algorithms ex-
ist:

@ When Ep(«) has no, or only a few, local minima
apart from the global minimum, then methods that
iteratively step downhill, such as the Nelder—Mead
simplex method or the Levenberg—Marquardt
method work well.

@ If, on the other hand, Ep(«) has a more complex
landscape, stochastic search algorithms such as
simulated annealing, Markov Chain Monte Carlo or
genetic algorithms are often necessary. These are
usually computationally very demanding.
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The hour of truth: minimizing the error

Attempting to estimate the parameters a of the ODE
from observed data presents additional difficulties. These
are mainly centred on the construction and efficient com-
putation of a suitable error function. This is because we
cannot directly determine how well a given set of data

points
D = {)?(t,-) : /':1,2,...,n}

fits the ODE.
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Common strategies for the construction and minimization

of error functions: Solution-based approaches

By far the better known, and arguably statistically more
valid, approach is to solve numerically the EDO to obtain
an approximate solution u(t).

Observe that this is meant to provide a model for the
data.

Hence, the points X(t;) should be close to u(t;).

It is thus natural to base the error function Ep(«) on
the difference between x(t;) and u(t;). The most common
choice is to use the least squares error

n

Ep(a) = Y [Ix(t;) — u(t;)]?

i=1

possibly weighted by the reciprocal of the noise level at
each data point.
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Common strategies for the construction and minimization

of error functions: Solution-based approaches

It is also possible to use this approach even if we cannot
measure all of the components of the state vector X(t;).
In such a case, the norm is just taken over the measured
components. As long as we have a sufficient number of
data points to ensure that Ep(«) has a non-degenerate
minimum, it may still be possible to estimate parameters
successfully.

When measurement errors are independently normally
distributed, Ep(c) will be the logarithm of the likelihood of
the data (or more strictly, log (likelihood)), and minimiz-
ing equation Ep(«) is equivalent to maximum likelihood
estimation of the parameters.
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Common strategies for the construction and minimization

of error functions: Solution-based approaches

Observe that when f has linear dependence on its pa-
rameters, the above error function given is a quadratic
form. The minimum in such a case can be obtained ef-
ficiently by using algebraic methods such as QR decom-
position. This is much faster and more robust than the
iterative optimization algorithms mentioned above.

For ODEs this possibility seems irrelevant, however,

since even if the vector field f depends linearly on the
parameters «, its solution will depend non-linearly on «.
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Common strategies for the construction and minimization

of error functions: Solution-based approaches

The most popular method of solving the differential
equation is to use a standard numerical integration scheme
such as Runge—Kutta, possibly with adaptive step-size con-
trol. Such an approach immediately encounters a major
potential obstacle: we very rarely know the correct initial
condition x(tg) or we have very bad approximations to it
(specially when the EDO is highly non-linear).
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Common strategies for the construction and minimization

of error functions: Shooting
Playing with the initial condition

A better approach is to regard the initial condition as
an additional set of unknown parameters which are incor-
porated in the minimization scheme. We thus regard the
error function Ep(a, x(tp)) as depending on both o and
X(to).

This type of approach appears to have first been tried
by Bellman et al. (1967) and similar ideas appear in Swartz
& Bremermann (1975). It is closely related to shooting
methods for boundary value problems, including methods
used for finding periodic orbits and other special solutions
(e.g. Golub & Ortega 1992; Kuznetsov 1995). It can work
well if data are plentiful and noise levels are low.
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Common strategies for the construction and minimization

of error functions: Shooting
Playing with the initial condition

However, if we only have a few time points,
Ep(a, x(to)) can have a large number of local minima sep-
arated by steep peaks and ridges.

As we shall see below, it is difficult to find the global
minimum in such cases. One possible extension is to use
multiple shooting methods where the solution is broken
down into a number of successive segments, with appropri-
ate matching at the joints (e.g. Kuznetsov 1995; Timmer
et al. 2000). This can improve results, but our experience
with even moderately complex models is that it can suffer
from similar problems to simple shooting.
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Other common strategies for the construction and

minimization of error functions

o Collocation methods An alternative to using
iterative numerical integration is to represent the
solution globally using a set of convenient basis
functions such as piecewise polynomials (usually of
low order); that is splines.

A list of possible mixed methods is:

@ Nested minimization and collocation
This is closely related to shooting, except that
instead of integrating the differential equation using
a method such as Runge—Kutta, we use the Newton
method to the splines solution at each candidate
value of the parameters. This Newton solver is then
nested inside an optimization method that
iteratively minimizes Ep(«). This is potentially very
slow, and we are not aware of this method appearing
in the published literature.
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Other common strategies for the construction and

minimization of error functions

@ Simultaneous minimization and collocation
It is possible to construct combinations of
gradient-based minimization and Newton root
solving which essentially simultaneously finds the
splines solution and minimizes Ep(c).

© Dual minimization
This consists in dividing the error function Ep(«)
into two terms, and minimizing them simultaneously.
o Derivative approximation methods
All of the methods presented so far use the least
squares error function. An alternative is to minimize
the discrepancy between the r.h.s. and |.h.s. of the
differential equation at a selected number of data
points.
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A comment on the linearity in parameters

In practice, the minimization of the error function can
be time-consuming. One would thus like to use specific
features of a particular class of models to develop a more
efficient algorithms. In particular, many models in physics,
chemistry, engineering and biology are linear in their pa-
rameters.

Recall that if a model is linear in its parameters, then
the objective function is a quadratic form and a least
squares estimate can be obtained in one step (i.e. non-
iteratively) using standard linear algebra techniques such
as QR decomposition. This is much faster than the iter-
ative minimization routines required for models that are
non-linear in parameters.
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A comment on the linearity in parameters

It seems difficult, however, to make use of linearity
with respect to parameter’s for ODE models, since even
if the vector field depends linearly on the parameters, the
solution will typically exhibit non-linear dependence.
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Part |l: The data

year pop. year pop. year pop.
Jollapse phase
1081 36 1995 10327 2000 9762 5150001 ! 1
1082 200 1996 11328 2010 11271
1083 546 1997 11725 2011 8688

1984 1200 1998 11691 2012 7571
1985 1200 1999 10189 2013 6983
1986 2200 2000 10537 2014 4778
1987 1850 2001 11666 2015 2067
1988 2861 2002 10122 2016 1586
1989 4266 2003 10355 2017 793
1990 4300 2004 0168 2018 1225
1991 3050 2005 13988 2019 1355 AP
1992 6174 2006 15329 2020 1837 22222593888
1993 9373 2007 14177 2021 2319 TTTTTTTTTT o
1994 10143 2008 13031

10000
Initial phase

of perturbation
phase

5000

Population density at patch

= B

The Audouin’s population data at La Banya from 1981 to 2021. The period 1981-1997, labelled as initial phase,
was characterised by a logistic growth due to the absence of predators and the fact that the population did not
approach the expected equilibrium. Predators (foxes) colonized the patch in 1997, causing a qualitative change in
the dynamics and a decreasing tendency in the population until 2004, with a large fluctuation in 2005-2006. The
period 2006-2017, labelled as collapse phase, was characterised by a fast population decline due to dispersal until
2017, when predators were not found at all in the patch. Notice that after the absence of predators from 2017
onwards, the population of birds started increasing again (2018-2021).
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The Model

%x(t) = (9 +wx(t)[1- Xﬁf) —ex(t) — [px(t) + W(x(t))]

= [ex(t)| — | Bx(t)*| — | AV(x(t),p,0,0)

Immigration, Nonlinear Dispersal by social
growth and competition copying
death term
Parameter Units Range or value Ecological meaning or description
9 year7]' [0, +00) Intrinsic reproduction rate
w year_1 [0, +00) Rate of entry of individuals from other patches
K birds [1, +00) Carrying capacity
5 yealr71 0.11 Death rate estimated from field data
P year_l Rt Linear (exponential) dispersal rate
A year71 R Dispersal rate by social copying
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Dynamics after the perturbation.

The migration term: dispersal by social copying

1—E4ir(x,14,0,9) when 0 < x < 4,

1—E4ir(0,,0,0
W(X7:U/707 6) = l—dgixf;é) )
TEalomos) Whenx =0,
where
O+ X\ X
Eaie(x, 1,,6) 1= (’“‘M (1-3)+ 6> o)
and ( 9)
o(x —
0) =z
E(x,0,0) @+0“X—6|7

is an Elliot sigmoid ©-scaled, o—strengthened, and d—displaced. All the
parameters of the dispersal function are non-negative and we have fixed
© := 1000 (this parameter controls the scale in the independent variable
x which is related with the order of magnitude of the carrying capacity
K).
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The parameters

Parameter Units Range Ecological meaning or description
_ . —1 . Population growth rate including death of individuals
@=Dirw=g year (=e2y 4wl (without linear dispersal)
K= 0‘;55 birds [1, +o0) Carrying capacity
x(0) birds [0, K] Initial condition
p=a—p year_l (—00, a] Neat population growth rate including linear
dispersal
B (birds x year)_1 [0, +0) Intrinsic growth rate over the carrying capacity

Parameters concerning dispersal rate by social copying

year_1

=

3

Rt
Rt
RT
Rt

Dispersal rate by social copying
Tendency of dispersal function for small population sizes
Sharpness and smoothness of the dispersal function

Transition between small and large population sizes
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Shapes of the function W(x, u, o, §) used to model social copying behaviour during dispersal. We explore the
ranges of o > 1 (left panel) and o < 1 (right panel) fixing § = 10%.

Left: The brown graph corresponds to o = 0, involving density-independent dispersal. The sigmoidal-like blue
graph has been obtained with (i, o) = (2, 1). The red curve, which is in some sense the limiting graph, is
obtained with (u = 1.2, 0 = 103), The four black curves correspond, from bottom to top, to the following
parameter values: (i1, o) = (1.5, 5), (1, o) = (1.2,10), (1, o) = (1.2, 40), and (i, o) = (1.2, 10%).

Right: The red curve in this case is the limiting graph with o = 0,The blue graph is the same than the one in the
left panel. The black curves have been obtained fixing 4 = 2, and o = 0.65, 0.5, 0.1, 0.05, 0.02, 1072, 10—-3.
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Shapes of the dispersal function W(x, p, o, §) for § = 8 X 10% and (left picture) o = 1 and (right picture)

o = 10. The violet and the blue curves correspond to pt = 0 and p = 1, respectively. The red graph is, in some
sense, the limiting case: p = 100 for the left panel and p = 500 for the right panel. All black curves are organised,
from top to bottom, by increasing value of . Thus, all black curves between the violet and the blue curves

0 I I I
0 2000 4000 6000 80

10000 12000 14000 16000

Population density « at patch

correspond to 11 < 1 while the blue curves between the blue and red curves are obtained for © > 1.
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D(z,p,0,0)

L L L L 1 L L L L
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Population density z at patch

Shapes of the dispersal function W(x, p, o, §) for o = p = 1 and different values of §. Each curve is obtained by
using the value of § given by the x coordinate of the intersection of the blue dashed line with the curve. The
vertical dashed line identifies the curve obtained with § = 10*.
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Model fitting and parameters estimation:

Collapse phase 2006—2017

The solution of the model with 3 fixed to 2.4382635446 X 10_5, and its parameters belonging to the ranges shown
in the above table will be denoted by x(t) = X, A, u,0,8(t), t € [0, 11]. Observe that the solution x(t) depends
on the initial condition x(0) = X, X, u,0,85(0) € [0, K], that must be considered as a free parameter as well.

The observed population of Audouin's gulls at the years 2006 to 2017 is denoted by

(£, £ =0 :11) = Audouin’s_Gulls_Observed_Population_at_year(2006 + £, £ = 0 : 11) =

o [ [2 [B8 [ 81 [6] [71 [8 [9 [10] [11]
[15329, 14177, 13031, 9762, 11271, 8688, 7571, 6983, 4778, 2067, 1586, 793] .

Parameter space and Fitting Function

P :=[0,K] X [0, a] x RT x RT x RT x RT,

F: P> Rt

(x(O),Lp,A,;L,o’, 5) —_— }21:0()((4) - 71'(2))2.
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The fitting of the model

consists in solving

min F(x(0), ¢, A, i, 0, 6)
subject to (x(0), ¢, A, p1,0,68) € 2,
and x(t) € [0, K] for t € [0, 11],

and checking that this minimum is as low as possible to guarantee the validity
of the model.

Observe that
{F(X(O),go,)\,,u, o, 6) :
(x(0), ¢, A, 11, 0, 8) € 2 and x(t) € [0, K] for t € [0, 11]} CR*
has 0 as a lower bound.
Since the map F is continuous on & we could guarantee that the above

minimization problem has at least one solution provided that the parameter
space & is compact.
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Part of the landsca

1000

10000
8000
6000
4000

Quadratic Error

A view of the landscape of the function F around the point (15800, 0.22, 1400, 0, 1, 8740) showing only points
whose F—value is lower than 10000. In the plots we have fixed the following 4 parameters: x(0) = 15800, u = 0,
o =1and § = 8740, A ranges from 1000 to 3000 while ¢ ranges from 0.12 to .

The plot in the next slide shows a zoom of the ‘“valley” of the landscape from the upper picture where a
complicate local minima distribution is seen.
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10000
9000
8000
7000
6000 -
5000
4000
3000

Quadratic Error

9 0.23 2000 ,

0-3 3000
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On the reduction to a compact parameter space %~

We compulsory need a relatively small compact set % C & that
contains the minimum (or equivalently that & \ % does not
contain the minimum) of the function F.

The existence of the compact set .# has two important
consequences:

o First, Bolzano-Weierstrass Theorem tells us that the fitness
function F has a minimum in JZ". Thus, by the choice of 7,
this minimum must be the solution of the above minimization
problem.

@ Second, the reduction of the parameters’ search space from
& to # will make possible the use of standard minimization
algorithms.
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On the reduction to a compact parameter space % (l)

The Grid Searching Method has been implemented (after several
numerical experiments) sparse and anisotropic on a reasonably
small compact subregion of &2 with a relatively small
computational complexity (i.e. the number of evaluations of the
function F). The reduction of the computational complexity of the
grid search is clearly achieved by choosing a sparse grid but also by
the anisotropy. By anisotropy we mean that, for certain
parameters, the step used to construct the grid is not constant. It
rather depends on the zone where the parameter lies, and on the
desired precision in that zone.

At a first step, the ranges of parameters that determine the
compact domain and their sparseness and anisotropy have been
chosen arbitrarily (after several preliminary explorations with low
computational complexity) since we only want to have a rough
idea of the landscape (graph) of the function F on &2\ ¢, and to
find a point from & reasonably close to the optimum.
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The Sparse Anisotropic Grid Search (SAGS)

& = [12726,17932] x [0.12, a] X [300, +o0] x RT x RT x RT C 2
£ = [12726, 17932] x [0.12, ] x [300, 100000] x [0, 600] x [0, 5000] x [0, 159000] C .&, and
A = [12726, 17932] x [0.12, o] x [300, 3000] x [0, 10] x [0, 50] x [0, 20000] C .&.

Sparse Anisotropic Grid Search

Large Domain Grid Search (SALDGS)

ParameterTheoretical Effecti
Range ective . . . .
g Search Range Anisotropic Step Anisotropic Step
x(0) [0, K] [12600, 18800] 200 100
7 (—o0, @]  [0.13,0.34] 0.01 0.05
N Rt 300, 3000] 100 100 when X € [300, 2900],
1000when A € [3000, 100000]
X [ | 0.1 when p € [0,0.9],
0.1when p € [0,0.9], 1 wh € [1,49]
R 0,10 CHIED (5 S iy 621k
Z [0,10] {1 when . € [1, 10] 10 when u € [50, 90],
100when . € [100, 600],
[ ] 0.1when o € [0,1.9],
lwhen o € [0, 10], 2 whe € [2,38]
Rt 0, 50 when o 9 ,
g [ | {5when o € [11,50] 10 when o € [40, 90],
100when o € [100, 5000]
5 RT [0, 20000] 10 1000

Left half: Full specification of the Sparse Anisotropic Grid Search (SAGS). For every parameter it is given the
effective search range together with the step (anisotropic in the case of p and o) used in the search. The SAGS
has explored 14,988,610,560 mesh points or, equivalently, it has evaluated the function F(x(O), O, A, W1, o, 6) at
14,988,610,560 points of the feasible space £2.
Right half: Full specification of the Sparse Anisotropic Large Domain Grid Search (SALDGS). As for the SAGS
case, for every parameter it is given the effective search range together with the step (anisotropic in the case of X,
p and o) used in the search. The SALDGS has explored 34,004,017,950 mesh points in the domain £ .
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Conclusions of the Sparse Anisotropic Grid Search

o F(15800,0.22,1400,0, 1, 8740) = 2602.4358676183260 - - -
and x(15800,0.22,1400,0,1,8740)(t) € [0, K] for t € [0, 11].

@ For every point gcy \ # whose components belong to the
grid described in the table above we have

F(6) > 2664 > F(15800,0.22,1400,0, 1,8740).

@ A Montecarlo exploration on the computer-representable part
of the region .\ .Z, gives

F(6) > F(15800,0.22, 1400, 0, 1,8740)

for every selected point 6co \ Z.
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A useful basic argument towards finding an appropriate

compact domain

Let 6 € P\ 7. Then,
F(6) > F(15800,0.22,1400,0, 1,8740).
Consequently,

arg min F(?) es.
ez
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A useful basic argument towards finding an appropriate

compact domain: The details

To prove the previous lemma we use the following analytical result.

Bounding Lemma

Let f,g: Rt — R be continuous functions, and let x(t) and y(t)
denote the solutions of the differential equations <& x(t) = f(x(t)) and
£ y(t) = g(y(t)) with initial conditions x(0) and y(0), respectively.
Assume that the solution x(t) is defined and non-negative (i.e.

x(t) € RT) for every t in an interval [0, T].

@ Suppose that, x(0) < y(0) and f(x) < g(x) for every x € RT.
Then, y(t) is defined for every t in the interval [0, T], and
x(t) < y(t) for every t € [0, T].

@ Suppose that, 0 < y(0) < x(0) and g(x) < f(x) for every
x € [0, maxe(o, 77 x(t)]. Then there exists a maximal interval
[0, T*] C [0, T] such that y(t) is defined for every t € [0, T*], and
0 < y(t) < x(t) for every t € [0, T*].
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A useful basic argument towards finding an appropriate

compact domain
The trivial proof of x(0) € (12726, 17932)

Let 6 = (ky o, A\, py0,0) € P\ . We start by assuming that
Kk < 12726. By the previous lemma we have,

11

Fry o, A 1,0,8) = | S (x(0) = 7(£))* >/ (7(0) — x(0))* =
¢=0

7(0) — k > 15329 — 12726 > F(15800,0.22, 1400, 0, 1, 8740).

Analogously, if K > 17932,

F("£7907V7)\7/’L70'76) 2 H—TI'(O) 2
17932 — 15329 > F(15800, 0.22, 1400, 0, 1,8740).
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A useful basic argument towards finding an appropriate

compact domain
The not so trivial proof that ¢ > 0.12

Now assume that ¢ < 0.12. We denote by u(t), t € [0,11], the
solution of the model & = $u — Bu? with ¢ = 0.12,

B = 2.43826356697 x 107>, and initial condition u(0) = 17932.
This is a Ricatti Equation that has analytical solution:

(0 PUOen(t)

¢+ Bu(0)(exp(pt) — 1)’
which is clearly defined, non-negative and bounded on the interval
[0,11]. By direct computation, we get

u(1) ~ 13805.1588980 - -- < (1) = 14177,
u(2) ~ 11464.9892996--- < m(2) = 13031,
u(4) ~ 8931.2750 - - - < 7(4) = 11271,
u(5) ~ 8177.851882950--- < m(5) = 8688,
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A useful basic argument towards finding an appropriate
compact domain

The not so trivial proof that ¢ > 0.12

ST (n(f) - u(f))? = 2885.34 -

£e{1,2,4, 5}

Since the function W(x, i, 0,d), as a function of x, is continuous,
differentiable, and strictly positive,

X — BX2 - )\\U(X,M,O', 5) < SBX - BX27

for every x € R*. Then, since x(0) < 17932 = u(0), by the
Bounding Lemma(b) we get that either x(t) is not defined for
every t in the interval [0, 11] (in particular x(t) is not feasible), or

x(0) < u(l) < w(0)

for{ =1,2,4,5.
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A useful basic argument towards finding an appropriate

compact domain
The not so trivial proof that ¢ > 0.12

Hence,

F(H, O, Uy A, U, O, (5) = J Z(X(ﬁ) — 7r(€))2 >

ST @0 -x0)?= Y (x(0) — u(0)? >

£e{1,2,4,5} 0c{1,2,4,5}
2885 > F (15800, 0.22, 1400, 0, 1, 8740).
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The solution and the modelling conclusions

Parameters’ values at the optimum

Parameter Value
x(0) 15670.5560275192783593
% 0.2497248909716255
B 2.43826356697 x 10>
A 1570.2313809039706030
7 0.0
o 0.4904756364357690
) 8944.2282749675759987

Quadratic Error =

2566.999667640135158
F(x(0), 0, A, p1,0,6)
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The solution and the modelling conclusions

Population Data

Year

15,000 B

Observed  Predicted =

2006 15329 15670.55 §-
2007 14177 13688.02 ® 10,000

> 10, i
2008 13031 12294.89 =
2009 9762 11200.30 é
2010 11271 10230.07 s
2011 8638 9203.86 'S 5,000 -
2012 7571 7775.39 2
2013 6983 6167.47 &
2014 4778 4633.11 )
2015 2067 3176.01 3006 2(;08 2(;10 2(;12 20‘14 20‘16
2016 1586 1740.89 year
2017 793 252.86
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The solution and the modelling conclusions
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x: population size at patch
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