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Section 1

Previous concepts



What is an ODE?

An Ordinary Differential Equation (ODE) is an expression

x(t) = f(t, x(1)),

Where:
O f:R xR"+— R"is a known function called the vector-field.
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What is an ODE?

An Ordinary Differential Equation (ODE) is an expression
x(t) = f(t,x(t)),

Where:
O f:R xR"+— R"is a known function called the vector-field.

O x:R — R"is an unknown function (the dependent variable).
O t is dependent variable (often called time).
O An ODE with a prescribed initial condition

{x‘(t) = f(t, x(t)),

x(to) = xo,

is called a Cauchy Problem.
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Existence and Uniqueness

Under reasonable conditions (at least, continuous + Lipschitz), the Cauchy problem

has a unique solution. Moreover.
O The solution also verifies the integral equation

x(t) = xo + /tt f(s,x(s))ds.

0
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Existence and Uniqueness

Under reasonable conditions (at least, continuous + Lipschitz), the Cauchy problem

has a unique solution. Moreover.
O The solution also verifies the integral equation

x(t) = xo + /tt f(s,x(s))ds.

0
O The map ¢ : R™?2 — R” given by
go(to, t’XO) = X(t)>

is called flow.
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Existence and Uniqueness

Under reasonable conditions (at least, continuous + Lipschitz), the Cauchy problem

has a unique solution. Moreover.
O The solution also verifies the integral equation

x(t) = xo + /tt f(s,x(s))ds.

0
O The map ¢ : R™?2 — R” given by

o(to, t, x0) = x(t),

is called flow.
O The flow inherits the regularity of function f.
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First order variational equations

O Given a trajectory ¢(tp, t, xp) of the original system, it holds that,

%DXOSO(tO, t,Xo) = DXOf(t, (p(to, t,Xo))DXOQO(to, t,Xo),
on@(thOaXO)’: In-
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First order variational equations

O Given a trajectory ¢(tp, t, xp) of the original system, it holds that,

%DXOSO(tO, t,Xo) = DXOf(t, (p(to, t,Xo))DXOL,D(to, t,Xo),
on@(thOaXO)’: In-

O Interesting for practical purposes: Newton method, Stability of orbits, Lyapunov
spectrum, control theory, ...
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First order variational equations

O Given a trajectory ¢(tp, t, xp) of the original system, it holds that,

%DXOSO(tO, t,Xo) = DXOf(t, (p(to, t,Xo))DXOL,D(to, t,Xo),
on@(thOaXO)’: In-

O Interesting for practical purposes: Newton method, Stability of orbits, Lyapunov
spectrum, control theory, ...

O Classically, are computed by hand and integrated numerically together with the
original differential equation.

O The whole system is of dimension n + n.

Alseda, Jorba-Cuscé, Sardanyés Algorithms for the integration of ODE 6 /49



Section 2

Euler's method



Euler's method
The idea of Euler's method is to produce a linear approximation of the solution.

O Given an initial condition (to, xp): T

{Xl = Xp + hf(to,Xo),

Tiy1 = i + ff(ti,.% ) ﬁ

t1 = tog + h. 4
O Here, his a small quantity called step. ﬁg
O IDEA:
X1 — X0
— f(to,x0), h=(t1 — t2). L2
L1

O The sequence {(t, xi)}i<n
approximates the solution. t to t3 ty4
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Local error

O Let {(ti,xi)}i<n be a sequence of approximations produced by Euler's method.

Xnt1 = Xn + hf (tn, Xn),
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Local error

O Let {(ti,xi)}i<n be a sequence of approximations produced by Euler's method.

Xnt1 = Xn + hf (tn, Xn),

O The local error of Euler's method can be estimated by:
o (tn, h) = [Ix(tn) = xall = O(H?).

(is of order 1).
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Local error

O Let {(ti,xi)}i<n be a sequence of approximations produced by Euler's method.

Xnt1 = Xn + hf (tn, Xn),

O The local error of Euler's method can be estimated by:
o (tn, h) = [Ix(tn) = xall = O(H?).

(is of order 1).
O Notice that

. o(tn, h)
lim =0,
h—0  h
(is consistent).
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A test equation

O During this lecture we will consider

x=x%+2t—t4
x(0) =0,

as our test equation.

O This equation can be solved by hand % AN S SR S N SN SN N S N

. . 0 005 01 015 02 025 03 035 04 045 05 055
and the solution is t2. .

Figure: 500 iterates of the Euler method with

O This allow us to control the error in a step h = 103

trivial way.
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Example: The Kepler Problem

The motion of a test particle about a massive one is governed by Kepler ODE.

X = Vx,
y= Vy,
Vx = _X/(X2 + }/2)3/2,
vy = =y /(2 + 232,

O The solutions are known to be conic
sections.

O The angular momentum
L = xvy, — yvy,

is preserved.
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Example: The Kepler Problem

The motion of a test particle about a massive one is governed by Kepler ODE.

X = Vixs
y =V, 3
Vx = —x/(x* +y?)*/2, <
. )
vy = —y/(x* +y?)3/2, s
O Local error behaves as expected for t P ‘ ‘ | heled ——

0 0.1 0.2 0.3 0.4 0.5
small.

O The errors accumulate and accuracy is
lost as  increases. Figure: Error estimated by L. Trajectory with
eccentricity 0.1.
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A strategy for step size control

O To control the step size it is
mandatory to estimate the error.

O We use an extra double iteration of
Euler with half the step size.

O The difference between the two
predictions behave as

1
e= éKh2 + O(h®)

O if r = e/h > ¢ we decrease the step

h =0.9-h.

r
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Figure: Error estimated by L. Initial step size
13. Final ~ 107>
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Generalisations

The concepts of order and consistency can be generalised to any other method to
produce the approximation {(t;, x;)}i<n:
O A method is of order p if

o(tn, h) = [[x(tn) = xall = O(HPTY).

O It is consistent if
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Section 3

Can we do better?



Improving Euler's method

In Euler’'s method uses a single value of the vectorfield at a given point of the
trajectory to predict the next one.

Some strategies to improve this approach are:

1. Do intermediate evaluations.
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Improving Euler's method

In Euler’'s method uses a single value of the vectorfield at a given point of the
trajectory to predict the next one.

Some strategies to improve this approach are:

1. Do intermediate evaluations.
2. Use previously computed values.

3. Use higher order derivatives.
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The idea behind the Runge-Kutta methods

O Let us go back to the weak formulation of the Cauchy Problem

x(t) = xo +/t f(r,x(7))dT,

0

O The Gaussian quadrature is a method to compute integrals:
b S
[ etratridr = 3 bus(e)
a i=1

where b; and c¢; depend upon w (a nonnegative function), a and b.
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The idea behind the Runge-Kutta methods

O If we use the weak formulation for a integration step

tht1 1
X+l = Xp + / f(r,x(7))dT = x, + h/ f(r,x(1))dT,
tn 0
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The idea behind the Runge-Kutta methods

O If we use the weak formulation for a integration step

tht1 1
X+l = Xp + / f(r,x(7))dT = x, + h/ f(r,x(1))dT,
tn 0

O We can replace the integral by a quadrature.

Xn1= o+ h Y bif (ta + cih, x(tn + cih)).
i=1
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The idea behind the Runge-Kutta methods

O If we use the weak formulation for a integration step

tht1 1
X+l = Xp + / f(r,x(7))dT = x, + h/ f(r,x(1))dT,
tn 0

O We can replace the integral by a quadrature.

Xn1= o+ h Y bif (ta + cih, x(tn + cih)).
i=1

O Here, the quantities x(t, + c;h) are not known. In R-K methods are approximated
by linear combinations of evaluations of the vectorfield.
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General formulation

The family of explicit Runge-Kutta

methods of s stages O The methods are consistent if and
only if
S s
Xp+1 :X,,—f-th,'k,', Zb,’:l.
i=1 i=1

O There is more freedom in choosing
ky = f(tn, xn) aj j. A standard choice is
ko = f(t, + coh,xp + haz 1ky)

i—1
e E aij=¢, I=2,...,s.
Jj=1

s—1

ks =f | tat choxa+hY_ agjk;
=1 O The order of a RK is smaller or equal

than the number of stages.
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Butcher tableau of a RK method

0
C | a1
C3 | 43,1 a32
Cs | ds,1  ds2 ds,s—1
by b bs—1  bs

Table: General Butcher tableau.

0
1/31/3
2/3| 0 2/3
|1/4 0 3/4

Table: Heun's method of 3 stages (order 3).
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0
1|1
| 1/2 1/2

Table: Heun's method of 2 stages (order 2).

0
1/2 | 1/2
12| 0 1/2

110 o0 1
| 1/6 2/6 2/6 1/6

Table: Classical R-K method.
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Order of R-K methods

O In general, it is not true that a method of s stages has order s.
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O In general, it is not true that a method of s stages has order s.
O THM 1: If an explicit s-stage RK method has order p, then s < p.
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Order of R-K methods

O In general, it is not true that a method of s stages has order s.
O THM 1: If an explicit s-stage RK method has order p, then s < p.
O THM 2: If an explicit s-stage RK method has order p > 5, then s > p.
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Order of R-K methods

O In general, it is not true that a method of s stages has order s.
O THM 1: If an explicit s-stage RK method has order p, then s < p.
O THM 2: If an explicit s-stage RK method has order p > 5, then s > p.

O THM 3 (Butcher): For p > 7 no explicit R-K method exists of order p with
s = p + 1 stages.
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Order of R-K methods

O In general, it is not true that a method of s stages has order s.

O THM 1: If an explicit s-stage RK method has order p, then s < p.

O THM 2: If an explicit s-stage RK method has order p > 5, then s > p.

O THM 3 (Butcher): For p > 7 no explicit R-K method exists of order p with
s = p + 1 stages.

O THM 4 (Butcher): For p > 8 no explicit R-K method exists of order p with
s = p + 2 stages.
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Order of R-K methods

In general, it is not true that a method of s stages has order s.

THM 1: If an explicit s-stage RK method has order p, then s < p.

THM 2: If an explicit s-stage RK method has order p > 5, then s > p.
THM 3 (Butcher): For p > 7 no explicit R-K method exists of order p with
s = p + 1 stages.

O THM 4 (Butcher): For p > 8 no explicit R-K method exists of order p with
s = p + 2 stages.

o O O O

p |1 2 3 45 6 738
1

mns|[1 2 3 4 6 7 9 11

Table: Minimal number of stages s required to obtain order p.
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Performance

O We solve the test equation

x = x> 42t —t*
x(0) =0,
with

1. Euler's method,
2. Heun's method of order 2

3. Classical R-K method (RK4).

Alseda, Jorba-Cuscé, Sardanyés

logjo(e)

0 005 0.1

015 02 025 03 035 04 045 05 055
t

Figure: 500 iterates of Euler's, Heun's and RK4

h=10"3
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Error estimation

O Practical computations require local error estimation to control the step size.
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Error estimation

O Practical computations require local error estimation to control the step size.

O The idea is to use two methods:
xn = x(ta) + O(hPT), %, = x(t,) + O(hTY),

here, g > p.
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Error estimation

O Practical computations require local error estimation to control the step size.

O The idea is to use two methods:
xn = x(ta) + O(hPT), %, = x(t,) + O(hTY),

here, g > p.

O The error estimation is

Xn — Xn = X(tn) — yn + O(hp+2).
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Error estimation

O Practical computations require local error estimation to control the step size.

O The idea is to use two methods:
xn = x(ta) + O(hPT), %, = x(t,) + O(hTY),
here, g > p.
O The error estimation is
% — xp = x(tn) — yn + O(HPT2).

O X, is regarded as the “true solution”.
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Fehlberg's approach

O Fehlberg considered the following

tableau:
c|l A
N ‘GPO PRICE s
b/ CSFTI PRICE(S) $
B/ Hard copy (HC) _ 5. (ICL
= L esia
d/

O Which contains a R-K method of
order p and a method of order p + 1.

0 d = b — b is used for error
estimation.

O If we are using the method to compute
a quadrature b’ and b’ identical.
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Step size control
Let us assume that x, and X, are approximations provided by methods of order p and

p + 1 respectively.
O Let € < 0 be a prescribed tolerance.
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Step size control

Let us assume that x, and X, are approximations provided by methods of order p and
p + 1 respectively.

O Let € < 0 be a prescribed tolerance.

O The estimation of the error is given by

0 = lxn = %all = [[Kph? + O(KPT ).
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Step size control

Let us assume that x, and X, are approximations provided by methods of order p and
p + 1 respectively.

O Let € < 0 be a prescribed tolerance.

O The estimation of the error is given by

0 = lxn = %all = [[Kph? + O(KPT ).

O If § < & we can proceed with the next step (both approximations can be used).
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Step size control

Let us assume that x, and X, are approximations provided by methods of order p and
p + 1 respectively.

O Let € < 0 be a prescribed tolerance.

O The estimation of the error is given by

0 = lxn = %all = [[Kph? + O(KPT ).

O If § < & we can proceed with the next step (both approximations can be used).

O If not, the step size must be reduced and the approximations recomputed. The

new step is
0.9 (%)p h.
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Linear Multistep methods

O The idea is to use previous steps to improve the accuracy of the method as the
integration advances.
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Linear Multistep methods

O The idea is to use previous steps to improve the accuracy of the method as the
integration advances.

O Originally proposed by Bashforth and Adams (1883).

Alseda, Jorba-Cuscé, Sardanyés Algorithms for the integration of ODE 26 / 49



Linear Multistep methods

O The idea is to use previous steps to improve the accuracy of the method as the
integration advances.

O Originally proposed by Bashforth and Adams (1883).
O An stepper of Adams type is given by:

s—1

Xnts = Xnts—1+ h Z Bif (tntjs Xntj)-
=0
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Linear Multistep methods

O The idea is to use previous steps to improve the accuracy of the method as the
integration advances.

O Originally proposed by Bashforth and Adams (1883).
O An stepper of Adams type is given by:

s—1
Xnts = Xpts—1 1 h Z 5jf(tn+j’ Xn+j)-
Jj=0

O The constants f3; are chosen to five the highest possible order.
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How we get there?

O Assume we have already computed an approximation xg, x1, . . . Xn+s—1 of order s
ie.
Xm = X(tm) + O(h*T1).
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How we get there?

O Assume we have already computed an approximation xg, x1, . . . Xn+s—1 of order s
ie.
Xm = X(tm) + O(h*T1).

O And consider .
n+s
X(tnts) = X(tnrs—1) + / f(r, x(7))dT.

thys—1
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How we get there?

O Assume we have already computed an approximation xg, x1, . . . Xn+s—1 of order s
ie.
Xm = X(tm) + O(h*T1).

O And consider .
n+s
X(tnts) = X(tnrs—1) + / f(r, x(7))dT.

thts—1

O We can approximate f(t, x(t) by

s—1
P(t) = ij(t)f(tn+jaxn+j)>
j=0

here, p; are the Lagrange interpolation polynomials.
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Examples

O Adams method for s = 1 is Euler's method.
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Examples

O Adams method for s = 1 is Euler's method.
O Fors=2

3 1
Xp42 = Xp41 + h Ef(tn—i—lyxn—&—l) - Ef(tmxn)
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Examples

O Adams method for s = 1 is Euler's method.
O Fors=2

3 1
Xn4+2 = Xn+1 + h |:2f(tn+1,Xn+1) — 2f(tn,Xn):| .
O Fors=3

23 4 5
Xp43 = Xpi2 + h |:12f(tn+27xn+2) - §f(tn+1axn+1) + 12f(tI17Xn):| .
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Examples

O Adams method for s = 1 is Euler's method.
O Fors=2 3 )
Xn4+2 = Xn+1 + h |:2f(tn+1,Xn+1) — 2f(tn,Xn):| .
O Fors=3
23 4 5
Xp+3 = Xp+2 + h |:12f(tn+2,Xn+2) — §f(tn+1,Xn+1) + 12f(thn):| .

O In general, an Adams method of s steps has order s.
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Error estimation: Minle device

O Error estimation for LMM can be approached with similar ideas to RKM.
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Error estimation: Minle device

O Error estimation for LMM can be approached with similar ideas to RKM.

O Milne device: Use two steppers of the same order.
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Error estimation: Minle device

O Error estimation for LMM can be approached with similar ideas to RKM.
O Milne device: Use two steppers of the same order.

O One of them is implicit (this will be discussed later).
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Error estimation: Minle device

O Error estimation for LMM can be approached with similar ideas to RKM.
O Milne device: Use two steppers of the same order.
O One of them is implicit (this will be discussed later).

O The other one is explicit and it is used only for error estimation.
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Error estimation: Minle device

O Error estimation for LMM can be approached with similar ideas to RKM.
O Milne device: Use two steppers of the same order.

O One of them is implicit (this will be discussed later).

O The other one is explicit and it is used only for error estimation.

O When adjusting the step size a remeshing of the approximated points is required.
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The Taylor method

Given a Cauchy problem:
x = f(t,x),
x(0) = xo.

O If we differentiate the ODE w.r.t. t, we get:
X = O (t, x) + Dyf(t, x)x = O¢f(t, x) + Dyf(t, x)f(t, x).
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The Taylor method

Given a Cauchy problem:
x = f(t,x),
x(0) = xo.

O If we differentiate the ODE w.r.t. t, we get:
X = O (t, x) + Dyf(t, x)x = O¢f(t, x) + Dyf(t, x)f(t, x).

O In general, we can get all the derivatives of the solution as a recurrence depending
on the derivatives of lower order.
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The Taylor method

Given a Cauchy problem:
x = f(t,x),
x(0) = xo.

O If we differentiate the ODE w.r.t. t, we get:
X = O (t, x) + Dyf(t, x)x = O¢f(t, x) + Dyf(t, x)f(t, x).

O In general, we can get all the derivatives of the solution as a recurrence depending
on the derivatives of lower order.
O Indeed, if we name the normalized derivatives

Xi= xO(),  F= 5 (F(tx(0) e

then: )
= —F;.
i+1"'
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The Taylor method

O Going up to order N we can construct a Taylor Polynomial of the solution:

x(to + h) ~ ZXh’
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The Taylor method

O Going up to order N we can construct a Taylor Polynomial of the solution:
x(to + h) Z X;h'.

O The error is O(hV*1). Given N, we can pick h small enough so the approximation
has error below some prescribed tolerance.
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The Taylor method

O Going up to order N we can construct a Taylor Polynomial of the solution:
x(to + h) Z X;h'.

O The error is O(hV*1). Given N, we can pick h small enough so the approximation
has error below some prescribed tolerance.

O Then, we can produce the next point of the solution as

N
=> Xih'.
i=0
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The Taylor method

O Going up to order N we can construct a Taylor Polynomial of the solution:
x(to + h) Z X;h'.

O The error is O(hV*1). Given N, we can pick h small enough so the approximation
has error below some prescribed tolerance.

O Then, we can produce the next point of the solution as
N
= Z Xih'.
i=0

O For the next step, we re-compute the Taylor expansion of the solution about x;.
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The Taylor method

O The main practical issue of this process is to compute the terms of the recurrence:

1 ;
Fi= = (F(t,x(£)7 [xms

1

(this can be achieved by means of automatic differentiation).
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The Taylor method

O The main practical issue of this process is to compute the terms of the recurrence:

1 ;
Fi= = (F(t,x(£)7 [xms

1

(this can be achieved by means of automatic differentiation).

O Given a threshold, there is an optimal choice of order and step-size.

Alseda, Jorba-Cuscé, Sardanyés Algorithms for the integration of ODE 32 /49



The Taylor method

O The main practical issue of this process is to compute the terms of the recurrence:

1 ;
Fi= = (F(t,x(£)7 [xms

1

(this can be achieved by means of automatic differentiation).

O Given a threshold, there is an optimal choice of order and step-size.

1. The optimal step-size is ~ e 2p(t) where p(t) is the radius of convergence of the
series.
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The Taylor method

O The main practical issue of this process is to compute the terms of the recurrence:

1 ;
Fi= = (F(t,x(£)7 [xms

1

(this can be achieved by means of automatic differentiation).

O Given a threshold, there is an optimal choice of order and step-size.
1. The optimal step-size is ~ e 2p(t) where p(t) is the radius of convergence of the
series.
2. The optimal order is linear in the number of digits D. For a single step, the global
computational cost is O(D*).
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The Taylor method

SUMMARY:

O The Taylor method is based in producing a Taylor polynomial of the solution at
each step.
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The Taylor method

SUMMARY:

O The Taylor method is based in producing a Taylor polynomial of the solution at
each step.

O Both, the order and the step-size can be updated optimally according to a
prescribed accuracy.

Alseda, Jorba-Cuscé, Sardanyés Algorithms for the integration of ODE 33 /49



The Taylor method

SUMMARY:

O The Taylor method is based in producing a Taylor polynomial of the solution at
each step.

O Both, the order and the step-size can be updated optimally according to a
prescribed accuracy.

O The Taylor method is extremely competitive when high accuracy is required.
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Taylor vs RKF78

log (L - L(1))

JEBCIOC -+ 4 i + Taylor M
RKF78 -
-16.5 e

0 100 200 300 400 500 600 700 800 900 1000
t

Figure: Integration of 1000 units of time using Taylor and RKF78 of an orbit with e = 0.5.
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Section 4

Cripples, Bastards, and Broken Things



Stiffness

O Let us consider a linear ODE

x=Mx, x(0)=1.
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Stiffness

O Let us consider a linear ODE

x=Mx, x(0)=1.

O Suppose that M can be diagonalized by a change D = S~1MS,
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Stiffness

O Let us consider a linear ODE

x=Mx, x(0)=1.

O Suppose that M can be diagonalized by a change D = S~1MS,

O The equation y = Dy is a system of uncoupled equations.
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Stiffness

O Let us consider a linear ODE

x=Mx, x(0)=1.

O Suppose that M can be diagonalized by a change D = S~1MS,
O The equation y = Dy is a system of uncoupled equations.

O Suppose now that there exist an eigenvalue —\ with A >> 1.
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Stiffness

O Let us consider a linear ODE

x=Mx, x(0)=1.

O Suppose that M can be diagonalized by a change D = S~1MS,
O The equation y = Dy is a system of uncoupled equations.
O Suppose now that there exist an eigenvalue —\ with A >> 1.

O lIts associated equations is

and has solution x(t) = exp(—A\t)
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Domain of stability of Euler's method

O Let us apply Euler's method:

x = f(t,x), Xnt1 = Xn + hf (tn, xn)
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Domain of stability of Euler's method

O Let us apply Euler's method:

x = f(t,x), Xnt1 = Xn + hf (tn, xn)

O For the previous equation (x = —Ax) the Euler method becomes

Xnt1 = Xn — hAxp = (1 = h\)x, =  xp=(1— h\)".

Alseda, Jorba-Cuscé, Sardanyés Algorithms for the integration of ODE 37 /49



Domain of stability of Euler's method

O Let us apply Euler's method:

x = f(t,x), Xnt1 = Xn + hf (tn, xn)

O For the previous equation (x = —Ax) the Euler method becomes

Xnt1 = Xn — hAxp = (1 = h\)x, =  xp=(1— h\)".

O This implies that, to have x, — 0, h has to be small enough:

2
he .
Y
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Domain of stability of Euler's method

O Let us apply Euler's method:

x = f(t,x), Xnt1 = Xn + hf (tn, xn)

O For the previous equation (x = —Ax) the Euler method becomes

Xnt1 = Xn — hAxp = (1 = h\)x, =  xp=(1— h\)".

O This implies that, to have x, — 0, h has to be small enough:

2
he .
Y

O Domain of stability: D={ze C : |1+ z| < 1}.
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The implicit Euler method

O Let us see what happens if we use an implicit Euler method:

X = f(t,X), Xn+1 :Xn+hf(tn+lvxn+1)
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The implicit Euler method

O Let us see what happens if we use an implicit Euler method:

X = f(t,X), Xn+1 :Xn+hf(tn+lvxn+1)

O For the equation x = —Ax we obtain

Xpt1 = Xnp — hAxpp1 = (14 hA)xp41 = X,
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The implicit Euler method

O Let us see what happens if we use an implicit Euler method:

X = f(t,X), Xn+1 :Xn+hf(tn+lvxn+1)

O For the equation x = —Ax we obtain

Xpt1 = Xnp — hAxpp1 = (14 hA)xp41 = X,

O and then
1

(1+ hN)"
which goes to zero for any h > 0 and A > 0.

Xpn =
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A-stability

O The implicit Euler method has domain of stability (z) < 0.
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A-stability
O The implicit Euler method has domain of stability (z) < 0.

O The domain of stability can be computed for other methods.
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A-stability
O The implicit Euler method has domain of stability (z) < 0.

O The domain of stability can be computed for other methods.

O A method is A-stable if #(z) < 0 is contained in its domain of stability.
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A-stability
O The implicit Euler method has domain of stability (z) < 0.
O The domain of stability can be computed for other methods.
O A method is A-stable if #(z) < 0 is contained in its domain of stability.

O No explicit R-K method can be A-stable.
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A-stability
O The implicit Euler method has domain of stability (z) < 0.
O The domain of stability can be computed for other methods.
O A method is A-stable if #(z) < 0 is contained in its domain of stability.
O No explicit R-K method can be A-stable.

O For any order p there exists an Implicit R-K method which is A-stable.

Alseda, Jorba-Cuscé, Sardanyés Algorithms for the integration of ODE 39 /49



A-stability
O The implicit Euler method has domain of stability (z) < 0.
O The domain of stability can be computed for other methods.
O A method is A-stable if #(z) < 0 is contained in its domain of stability.
O No explicit R-K method can be A-stable.
O For any order p there exists an Implicit R-K method which is A-stable.

O Dabhlquist second barrier: The highest order of an A-stable multistep method is 2.
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A remark on implicit methods

O Implicit methods are meant to deal with stiff equations.
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A remark on implicit methods

O Implicit methods are meant to deal with stiff equations.

O Those methods require to solve an algebraic equation to compute each step.
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A remark on implicit methods

O Implicit methods are meant to deal with stiff equations.
O Those methods require to solve an algebraic equation to compute each step.

O As a consequence, implicit methods are computationally more expensive than the
explicit ones.
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A remark on implicit methods

O Implicit methods are meant to deal with stiff equations.
O Those methods require to solve an algebraic equation to compute each step.

O As a consequence, implicit methods are computationally more expensive than the
explicit ones.

O It is not a good idea to use implicit methods “just in case”.
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A remark on implicit methods

O Implicit methods are meant to deal with stiff equations.
O Those methods require to solve an algebraic equation to compute each step.

O As a consequence, implicit methods are computationally more expensive than the
explicit ones.

O It is not a good idea to use implicit methods “just in case”.
O It is important to know if an equation is stiff.
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A feature from Taylor

O The Taylor method also fails to deal
with stiffness.

O However, this pathological behaviour
can be detected by means of the
Taylor series of the solution.

O In the Figure, we plot the first 16
Taylor coefficients of exp(—10%t):

= (AD)K
Z(k!)’

i=0

A= —10%

O The coefficients increase before the
factorial becomes dominant.

Alseda, Jorba-Cuscé, Sardanyés
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k

Figure: Taylor coefficients of the function
exp(—At).
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Fail in Fehlberg strategy

O Let us consider the ODE

x = ax + cos(t) — asin(t),
x(0) =0,

which has x(t) = sin t as the exact solution. Let us choose o = 10~%.
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Fail in Fehlberg strategy

O Let us consider the ODE

x = ax + cos(t) — asin(t),
x(0) =0,

which has x(t) = sin t as the exact solution. Let us choose o = 10~%.

O A test of the error of integration is to compute the solution at t = 27, and it
should be zero.

Alseda, Jorba-Cuscé, Sardanyes Algorithms for the integration of ODE 42 / 49



Fail in Fehlberg strategy

O Let us consider the ODE

x = ax + cos(t) — asin(t),
x(0) =0,

which has x(t) = sin t as the exact solution. Let us choose o = 10~%.

O A test of the error of integration is to compute the solution at t = 27, and it
should be zero.

O If we use a RKF78, asking for an accuracy of 10712, we obtain than x(27) is,
approximately, —2.383702 x 10~".
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Fail in

o

Fehlberg strategy

Let us consider the ODE

x = ax + cos(t) — asin(t),
x(0) =0,

which has x(t) = sin t as the exact solution. Let us choose o = 10~%.

A test of the error of integration is to compute the solution at t = 27, and it
should be zero.

If we use a RKF78, asking for an accuracy of 107'2, we obtain than x(27) is,
approximately, —2.383702 x 10~".

An alternative to the Fehlberg step size control is a step size control developed
(later) by J. Verner.
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Fail in Fehlberg strategy

O Let us consider the ODE

x = ax + cos(t) — asin(t),
x(0) =0,

which has x(t) = sin t as the exact solution. Let us choose o = 10~%.

O A test of the error of integration is to compute the solution at t = 27, and it
should be zero.

O If we use a RKF78, asking for an accuracy of 10712, we obtain than x(27) is,
approximately, —2.383702 x 10~".

O An alternative to the Fehlberg step size control is a step size control developed
(later) by J. Verner.

O Using a Runge-Kutta-Verner for the previous example we obtain that x(27) is,
approximately, —3.747003 x 10716,
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Energy drift

Let us consider hamiltonian model:

1
H = §(p2 + L«)X2)7

And integrate if with Euler's method and Symplectic Euler's method (w = 1 and
h=0.1)
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Artefacts

O The Chirikov Standard Map (SM) is a
well known Area Preserving Map
(APM).

0n+1 =0+ Pn+1,
Pn+1 = pn+ hsin(6,)

O It can be obtained from applying a
symplectic Euler method to a
pendulum.

O The SM is a simple model for
non-integrable APMs. Meaning that it Figure: Phase portrait of Standard Map
exhibits chaotic behaviour. (h=0.5)
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Section 5

Why we can't predict the weather?



The Lorenz system

The Lorenz system is a simplified model for atmospheric convection:

50 ¢
) 45+
x=o(y —x), 40 F
y=x(p-2) -y,
) 30
z=xy — (z o o5l

O For suitable values of the parameters,
it exhibits chaotic behaviour.

O The motion is driven by an attractor 0
of Hausdorff dimension = 2.06. - ) .

O The flow is dissipative and there are

. - Figure: x — z projection of the Attractor.
two repealing limit cycles.

o =10, p =28, § =8/3. Integration time:
500. Initial condition (1,0,0).
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The Lorenz system

The Lorenz system is a simplified model for atmospheric convection:

30 50
: 45 ¢
20 w0l
10 3
— 30 |
- 0 N 25 ¢
. 20
-10 s
0 10
g 5
-30 0
20 15 <10 -5 0 5 10 15 20
X X
Figure: Poincaré maps {z = 25}. Purple points Figure: x — z projection of the Attractor.
correspond to crossings with z < 0. Green o =10, p =28, § =8/3. Integration time:
points with z > 0. 500. Initial condition (1,0, 0).
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Growth of the error due to dynamics

Let us start an integration at (1,0,0) and (1,0,0) + v, check the outputs and track
the norm of the directional derivative w.r.t. v = (1078,0,0).

7

e

[Vver]]

10

2.931815e-08

2.9318251e-08

20

7.950019e-08

7.9494469e-08

30

1.534007e-04

1.5333987e-04

40

9.850263e-01

9.7055406e-01

50

1.820953e+01

1.5527040e+04

O For small times the propagation of

error is controlled.
O For T = 30, the initial error has been

amplified by 10%.
O For T =50, is amplified by 1012,
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Figure: Two trajectories with initial distance
1078, Integration time: 50.
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