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Departament de Matemàtiques
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Introduction

Deterministic optimization methods form a crucial category of
mathematical techniques employed to find the optimal solution to
a given problem with well-defined parameters and constraints. In
contrast to stochastic optimization methods, which incorporate
randomness and uncertainty into the decision-making process,
deterministic optimization focuses on solving problems where all
the variables and parameters are precisely known.

The primary objective of deterministic optimization is to identify
the best possible solution from a finite set of feasible alternatives,
taking into account specific constraints and objectives.
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Introduction (II)

These methods are widely utilized in various fields, including
engineering, operations research, economics, finance, and
management, where making informed and efficient decisions is
paramount.

The fundamental principle underlying deterministic optimization is
to mathematically model a real-world problem, incorporating
relevant constraints and defining an objective function that needs
to be either maximized or minimized. The challenge then lies in
navigating through the solution space to pinpoint the optimal
values for the decision variables.
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Introduction (III)

Common deterministic optimization methods include linear
programming, integer programming, nonlinear programming, and
convex optimization. Linear programming, for instance, deals with
linear relationships among variables and is extensively applied in
resource allocation, production planning, and transportation
logistics. Integer programming extends this approach to problems
where decision variables are restricted to integer values, often
encountered in project scheduling and network design.

Nonlinear programming methods are employed when the
relationships among variables are not strictly linear, allowing for
more intricate models. Convex optimization, on the other hand,
addresses problems where the objective function and constraints
are convex, enabling the application of efficient algorithms to find
optimal solutions.
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Introduction (IV)

Deterministic optimization methods play a pivotal role in
addressing complex decision-making challenges, contributing to
enhanced efficiency, resource utilization, and overall system
performance. As technology advances and computational
capabilities grow, these methods continue to evolve, offering
powerful tools for tackling a wide array of real-world problems.
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Introduction — A word of caution
The graph of the “easy” function x(x + 0.2) + cos(14.5x − 0.3)
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Remark

Unless we know that the minimum is contained in the “valley” x ∈ [−0.41, 0]
we will not find it with deterministic methods.
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Unconstrained minimization for non-differentiable
functions: A direct search method

The recommended algorithm is the Nelder–Mead method (also
downhill simplex method, amoeba method, or polytope method).
It is a direct search method (based on function comparison) and is
often applied to nonlinear optimization problems for which
derivatives may not be known.

See
https://en.wikipedia.org/wiki/Nelder-Mead_method
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Descent Methods for differentiable functions

For this part we follow:

Numerical mathematics, Alfio Quarteroni, Riccardo Sacco,
Fausto Saleri, Texts in Applied Mathematics 37, Springer
Science, 2006.

An informal description of descent methods

is an iterative procedure that can be formulated as follows: given
an initial vector x (0) ∈ Rn, compute for k ≥ 0 until convergence

x (k+1) = x (k) + αkd
(k),

where d (k) is a suitably chosen direction and αk is a positive
parameter called stepsize that measures the step along the
direction d (k).
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Descent Methods for differentiable functions

Descent Direction

The direction d (k) is a descent direction if
d (k)⊺∇f

(
x (k)

)
< 0 if ∇f

(
x (k)

)
̸= 0,

d (k) = 0 if ∇f
(
x (k)

)
= 0.

Descent Method

A descent method is a method x (k+1) = x (k) + αkd
(k), in which

the vectors d (k) are descent directions.
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Descent Methods for differentiable functions

From Taylor Theorem we know that

f
(
x (k) + αkd

(k)
)
= f
(
x (k)

)
+ αk∇f

(
x (k)

)⊺
d (k) + ε,

where ε tends to zero as αk tends to zero. As a consequence, if
d (k) is a descent direction and αk > 0 is sufficiently small,

f
(
x (k) + αkd

(k)
)
< f
(
x (k)

)
,

which justifies the name of a descent direction.

Notice that different choices of descent directions d (k) correspond
to different methods.
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An elementary list of descent methods

Newton’s methods

d (k) = −H−1
(
x (k)

)
∇f
(
x (k)

)
,

provided that H(·) is positive definite within a sufficiently large
neighborhood of an optimal point.

Inexact Newton’s methods

d (k) = −B−1
k ∇f

(
x (k)

)
,

where Bk is a suitable approximation of H
(
x (k)

)
(much in the

spirit of Broyden Method).
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An elementary list of descent methods (II)

The gradient or steepest descent method

d (k) = −∇f
(
x (k)

)
.

This method is thus an inexact Newton’s method, in which
Bk = Id for every k. It can also be regarded as a gradient-like

method, since d (k)⊺∇f
(
x (k)

)
= −

∥∥∥∇f (x (k))∥∥∥2
2
.
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An elementary list of descent methods (III)

The conjugate gradient method

d (k) = −∇f
(
x (k)

)
+ βkd

(k−1),

where βk is a scalar to be suitably selected in such a way that the
directions d (k) turn out to be mutually orthogonal with respect to
a suitable scalar product.
For instance, if we consider the standard scalar product,

0 = d (k)⊺d (k−1) = −∇f
(
x (k)

)⊺
d (k−1) + βkd

(k−1)⊺d (k−1).

Hence,

βk =
∇f
(
x (k)

)⊺
d (k−1)∥∥d (k−1)
∥∥2
2

.
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On the goodness of the stepsize

Selecting d (k) is not enough to completely identify a descent
method, since it remains an open problem how to determine αk in

such a way that f
(
x (k) + αkd

(k)
)
< f
(
x (k)

)
is fulfilled without

resorting to excessively small stepsizes (and, thus, to methods with
a slow convergence).

A method for computing αk consists of solving the following
minimization problem in one dimension:

(1) find α such that φ(α) = f
(
x (k) + αd (k)

)
is minimized.

In such a case we have the following result:
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On the goodness of the stepsize (II)

Theorem

Consider a descent method. If at the generic step k, the parameter
αk is such that φ

(
αk

)
is minimum, then the following

orthogonality property holds:

∇f
(
x (k+1)

)⊺
d (k) = 0.

Unfortunately, except for some very special but relevant cases,
providing an exact solution of (1) is not feasible, since this is a
nonlinear problem. One possible strategy consists of approximating
f along the straight line x (k) + αd (k) through an interpolating
polynomial and then minimizing this polynomial (see the quadratic
interpolation and cubic interpolation methods).

Generally speaking, a process that leads to an approximate solution
to (1) is said to be a line search technique.
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Line Search Techniques

Practical experience reveals that it is not necessary to solve (1)
accurately in order to devise efficient methods. Rather, it is crucial
to enforce some limitation on the admissible values for αk .

The weakest requirement for the stepsizes αk is that the new
iterates x (k+1) satisfy the inequality

f
(
x (k) + αkd

(k)
)
= f
(
x (k+1)

)
< f
(
x (k)

)
for fixed x (k) and d (k).

For this purpose, the procedure based on starting from a
(sufficiently large) value of the step length αk and halve this value
until the above inequality is fulfilled, can yield completely wrong
results because two kinds of difficulties may arise: a slow descent
rate of the sequence and the use of small stepsizes.

The recommended line search techniques put special emphasis in
overcoming these two difficulties/limitations.
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Line Search Techniques (II)
Fighting with slow descent rates

From Taylor Theorem we know that

∇f
(
x (k)

)⊺
d (k) ≈ 1

α

[
f
(
x (k) + αd (k)

)
− f
(
x (k)

)]
.

Hence, ∇f
(
x (k)

)⊺
d (k) can be called the (theoretical) average

descent rate of f at the point x (k) along the direction d (k).

To avoid slow descent rates, we require that the (real) average
descent rate of f at the point x (k) (when moving to a close
candidate x (k+1) = x (k) + αkd

(k)), must be smaller than or equals
to a given fraction σ ∈

(
0, 12
)
, of the (theoretical) average descent

rate of f at x (k) along the direction d (k) :

Anti slow descent rates condition

1

αk

[
f
(
x (k) + αkd

(k)
)
− f
(
x (k)

)]
≤ σ∇f

(
x (k)

)⊺
d (k) < 0
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Line Search Techniques (III)
Fighting with small stepsizes

To avoid small stepsizes, we require that the (theoretical) average
descent rate of f at x (k) + αkd

(k) along the direction d (k), must
be smaller than or equals to a given fraction β ∈ (σ, 1), of the
(theoretical) average descent rate of f at x (k) along the direction
d (k):
Anti small stepsizes condition∣∣∣∣∇f (x (k) + αkd

(k)
)⊺
d (k)

∣∣∣∣ ≤ β

∣∣∣∣∇f (x (k))⊺d (k)

∣∣∣∣
Usual computational choices of σ and β are, σ ∈

[
10−5, 10−1

]
,

and β ∈
[
10−1, 12

]
.
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Line Search Techniques (IV)
On the compatibility of the above conditions

Property

Assume that f (x) ≥ M for any x ∈ Rn. Then, for the descent
method, there exists an interval K = [a,B] with 0 < a < B, such
that for every αk ∈ K , the anti slow descent rates condition and
the antismall stepsizes condition are satisfied, for some σ ∈

(
0, 12
)

and β ∈ (σ, 1).

This property ensures that, under suitable assumptions, it is
possible to find out values of αk which satisfy both the anti slow
descent rates condition and the antismall stepsizes condition.
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Line Search Techniques (V)

Among the most up-to-date strategies to find appropriate stepsizes αk ,
we recall here the

Backtracking techniques

Fix σ ∈
(
0, 1

2

)
and the starting value αk = 1. Then keep on reducing its

value by a suitable scale factor ρ ∈ (0, 1) (backtrack step) until the anti
slow descent rates condition is satisfied.

Other commonly used strategies (slightly more involved) are those
developed by Armijo and Goldstein.

Next we show the

procedure BackTrack
(
σ, ρ, x (k), d (k), f , ∇f

)
pseudocode, which requires σ (usually of the order of 10−4), the scale
factor ρ and the vectors x (k) and d (k) as input parameters, and references
to the function f and to the procedure ∇f which computes the gradient
of f . In output, the code returns a suitable value of αk .
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Line Search Techniques (V)

Algorithm Bactracking for line search

procedure BackTrack(σ, ρ, x (k), d (k), f , ∇f )
fxk ← f(x (k))
AvDRxk ← σ∇f

(
x (k)

)⊺
d (k)

α← 1
fxnew ← f

(
x (k) + αd (k)

) ▷ Initialization

while fxnew > fxk + α · AvDRxk do ▷ Main αk reducing loop

α← ρ · α
fxnew ← f

(
x (k) + αd (k)

)
end while
return α

end procedure
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Descent Methods for Quadratic
and Quadratic-like Functions

The problem of minimizing a

Quadratic Function

f (x) = 1
2x

⊺Ax − b⊺x ,

where A is an n × n real symmetric positive definite matrix and
b ∈ Rn is of remarkable interest because the parameter αk can be
exactly computed.

Analogously, Quadratic-like Functions, have a unique global
minimum and the parameter αk can be well approximated by using
quadratic estimates.
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Descent Methods for Quadratic Functions

It can be checked that f is a quadratic function,

∇f (x) = Ax − b and H(x) = A.

Thus, a necessary condition for x⋆ to be a minimizer for f is that
x⋆ is the solution of the linear system

Ax⋆ = ∇f
(
x⋆
)
+ b = b.

Given a fixed a descent direction d (k), we can determine the
optimal value of the acceleration parameter αk by solving (1).
That is, by finding the point where the function f , restricted to the
direction d (k) at the point x (k) is minimized.
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Descent Methods for Quadratic Functions
Determination of αk

This can be computed simply by setting to zero the derivative with
respect to αk :

0 =
d

dαk
f
(
x (k) + αkd

(k)
)
= d (k)⊺∇f

(
x (k) + αkd

(k)
)
=

d (k)⊺
(
Ax (k) + αkAd (k) − b

)
=

d (k)⊺
(
Ax (k) − b

)
+ αkd

(k)⊺Ad (k).

Equivalently,

αk =
d (k)⊺

(
b − Ax (k)

)
d (k)⊺Ad (k)

.
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Descent Methods for Quadratic Functions
On the explicit error formulae of the iterative method∥∥x (k+1) − x⋆

∥∥2
A
:=
(
x (k+1) − x⋆

)⊺
A
(
x (k+1) − x⋆

)
=∥∥x (k) − x⋆

∥∥2
A
+ 2αkd

(k)⊺A
(
x (k) − x⋆

)
+ α2

kd
(k)⊺Ad (k) =(

1− σk
)∥∥x (k) − x⋆

∥∥2
A
,

with

σk =

(
d (k)⊺r (k)

)2
d (k)⊺Ad (k)r (k)

⊺
A−1 r (k)

,

and r (k) := b − Ax (k) = −∇f
(
x (k)

)
.

Since A is symmetric and positive definite, σk is always positive.
Moreover, it can be directly checked that 1−σk is strictly less than
1, except when d (k) is orthogonal to r (k) (in which case σk = 0).

The choice d (k) = r (k), which leads to the steepest descent
method, prevents this last circumstance from arising.
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Descent Methods for Quadratic Functions
On the explicit error formulae of the iterative method

Kantorovich Theorem

Let A be an n × n real symmetric positive definite matrix whose
eigenvalues with largest and smallest module are given by λmax and λmin,
respectively. Then, for every y ∈ Rn, y ̸= 0,(

y⊺y
)2(

y⊺Ay
)(
y⊺A−1 y

) ≥ 4λmaxλmin(
λmax + λmin

)2
From this theorem we deduce the following error formula for the steepest
descent method for quadratic functions (that corresponds to the choice
d (k) = −∇f

(
x (k)

)
= b − Ax (k) = r (k)):∥∥x (k+1) − x⋆

∥∥2
A
≤ λmax − λmin

λmax + λmin

∥∥x (k) − x⋆
∥∥2
A
.

Then, if A is ill-conditioned (λmin ≈ 0), the error reducing factor for the
steepest descent method is close to 1, yielding a slow convergence to the
minimizer x⋆. This drawback can be overcome by introducing directions
d (k) that are mutually A-conjugate.
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Descent Methods for Quadratic Functions
Mutually A-conjugate directions for ill conditioned matrices

Mutually A-conjugate directions

The directions
{
d (k)

}
k
are said to be mutually A-conjugate if and

only if
d (k)⊺Ad (m) = 0 if k ̸= m.

On the mutually A-conjugate directions properties.
Why to use them . . .

A method for computing the minimizer x⋆ of a quadratic function
which employs mutually A-conjugate directions terminates after at
most n steps if the acceleration parameter αk is selected as in
Slide 23. Moreover, for any k , x (k+1) is the minimizer of f over
the subspace generated by the vectors x (0), d (0), d (1), . . . , d (k), and

r (k+1)⊺d (m) = 0 for every m ≤ k .
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Descent Methods for Quadratic Functions
On the computation of mutually A-conjugate directions for ill conditioned matrices

The A-conjugate directions can be determined by following the
same strategy as in the conjugate gradient method:

x (k+1) = x (k) + αkd
(k), and

d (k+1) = r (k) + βkd
(k), with

βk = − r (k+1)⊺Ad (k)

d (k)⊺Ad (k)
=

r (k+1)⊺r (k+1)

r (k)
⊺
r (k)

where, at initialization, we set d (0) = r (0).
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Descent Methods for Quadratic Functions
On the error of iterative methods employing mutually A-conjugate directions

An iterative method for quadratic functions which employs
mutually A-conjugate directions, satisfies the following error
estimate:

∥∥x (k) − x⋆
∥∥
A
≤ 2

(√
K2(A)− 1√
K2(A) + 1

)k ∥∥x (0) − x⋆
∥∥
A
,

where1

K2(A) := ∥A∥2 ∥A−1∥2 =
λmax

λmin
= ρ(A)ρ

(
A−1

)
denotes the condition number of A in the 2-norm, and ρ(·) denotes
the spectral radius.

1The last two identities are valid only for symmetric positive definite
matrices.
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Penalty and Barrier methods

The idea is to approximate a constrained optimization problem
with a sequence of unconstrained ones whose solutions
approximate the solution of the constrained problem.

In the case of penalty methods the approximation is obtained by
adding a term to the objective function that highly penalizes the
violation of constraints.

Barrier methods search inside the feasible region instead of near
the boundary.

To be more specific, consider the problem

min F
(

#»x
)

subject to gi
(

#»x
)
≤ 0 for i = 1, 2, . . . , ℓ.

where F and the gi ’s are continuous functions from Rn to R.
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Penalty methods

The idea of a penalty function method is to replace the above
problem by an unconstrained problem of the form

Minimize Fβ

(
#»x
)
:= F

(
#»x
)
+ β P

(
#»x
)

where β > 0 is the penalty parameter, and P is a continuous
non-negative function from Rn to R such that P

(
#»x
)
= 0 if and

only if gi
(

#»x
)
≤ 0 for every i = 1, 2, . . . , ℓ.

Example

P
(

#»x
)
=

1

2

ℓ∑
i=1

(
max

{
0, gi

(
#»x
)})2

Observe that each unsatisfied constraint influences P by adding a
penalty equal to the square of the violation.
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In what follows we denote the minimum of Fβ by #»x β, if it exists.

Lemma 1

Let β̃ > β. Then the following statements hold:

1 Fβ

(
#»x β
)
≤ F

β̃

(
#»x β̃
)
.

2 P
(

#»x β
)
≥P

(
#»x β̃
)
.

3 F
(

#»x β
)
≤ F

(
#»x β̃
)
.

Lemma 2

Let #»x ⋆ be a solution of

min F
(

#»x
)

subject to gi
(

#»x
)
≤ 0 for i = 1, 2, . . . , ℓ.

Then, for every penalty parameter β,

F
(

#»x ⋆
)
≥ Fβ

(
#»x β
)
≥ F

(
#»x β
)
.
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The Penalty Theorem

Let
{
βk
}
k∈N be a sequence tending to infinity such that

βk+1 > βk > 0 for every k ∈ N. Assume that the minimum #»x βk of
Fβk

exits and it has been computed for every k ∈ N. Then, any
limit point of the sequence

{
#»x βk

}
k∈N

is a solution of the problem

min F
(

#»x
)

subject to gi
(

#»x
)
≤ 0 for i = 1, 2, . . . , ℓ.
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The algorithm: Initialization Step

Select and fix:

a maximum number of iterates M,

a growth parameter κ > 1,

a small stopping tolerance ε1 > 0,

a second small stopping tolerance ε2 > 0,

an initial value of the penalty parameter β0 > 1, and

choose an initial seed #»x β0 that violates at least one constraint.
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The algorithm: Iterative Step

For every k = 1, 2, . . . ,M do

compute βk = κβk−1,

formulate the augmented objective function Fβk
,

starting from #»x βk−1 , use an unconstrained search technique to
find the point #»x βk that minimizes Fβk

, if possible;

determine which constraints (if any) are violated at #»x βk .
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The algorithm: Stopping Rule

If a point #»x βk does not violate any constraint, then it is a
solution of the problem.

If
∥∥ #»x βk − #»x βk−1

∥∥ < ε1 then stop because of convergence
according to criterium one.

If
∣∣F( #»x βk

)
− F
(

#»x βk−1
)∣∣ < ε2 then stop because of

convergence according to criterium two.

Finally, if k > M and the algorithm did not stop before, halt
the computation with fail (without finding any good
approximation to a solution).
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Barrier function

The idea do a search by interior points of the feasible region. This
is achieved by replacing the initial problem by

Minimize F
(

#»x
)
+ ρB

(
#»x
)

where ρ > 0 is the barrier parameter, and B is a continuous
non-negative function on the interior of the feasible region. This
function can be defined for instrance by

B
(

#»x
)
=

ℓ∑
k=1

−1
gk
(

#»x
) ,

and is valid only for interior points (such that all constraints are
strictly satisfied for all i : gi

(
#»x
)
< 0). Observe that the closer a

point #»x gets to a constraint boundary, then the larger B becomes.
Hence B in a sense is opposite to the exterior penalty functions.
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Why barriers

The interior point methods start with a feasible point and a
relatively large value of ρ which prevents the point from
approaching the boundary of the feasible region.

At each iteration, the value of ρ is monotonically decreased in such
a way that the resultant problem is relatively easy to solve if the
optimal solution of its immediate predecessor is used as the
starting point.
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The Barrier Theorem

The following result is the analogue of the Penalty Theorem, and
gives an alike algorithm to solve the minimization problem with
restrictions.

The Barrier Theorem

Let
{
ρk
}
k∈N be a strictly monotonically decreasing sequence

converging to zero. Assume that, for every k ∈ N, the minimum
#»x ρk of F + ρB exists and it has been computed, and verifies
gi
(

#»x ρk
)
< 0 for every i = 1, 2, . . . , ℓ. Then, any limit point of the

sequence
{

#»x ρk
}
k∈N

is a solution of the problem

min F
(

#»x
)

subject to gi
(

#»x
)
≤ 0 for i = 1, 2, . . . , ℓ.
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Levenberg–Marquardt algorithm. Introduction

The Levenberg-Marquardt algorithm is commonly used for solving
nonlinear least squares problems. It has several key advantages and
characteristics:

Efficiency in Convergence: The Levenberg-Marquardt algorithm
often converges faster than other optimization methods, especially
in cases where the initial guess is far from the optimal solution.
This makes it particularly effective for nonlinear optimization
problems with complex and non-convex objective functions.

Adaptability: The algorithm dynamically adjusts its step size
during optimization, combining features of both the steepest
descent method and the Gauss-Newton method. This adaptability
allows it to perform well across a variety of optimization
landscapes, making it a versatile choice for a broad range of
applications.
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Levenberg–Marquardt algorithm. Introduction (II)

Robustness: The Levenberg-Marquardt algorithm is known for its
robustness in handling noisy or ill-conditioned data. It includes a
damping parameter that helps control the step size during
optimization, preventing large steps that could lead to divergence.

Global and Local Optimization: While it is primarily designed
for local optimization, the Levenberg-Marquardt algorithm can also
provide reasonable results in global optimization scenarios. This
makes it useful when a good initial guess is available but may not
be the global minimum.

Widely Applicable: to a wide range of problems, including
parameter estimation, curve fitting, and optimization in various
scientific and engineering domains. It has found applications in
fields such as computer vision, machine learning, physics, and
finance.
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Levenberg–Marquardt algorithm. Introduction (III)

Inverse Problems: The Levenberg-Marquardt algorithm is
commonly employed in solving inverse problems, where the goal is
to determine the parameters of a mathematical model that best fit
observed data. This is particularly valuable in fields like image
reconstruction, medical imaging, and signal processing.

Implementation Simplicity: Implementing the
Levenberg-Marquardt algorithm is relatively straightforward,
making it accessible to researchers and practitioners. Many
numerical libraries and software packages provide pre-built
implementations of the algorithm, further facilitating its use.
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The Levenberg–Marquardt algorithm
aka damped least–squares

For this part we follow “our way”

Nonlinear Least-Squares Fitting, GSL Documentation.

Wikipedia

As already said, Levenberg–Marquardt algorithm (LMA)
interpolates between the Gauss–Newton algorithm (GNA) and the
method of gradient descent. The LMA is more robust than the
GNA, which means that in many cases it finds a solution even if it
starts very far off the final minimum. For well-behaved functions
and reasonable starting parameters, the LMA tends to be slower
than the GNA. LMA can also be viewed as Gauss–Newton using a
trust region approach.
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LMA — How it works?

The problem consists in,

given a set of m empirical pairs
(
ai , bi

)
∈ R2,

a parameters’ vector x ∈ Rp, and

a parameterized model function f : R× Rp −→ R,

find the parameters x of the model curve so that the sum of the
squares of the deviations

Φ(x) :=
1

2

m∑
i=1

(
bi − f

(
ai , x

))2
is minimized.

Ll. Alsedà (UAB) Deterministic minimisation algorithms 43/61



Introduction Direct Search Descent Methods Quadratic Descent Penalty and Barrier Levenberg–Marquardt Fitting Audouin’s

LMA — How it works?

The function Φ can be re-written in vector notation as

Φ(x) :=
1

2

m∑
i=1

φi (x)
2

by introducing the function φ : Rp −→ Rm defined by

φ(x) :=
(
b1 − f

(
a1, x

)
, b2 − f

(
a2, x

)
, . . . , bm − f

(
am, x

))
.
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LMA — How it works?

In trust region methods, the objective (or cost) function Φ is
approximated by a model function Φk(δ) in the vicinity of some
point xk .

The model function is often quadratic; being simply a second order
Taylor series expansion around the point xk , i.e.:

Φ
(
xk + δ

)
≈ Φk(δ) = Φ

(
xk
)
+∇Φ

(
xk
)⊺
δ +

1

2
δ
⊺
HΦ
(
xk
)
δ

where ∇Φ
(
xk
)
= J

(
φ(xk)

)⊺
φ(xk), J

(
φ(xk)

)
is the Jacobian of φ at

the point xk , and HΦ
(
xk
)
= J

(
φ(xk)

)⊺
J
(
φ(xk)

)
is the Hessian

matrix of Φ at the point xk .

Observe that J
(
φ(xk)

)
is a m × p matrix and HΦ

(
xk
)
is a p × p

matrix.
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LMA — How it works?

In order to find the next step δ, the algorithm minimizes the model
function Φk(δ), but search for solutions only within a region where
we trust that Φk(δ) is a good (quadratic) approximation to the
objective function Φ(xk + δ).

In other words, we seek a solution of the trust region subproblem:

min
δ∈Rp

Φk(δ) = Φ
(
xk
)
+
(
J
(
φ(xk)

)⊺
φ(xk)

)
δ +

1

2
δ
⊺
HΦ
(
xk
)
δ

such that ∥Dkδ∥ ≤ ∆k , where ∆k > 0 is the trust region radius,
and Dk is a scaling matrix.

If Dk is the identity matrix, then the trust region is a ball of radius
∆k centered at xk .
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LMA — How it works?

This strategy divides every iteration of the algorithm into two
problems:

A minimize the function Φk(δ) within the trust region, and

B find a good trust region. That is, a region where the solution
δk of (A) verifies Φ

(
xk
)
> Φ

(
xk + δk

)
. Fortunately, in the

spirit of backtracking algorithm in dimension one, if the trust
region is too big and the objective function does not decrease,
the computations can be re-done with a smaller trust region
until the goal Φ

(
xk
)
> Φ

(
xk + δk

)
is achieved.

NOTE: In some sense the trust region algorithm is a
multi-dimensional backtracking procedure.
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On the trust region subproblem
Once a δk is computed (by minimizing Φk in the trust region), it is
checked whether or not Φ

(
xk + δk

)
reduces the value of objective

function Φ
(
xk
)
. A useful statistic for this is to look at the ratio

ρk :=
Φ
(
xk
)
− Φ

(
xk + δk

)
Φk(0)− Φk

(
δk
)

where the numerator is the actual reduction of the objective function due
to the step δk , and the denominator is the predicted reduction due to the
model Φk .

If ρk is negative, the step δk increases the objective function and so
it is rejected. When a step is rejected, the trust region is made
smaller and the TRS is solved again.

If ρk is positive, then we have found a step which reduces the
objective function and it is accepted.

If ρk is close to 1, then this indicates that the model function is a
good approximation to the objective function in the trust region,
and so on the next iteration the trust region is enlarged in order to
take more ambitious steps.
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On the solution of minδ∈Rp Φk(δ)

We use the Gauss-Newton Method to find zeros of the gradient of
the model function:

0 = ∇Φk(δ) =

∇
(
Φ
(
xk
)
+
(
J
(
φ(xk)

)⊺
φ(xk)

)
δ +

1

2
δ
⊺
HΦ
(
xk
)
δ
)
=

HΦ
(
xk
)
δ + J

(
φ(xk)

)⊺
φ(xk).

Hence,
δk = −HΦ

(
xk
)−1

J
(
φ(xk)

)⊺
φ(xk),

which is the descent direction of the Newton Method (see
[Quarteroni et al]).

Since we never, never, never (and in case of doubt never) have to
invert a matrix, the direction δk is better computed by solving the
normal equations system:

J
(
φ(xk)

)⊺
J
(
φ(xk)

)
δk = HΦ

(
xk
)
δk = −J

(
φ(xk)

)⊺
φ(xk)
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On the solution of minδ∈Rp Φk(δ) (II)

Levenberg’s contribution is to replace the above system by a
“damped” version of it:(

J
(
φ(xk)

)⊺
J
(
φ(xk)

)
+ µkD

⊺
kDk

)
δk = −J

(
φ(xk)

)⊺
φ(xk)

where µk is the non-negative damping factor, which is adjusted at
each iteration.

Observe that:

if reduction of Φk is rapid, a smaller value of µk can be used,
bringing the algorithm closer to the Gauss–Newton algorithm
(when Dk is the identity matrix).

If an iteration gives insufficient reduction in the residual, µk

can be increased, giving a step closer to the gradient-descent
direction (again when Dk is the identity matrix).

Ll. Alsedà (UAB) Deterministic minimisation algorithms 50/61



Introduction Direct Search Descent Methods Quadratic Descent Penalty and Barrier Levenberg–Marquardt Fitting Audouin’s

On the solution of minδ∈Rp Φk(δ) (III)

Explanation: Recall that the gradient of Φ
(
xk + δ

)
with respect

to δ is J
(
φ(xk)

)⊺
φ(xk). Therefore, when Dk = Id and µk is large,

the step δk (i.e. the solution of the above system) is well
approximated by − 1

µk
J
(
φ(xk)

)⊺
φ(xk) which goes approximately in

the direction opposite to the gradient.

The damping parameter is usually updated by multiplying or
dividing it by a factor ν > 1.

Note

Fletcher proposed to replace the matrix D⊺
kDk with the diagonal

matrix consisting of the diagonal elements of J
(
φ(xk)

)⊺
J
(
φ(xk)

)
.

That is with diag
(
J
(
φ(xk)

)⊺
J
(
φ(xk)

))
.
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Fitting of the first epoch parameters’ for the
Audouin’s gulls: the Model

d

dt
x(t) = αx(t)− βx(t)2

with parameters

Parameter Units Range or value Ecological meaning or description

ϑ year−1 [0,+∞) Intrinsic reproduction rate
ω year−1 [0,+∞) Rate of entry of individuals from other patches

K = α+ε
β

birds [1,+∞) Carrying capacity

ε year−1 0.11 Death rate estimated from field data

α = ϑ+ ω − ε year−1 (−∞, ϑ+ ω]
Population growth rate including death of
individuals (without linear dispersal)

x(0) birds [0,K ] Initial condition

β (birds × year)−1 [0,+∞) Intrinsic growth rate over the carrying capacity
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Model fitting and parameters estimation
Initial phase 1981–1997

The model in the initial phase is a particular case of a Ricatti
Equation with constant coefficients. Its closed analytical solution is

Lemma (A Ricatti Equation with constant coefficients)

Since β must be non-negative, the solution x(t) of the above model is:
If α ̸= 0,

x(t) =
αx(0) exp(αt)

α+ βx(0)(exp(αt)− 1)
=

αx(0)

α exp(−αt) + βx(0)(1− exp(−αt))
.

If α = 0,

x(t) =
x(0)

x(0)βt + 1
.
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Model fitting and parameters estimation
Initial phase 1981–1997

The observed population of Audouin’s gulls at the years 1981 to
1997 is:

η(ℓ, ℓ = 0 : 16) = Audouin’s Gulls Observed Population at year(1981+ℓ, ℓ = 0 : 16) =

[ [0]
36,

[1]

200,

[2]

546,

[3]

1200,

[4]

1200,

[5]

2200,

[6]

1850,

[7]

2861,

[8]

4266,

[9]

4300,

[10]

3950,

[11]

6714,

[12]

9373,

[13]

10143,

[14]

10327,

[15]

11328,

[16]

11725
]
.

The solution of the above model with β ≥ 0 and initial condition
κ ∈ R+ will be denoted by x(t) = xκ,α,β(t). Observe that
κ = xκ,α,β(0) must be considered a free parameter as well.
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Model fitting and parameters estimation
Initial phase 1981–1997

We introduce a map L to measure the agreement between the
solution of the model with initial condition κ and parameters α
and β, and the observed data η(ℓ, ℓ = 0 : 16), through the
Euclidean norm:

L: F −−−−−−−−−−−−−−−−−−−−−−−−−−→ R+

(
κ, (α, β)

)
7−−−−−−−−−−−−→

√∑16
ℓ=0

(
xκ,α,β(ℓ)− η(ℓ)

)2
,

where
F := R+ ×

{
(βK − ε, β) : β ∈ R+

}
is the parameter space.

Recall that α = βK − ε ∈ (−ε,∞).
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Model fitting and parameters estimation
Initial phase 1981–1997

Of course, if the dynamics of the Audouin’s gulls population size
during the years 1981 to 1997 is governed by some instance of the
model αx(t)− βx(t)2 with parameters x(0) = κ∗, α = α∗ and
β = β∗, then the value of L

(
κ∗, (α∗, β∗)

)
must be small and likely

it must correspond to

min L
(
κ, (α, β)

)
subject to

(
κ, (α, β)

)
∈ F ,

x(0) = κ ≥ 0,

and x(t) ≥ 0 for t ∈ [0, 16].

The solution of this problem is called the fitting of the model and
identifies a valid analytical model for the dynamics of the
Audouin’s gulls at the years 1981 to 1997 (of course provided that
the value min L

(
κ, (α, β)

)
is small).
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Model fitting and parameters estimation
Initial phase 1981–1997

To solve the above problem we have used the algorithm in
Slides 33–35 with the following objective function:

L
(
κ, (α, β)

)
+ c

(
16∑
ℓ=0

(
max

{
0,−xκ,α,β(ℓ)

})2

+max
{
0, 10−16 − β

}2
)

=√√√√ 16∑
ℓ=0

(
xκ,α,β(ℓ)− η(ℓ)

)2
+c

(
16∑
ℓ=0

(
max

{
0,−xκ,α,β(ℓ)

})2

+max
{
0, 10−16 − β

}2
)
,

where c is the penalty parameter.
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Model fitting and parameters estimation
Initial phase 1981–1997

To solve the free minimization problems we have used
Levenberg–Marquardt algorithm with numerical computation of
derivatives (laziness) with the following initialization:

the maximum number of iterates M is set to 1000,

the growth parameter c̃ is set to 2,

The two tolerances ε1 = ε2 are set to 1.0e − 16

The initial value of the penalty parameter c0 is set to 2.

The seed has been set to have β = 0, and κ = x(0) and α equals
to the result of a logarithmic regression of the observed data with
respect to years (that is,

(
ℓ, log η(ℓ)

)
), since we know that the

solution of the EDO must be of exponential type.
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Model fitting and parameters estimation: The result
Initial phase 1981–1997

Parameters’ values at the optimum

Parameter Value

κ = xκ,α,β(0) 288.04096± 117.9663
α 0.3489494104672237± 0.04958259
β 0.0000243826356697± 0.00000598145
ε 0.11 (estimated from data)

γ = α+ ε 0.45894940 · · ·
K = γ

β 18822.79734 · · ·

Quadratic Error = L
(
κ, (α, β)

)
= 2593.053 · · ·
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Model fitting and parameters estimation: The result
Initial phase 1981–1997

Year
Population Data

Observed Predicted

1981 36 288.040962
1982 200 404.917270
1983 546 567.299150
1984 1200 791.095769
1985 1200 1096.137854
1986 2200 1505.703287
1987 1850 2044.623822
1988 2861 2735.234088
1989 4266 3590.827296
1990 4300 4607.530655
1991 3950 5757.502051
1992 6714 6987.807453
1993 9373 8228.125064
1994 10143 9405.848001
1995 10327 10462.226529
1996 11328 11362.442028
1997 11725 12096.688846
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Model fitting and parameters estimation: The result
Initial phase 1981–1997
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Left plot: Dynamics of the local population for the estimated parameter values shown
above (red line). The predicted equilibrium, computed from x⋆1 = α

β
= 14311.390089

is shown with a horizontal brown line, while the carrying capacity is shown with a
horizontal dashed line. The model predictions suggest that the population have not
reached the steady state on the onset of the perturbation, and that the large
population increase suffered in 2005–2006 did not surpass the carrying capacity.

Right plot: Zoom in the period 1981–1997.
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