
Algorithms for the integration of ODE
Centre de Recerca Matemàtica

November 7, 2023

Lluis Alsedà, Marc Jorba-Cuscó, Josep Sardanyès

Previous concepts

Euler’s method

Can we do better?
The Runge-Kutta family
Linear Multistep methods
The Taylor method

Cripples, Bastards, and Broken Things

Why we can’t predict the weather?

Section 1

Previous concepts

What is an ODE?

An Ordinary Differential Equation (ODE) is an expression

ẋ(t) = f (t, x(t)),

Where:

f : R× Rn 7→ Rn is a known function called the vector-field.

x : R → Rn is an unknown function (the dependent variable).

t is dependent variable (often called time).

An ODE with a prescribed initial condition{
ẋ(t) = f (t, x(t)),

x(t0) = x0,

is called a Cauchy Problem.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 4 / 49

What is an ODE?

An Ordinary Differential Equation (ODE) is an expression

ẋ(t) = f (t, x(t)),

Where:

f : R× Rn 7→ Rn is a known function called the vector-field.

x : R → Rn is an unknown function (the dependent variable).

t is dependent variable (often called time).

An ODE with a prescribed initial condition{
ẋ(t) = f (t, x(t)),

x(t0) = x0,

is called a Cauchy Problem.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 4 / 49

What is an ODE?

An Ordinary Differential Equation (ODE) is an expression

ẋ(t) = f (t, x(t)),

Where:

f : R× Rn 7→ Rn is a known function called the vector-field.

x : R → Rn is an unknown function (the dependent variable).

t is dependent variable (often called time).

An ODE with a prescribed initial condition{
ẋ(t) = f (t, x(t)),

x(t0) = x0,

is called a Cauchy Problem.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 4 / 49

What is an ODE?

An Ordinary Differential Equation (ODE) is an expression

ẋ(t) = f (t, x(t)),

Where:

f : R× Rn 7→ Rn is a known function called the vector-field.

x : R → Rn is an unknown function (the dependent variable).

t is dependent variable (often called time).

An ODE with a prescribed initial condition{
ẋ(t) = f (t, x(t)),

x(t0) = x0,

is called a Cauchy Problem.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 4 / 49

Existence and Uniqueness

Under reasonable conditions (at least, continuous + Lipschitz), the Cauchy problem{
ẋ(t) = f (t, x(t)),

x(t0) = x0,

has a unique solution. Moreover.

The solution also verifies the integral equation

x(t) = x0 +

∫ t

t0

f (s, x(s))ds.

The map φ : Rn+2 7→ Rn given by

φ(t0, t, x0) = x(t),

is called flow.

The flow inherits the regularity of function f .

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 5 / 49

Existence and Uniqueness

Under reasonable conditions (at least, continuous + Lipschitz), the Cauchy problem{
ẋ(t) = f (t, x(t)),

x(t0) = x0,

has a unique solution. Moreover.

The solution also verifies the integral equation

x(t) = x0 +

∫ t

t0

f (s, x(s))ds.

The map φ : Rn+2 7→ Rn given by

φ(t0, t, x0) = x(t),

is called flow.

The flow inherits the regularity of function f .

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 5 / 49

Existence and Uniqueness

Under reasonable conditions (at least, continuous + Lipschitz), the Cauchy problem{
ẋ(t) = f (t, x(t)),

x(t0) = x0,

has a unique solution. Moreover.

The solution also verifies the integral equation

x(t) = x0 +

∫ t

t0

f (s, x(s))ds.

The map φ : Rn+2 7→ Rn given by

φ(t0, t, x0) = x(t),

is called flow.

The flow inherits the regularity of function f .
Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 5 / 49

First order variational equations

Given a trajectory φ(t0, t, x0) of the original system, it holds that,{
d
dtDx0φ(t0, t, x0) = Dx0f (t, φ(t0, t, x0))Dx0φ(t0, t, x0),

Dx0φ(t0, 0, x0),= In.

Interesting for practical purposes: Newton method, Stability of orbits, Lyapunov
spectrum, control theory, . . .

Classically, are computed by hand and integrated numerically together with the
original differential equation.

The whole system is of dimension n + n2.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 6 / 49

First order variational equations

Given a trajectory φ(t0, t, x0) of the original system, it holds that,{
d
dtDx0φ(t0, t, x0) = Dx0f (t, φ(t0, t, x0))Dx0φ(t0, t, x0),

Dx0φ(t0, 0, x0),= In.

Interesting for practical purposes: Newton method, Stability of orbits, Lyapunov
spectrum, control theory, . . .

Classically, are computed by hand and integrated numerically together with the
original differential equation.

The whole system is of dimension n + n2.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 6 / 49

First order variational equations

Given a trajectory φ(t0, t, x0) of the original system, it holds that,{
d
dtDx0φ(t0, t, x0) = Dx0f (t, φ(t0, t, x0))Dx0φ(t0, t, x0),

Dx0φ(t0, 0, x0),= In.

Interesting for practical purposes: Newton method, Stability of orbits, Lyapunov
spectrum, control theory, . . .

Classically, are computed by hand and integrated numerically together with the
original differential equation.

The whole system is of dimension n + n2.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 6 / 49

First order variational equations

Given a trajectory φ(t0, t, x0) of the original system, it holds that,{
d
dtDx0φ(t0, t, x0) = Dx0f (t, φ(t0, t, x0))Dx0φ(t0, t, x0),

Dx0φ(t0, 0, x0),= In.

Interesting for practical purposes: Newton method, Stability of orbits, Lyapunov
spectrum, control theory, . . .

Classically, are computed by hand and integrated numerically together with the
original differential equation.

The whole system is of dimension n + n2.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 6 / 49

Section 2

Euler’s method

Euler’s method

The idea of Euler’s method is to produce a linear approximation of the solution.

Given an initial condition (t0, x0):{
x1 = x0 + hf (t0, x0),

t1 = t0 + h.

Here, h is a small quantity called step.

IDEA:

x1 − x0
h

≈ f (t0, x0), h = (t1 − t2).

The sequence {(ti , xi)}i≤N

approximates the solution.
t

x

x1

x2

x3

x4

t1 t2 t3 t4

xi+1 = xi + hf(ti, xi)

x(t)

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 8 / 49

Local error

Let {(ti , xi)}i≤N be a sequence of approximations produced by Euler’s method.

xn+1 = xn + hf (tn, xn),

The local error of Euler’s method can be estimated by:

σ(tn, h) = ∥x(tn)− xn∥ = O(h2).

(is of order 1).

Notice that

lim
h→0

σ(tn, h)

h
= 0,

(is consistent).

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 9 / 49

Local error

Let {(ti , xi)}i≤N be a sequence of approximations produced by Euler’s method.

xn+1 = xn + hf (tn, xn),

The local error of Euler’s method can be estimated by:

σ(tn, h) = ∥x(tn)− xn∥ = O(h2).

(is of order 1).

Notice that

lim
h→0

σ(tn, h)

h
= 0,

(is consistent).

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 9 / 49

Local error

Let {(ti , xi)}i≤N be a sequence of approximations produced by Euler’s method.

xn+1 = xn + hf (tn, xn),

The local error of Euler’s method can be estimated by:

σ(tn, h) = ∥x(tn)− xn∥ = O(h2).

(is of order 1).

Notice that

lim
h→0

σ(tn, h)

h
= 0,

(is consistent).

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 9 / 49

A test equation

During this lecture we will consider{
ẋ = x2 + 2t − t4,

x(0) = 0,

as our test equation.

This equation can be solved by hand
and the solution is t2.

This allow us to control the error in a
trivial way.

-6

-5.5

-5

-4.5

-4

-3.5

-3

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

lo
g

1
0(

e)

t

Figure: 500 iterates of the Euler method with
step h = 10−3

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 10 / 49

Example: The Kepler Problem

The motion of a test particle about a massive one is governed by Kepler ODE.

ẋ = vx ,

ẏ = vy ,

v̇x = −x/(x2 + y2)3/2,

v̇y = −y/(x2 + y2)3/2,

The solutions are known to be conic
sections.

The angular momentum

L = xvy − yvx ,

is preserved.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

y

x

Figure: Circular solution of the Kepler problem.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 11 / 49

Example: The Kepler Problem

The motion of a test particle about a massive one is governed by Kepler ODE.

ẋ = vx ,

ẏ = vy ,

v̇x = −x/(x2 + y2)3/2,

v̇y = −y/(x2 + y2)3/2,

Local error behaves as expected for t
small.

The errors accumulate and accuracy is
lost as t increases.

-6

-5.5

-5

-4.5

-4

-3.5

-3

 0 0.1 0.2 0.3 0.4 0.5

lo
g

1
0
(L

0
 -

 L
(t

))

t

h=1e-3

Figure: Error estimated by L. Trajectory with
eccentricity 0.1.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 12 / 49

A strategy for step size control

To control the step size it is
mandatory to estimate the error.

We use an extra double iteration of
Euler with half the step size.

The difference between the two
predictions behave as

e =
1

2
Kh2 +O(h3)

if r = e/h > ε we decrease the step

h′ = 0.9
ε

r
h.

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

 0 0.1 0.2 0.3 0.4 0.5

lo
g

1
0
(L

0
 -

 L
(t

))

t

Figure: Error estimated by L. Initial step size
13. Final ≈ 10−5

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 13 / 49

Generalisations

The concepts of order and consistency can be generalised to any other method to
produce the approximation {(ti , xi)}i≤N :

A method is of order p if

σ(tn, h) = ∥x(tn)− xn∥ = O(hp+1).

It is consistent if

lim
h→0

σ(tn, h)

h
= 0.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 14 / 49

Section 3

Can we do better?

Improving Euler’s method

In Euler’s method uses a single value of the vectorfield at a given point of the
trajectory to predict the next one.

Some strategies to improve this approach are:

1. Do intermediate evaluations.

2. Use previously computed values.

3. Use higher order derivatives.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 16 / 49

Improving Euler’s method

In Euler’s method uses a single value of the vectorfield at a given point of the
trajectory to predict the next one.

Some strategies to improve this approach are:

1. Do intermediate evaluations.

2. Use previously computed values.

3. Use higher order derivatives.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 16 / 49

Improving Euler’s method

In Euler’s method uses a single value of the vectorfield at a given point of the
trajectory to predict the next one.

Some strategies to improve this approach are:

1. Do intermediate evaluations.

2. Use previously computed values.

3. Use higher order derivatives.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 16 / 49

The idea behind the Runge-Kutta methods

Let us go back to the weak formulation of the Cauchy Problem

x(t) = x0 +

∫ t

t0

f (τ, x(τ))dτ,

The Gaussian quadrature is a method to compute integrals:∫ b

a
ψ(τ)ω(τ)dτ ≈

s∑
i=1

biψ(ci),

where bi and ci depend upon ω (a nonnegative function), a and b.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 17 / 49

The idea behind the Runge-Kutta methods

If we use the weak formulation for a integration step

xn+1 = xn +

∫ tn+1

tn

f (τ, x(τ))dτ = xn + h

∫ 1

0
f (τ, x(τ))dτ,

We can replace the integral by a quadrature.

xn+1 = xn + h
s∑

i=1

bi f (tn + cih, x(tn + cih)).

Here, the quantities x(tn + cih) are not known. In R-K methods are approximated
by linear combinations of evaluations of the vectorfield.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 18 / 49

The idea behind the Runge-Kutta methods

If we use the weak formulation for a integration step

xn+1 = xn +

∫ tn+1

tn

f (τ, x(τ))dτ = xn + h

∫ 1

0
f (τ, x(τ))dτ,

We can replace the integral by a quadrature.

xn+1 = xn + h
s∑

i=1

bi f (tn + cih, x(tn + cih)).

Here, the quantities x(tn + cih) are not known. In R-K methods are approximated
by linear combinations of evaluations of the vectorfield.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 18 / 49

The idea behind the Runge-Kutta methods

If we use the weak formulation for a integration step

xn+1 = xn +

∫ tn+1

tn

f (τ, x(τ))dτ = xn + h

∫ 1

0
f (τ, x(τ))dτ,

We can replace the integral by a quadrature.

xn+1 = xn + h
s∑

i=1

bi f (tn + cih, x(tn + cih)).

Here, the quantities x(tn + cih) are not known. In R-K methods are approximated
by linear combinations of evaluations of the vectorfield.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 18 / 49

General formulation

The family of explicit Runge-Kutta
methods of s stages

xn+1 = xn + h
s∑

i=1

biki ,

k1 = f (tn, xn)

k2 = f (tn + c2h, xn + ha2,1k1)

... =
...

ks = f

tn + csh, xn + h
s−1∑
j=1

as,jkj

The methods are consistent if and
only if

s∑
i=1

bi = 1.

There is more freedom in choosing
ai ,j . A standard choice is

i−1∑
j=1

ai ,j = ci , i = 2, . . . , s.

The order of a RK is smaller or equal
than the number of stages.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 19 / 49

Butcher tableau of a RK method

0
c2 a2,1
c3 a3,1 a3,2
...

...
...

. . .

cs as,1 as,2 . . . as,s−1

b1 b2 . . . bs−1 bs

Table: General Butcher tableau.

0
1/3 1/3
2/3 0 2/3

1/4 0 3/4

Table: Heun’s method of 3 stages (order 3).

0
1 1

1/2 1/2

Table: Heun’s method of 2 stages (order 2).

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 2/6 2/6 1/6

Table: Classical R-K method.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 20 / 49

Order of R-K methods

In general, it is not true that a method of s stages has order s.

THM 1: If an explicit s-stage RK method has order p, then s ≤ p.

THM 2: If an explicit s-stage RK method has order p ≥ 5, then s > p.

THM 3 (Butcher): For p ≥ 7 no explicit R-K method exists of order p with
s = p + 1 stages.

THM 4 (Butcher): For p ≥ 8 no explicit R-K method exists of order p with
s = p + 2 stages.

p 1 2 3 4 5 6 7 8

min s 1 2 3 4 6 7 9 11

Table: Minimal number of stages s required to obtain order p.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 21 / 49

Order of R-K methods

In general, it is not true that a method of s stages has order s.

THM 1: If an explicit s-stage RK method has order p, then s ≤ p.

THM 2: If an explicit s-stage RK method has order p ≥ 5, then s > p.

THM 3 (Butcher): For p ≥ 7 no explicit R-K method exists of order p with
s = p + 1 stages.

THM 4 (Butcher): For p ≥ 8 no explicit R-K method exists of order p with
s = p + 2 stages.

p 1 2 3 4 5 6 7 8

min s 1 2 3 4 6 7 9 11

Table: Minimal number of stages s required to obtain order p.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 21 / 49

Order of R-K methods

In general, it is not true that a method of s stages has order s.

THM 1: If an explicit s-stage RK method has order p, then s ≤ p.

THM 2: If an explicit s-stage RK method has order p ≥ 5, then s > p.

THM 3 (Butcher): For p ≥ 7 no explicit R-K method exists of order p with
s = p + 1 stages.

THM 4 (Butcher): For p ≥ 8 no explicit R-K method exists of order p with
s = p + 2 stages.

p 1 2 3 4 5 6 7 8

min s 1 2 3 4 6 7 9 11

Table: Minimal number of stages s required to obtain order p.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 21 / 49

Order of R-K methods

In general, it is not true that a method of s stages has order s.

THM 1: If an explicit s-stage RK method has order p, then s ≤ p.

THM 2: If an explicit s-stage RK method has order p ≥ 5, then s > p.

THM 3 (Butcher): For p ≥ 7 no explicit R-K method exists of order p with
s = p + 1 stages.

THM 4 (Butcher): For p ≥ 8 no explicit R-K method exists of order p with
s = p + 2 stages.

p 1 2 3 4 5 6 7 8

min s 1 2 3 4 6 7 9 11

Table: Minimal number of stages s required to obtain order p.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 21 / 49

Order of R-K methods

In general, it is not true that a method of s stages has order s.

THM 1: If an explicit s-stage RK method has order p, then s ≤ p.

THM 2: If an explicit s-stage RK method has order p ≥ 5, then s > p.

THM 3 (Butcher): For p ≥ 7 no explicit R-K method exists of order p with
s = p + 1 stages.

THM 4 (Butcher): For p ≥ 8 no explicit R-K method exists of order p with
s = p + 2 stages.

p 1 2 3 4 5 6 7 8

min s 1 2 3 4 6 7 9 11

Table: Minimal number of stages s required to obtain order p.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 21 / 49

Order of R-K methods

In general, it is not true that a method of s stages has order s.

THM 1: If an explicit s-stage RK method has order p, then s ≤ p.

THM 2: If an explicit s-stage RK method has order p ≥ 5, then s > p.

THM 3 (Butcher): For p ≥ 7 no explicit R-K method exists of order p with
s = p + 1 stages.

THM 4 (Butcher): For p ≥ 8 no explicit R-K method exists of order p with
s = p + 2 stages.

p 1 2 3 4 5 6 7 8

min s 1 2 3 4 6 7 9 11

Table: Minimal number of stages s required to obtain order p.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 21 / 49

Performance

We solve the test equation{
ẋ = x2 + 2t − t4,

x(0) = 0,

with

1. Euler’s method,
2. Heun’s method of order 2
3. Classical R-K method (RK4).

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

lo
g

1
0(

e)

t

Euler
RK2
RK4

Figure: 500 iterates of Euler’s, Heun’s and RK4
h = 10−3

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 22 / 49

Error estimation

Practical computations require local error estimation to control the step size.

The idea is to use two methods:

xn = x(tn) +O(hp+1), x̄n = x(tn) +O(hq+1),

here, q > p.

The error estimation is

x̄n − xn = x(tn)− yn +O(hp+2).

x̄n is regarded as the “true solution”.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 23 / 49

Error estimation

Practical computations require local error estimation to control the step size.

The idea is to use two methods:

xn = x(tn) +O(hp+1), x̄n = x(tn) +O(hq+1),

here, q > p.

The error estimation is

x̄n − xn = x(tn)− yn +O(hp+2).

x̄n is regarded as the “true solution”.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 23 / 49

Error estimation

Practical computations require local error estimation to control the step size.

The idea is to use two methods:

xn = x(tn) +O(hp+1), x̄n = x(tn) +O(hq+1),

here, q > p.

The error estimation is

x̄n − xn = x(tn)− yn +O(hp+2).

x̄n is regarded as the “true solution”.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 23 / 49

Error estimation

Practical computations require local error estimation to control the step size.

The idea is to use two methods:

xn = x(tn) +O(hp+1), x̄n = x(tn) +O(hq+1),

here, q > p.

The error estimation is

x̄n − xn = x(tn)− yn +O(hp+2).

x̄n is regarded as the “true solution”.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 23 / 49

Fehlberg’s approach

Fehlberg considered the following
tableau:

c A

b′

b̂′

d ′

Which contains a R-K method of
order p and a method of order p + 1.

d ′ = b̂′ − b̂′ is used for error
estimation.

If we are using the method to compute
a quadrature b′ and b̂′ identical.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 24 / 49

Step size control

Let us assume that xn and x̂n are approximations provided by methods of order p and
p + 1 respectively.

Let ε < 0 be a prescribed tolerance.

The estimation of the error is given by

δ = ∥xn − x̂n∥ = ∥Kph
p +O(hp+1)∥.

If δ < ε we can proceed with the next step (both approximations can be used).

If not, the step size must be reduced and the approximations recomputed. The
new step is

0.9
(ε
δ

)p
h.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 25 / 49

Step size control

Let us assume that xn and x̂n are approximations provided by methods of order p and
p + 1 respectively.

Let ε < 0 be a prescribed tolerance.

The estimation of the error is given by

δ = ∥xn − x̂n∥ = ∥Kph
p +O(hp+1)∥.

If δ < ε we can proceed with the next step (both approximations can be used).

If not, the step size must be reduced and the approximations recomputed. The
new step is

0.9
(ε
δ

)p
h.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 25 / 49

Step size control

Let us assume that xn and x̂n are approximations provided by methods of order p and
p + 1 respectively.

Let ε < 0 be a prescribed tolerance.

The estimation of the error is given by

δ = ∥xn − x̂n∥ = ∥Kph
p +O(hp+1)∥.

If δ < ε we can proceed with the next step (both approximations can be used).

If not, the step size must be reduced and the approximations recomputed. The
new step is

0.9
(ε
δ

)p
h.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 25 / 49

Step size control

Let us assume that xn and x̂n are approximations provided by methods of order p and
p + 1 respectively.

Let ε < 0 be a prescribed tolerance.

The estimation of the error is given by

δ = ∥xn − x̂n∥ = ∥Kph
p +O(hp+1)∥.

If δ < ε we can proceed with the next step (both approximations can be used).

If not, the step size must be reduced and the approximations recomputed. The
new step is

0.9
(ε
δ

)p
h.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 25 / 49

Linear Multistep methods

The idea is to use previous steps to improve the accuracy of the method as the
integration advances.

Originally proposed by Bashforth and Adams (1883).

An stepper of Adams type is given by:

xn+s = xn+s−1 + h
s−1∑
j=0

βj f (tn+j , xn+j).

The constants βj are chosen to five the highest possible order.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 26 / 49

Linear Multistep methods

The idea is to use previous steps to improve the accuracy of the method as the
integration advances.

Originally proposed by Bashforth and Adams (1883).

An stepper of Adams type is given by:

xn+s = xn+s−1 + h
s−1∑
j=0

βj f (tn+j , xn+j).

The constants βj are chosen to five the highest possible order.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 26 / 49

Linear Multistep methods

The idea is to use previous steps to improve the accuracy of the method as the
integration advances.

Originally proposed by Bashforth and Adams (1883).

An stepper of Adams type is given by:

xn+s = xn+s−1 + h
s−1∑
j=0

βj f (tn+j , xn+j).

The constants βj are chosen to five the highest possible order.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 26 / 49

Linear Multistep methods

The idea is to use previous steps to improve the accuracy of the method as the
integration advances.

Originally proposed by Bashforth and Adams (1883).

An stepper of Adams type is given by:

xn+s = xn+s−1 + h
s−1∑
j=0

βj f (tn+j , xn+j).

The constants βj are chosen to five the highest possible order.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 26 / 49

How we get there?

Assume we have already computed an approximation x0, x1, . . . xn+s−1 of order s
i.e.

xm = x(tm) +O(hs+1).

And consider

x(tn+s) = x(tn+s−1) +

∫ tn+s

tn+s−1

f (τ, x(τ))dτ.

We can approximate f (t, x(t) by

P(t) =
s−1∑
j=0

pj(t)f (tn+j , xn+j),

here, pj are the Lagrange interpolation polynomials.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 27 / 49

How we get there?

Assume we have already computed an approximation x0, x1, . . . xn+s−1 of order s
i.e.

xm = x(tm) +O(hs+1).

And consider

x(tn+s) = x(tn+s−1) +

∫ tn+s

tn+s−1

f (τ, x(τ))dτ.

We can approximate f (t, x(t) by

P(t) =
s−1∑
j=0

pj(t)f (tn+j , xn+j),

here, pj are the Lagrange interpolation polynomials.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 27 / 49

How we get there?

Assume we have already computed an approximation x0, x1, . . . xn+s−1 of order s
i.e.

xm = x(tm) +O(hs+1).

And consider

x(tn+s) = x(tn+s−1) +

∫ tn+s

tn+s−1

f (τ, x(τ))dτ.

We can approximate f (t, x(t) by

P(t) =
s−1∑
j=0

pj(t)f (tn+j , xn+j),

here, pj are the Lagrange interpolation polynomials.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 27 / 49

Examples

Adams method for s = 1 is Euler’s method.

For s = 2

xn+2 = xn+1 + h

[
3

2
f (tn+1, xn+1)−

1

2
f (tn, xn)

]
.

For s = 3

xn+3 = xn+2 + h

[
23

12
f (tn+2, xn+2)−

4

3
f (tn+1, xn+1) +

5

12
f (tn, xn)

]
.

In general, an Adams method of s steps has order s.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 28 / 49

Examples

Adams method for s = 1 is Euler’s method.

For s = 2

xn+2 = xn+1 + h

[
3

2
f (tn+1, xn+1)−

1

2
f (tn, xn)

]
.

For s = 3

xn+3 = xn+2 + h

[
23

12
f (tn+2, xn+2)−

4

3
f (tn+1, xn+1) +

5

12
f (tn, xn)

]
.

In general, an Adams method of s steps has order s.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 28 / 49

Examples

Adams method for s = 1 is Euler’s method.

For s = 2

xn+2 = xn+1 + h

[
3

2
f (tn+1, xn+1)−

1

2
f (tn, xn)

]
.

For s = 3

xn+3 = xn+2 + h

[
23

12
f (tn+2, xn+2)−

4

3
f (tn+1, xn+1) +

5

12
f (tn, xn)

]
.

In general, an Adams method of s steps has order s.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 28 / 49

Examples

Adams method for s = 1 is Euler’s method.

For s = 2

xn+2 = xn+1 + h

[
3

2
f (tn+1, xn+1)−

1

2
f (tn, xn)

]
.

For s = 3

xn+3 = xn+2 + h

[
23

12
f (tn+2, xn+2)−

4

3
f (tn+1, xn+1) +

5

12
f (tn, xn)

]
.

In general, an Adams method of s steps has order s.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 28 / 49

Error estimation: Minle device

Error estimation for LMM can be approached with similar ideas to RKM.

Milne device: Use two steppers of the same order.

One of them is implicit (this will be discussed later).

The other one is explicit and it is used only for error estimation.

When adjusting the step size a remeshing of the approximated points is required.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 29 / 49

Error estimation: Minle device

Error estimation for LMM can be approached with similar ideas to RKM.

Milne device: Use two steppers of the same order.

One of them is implicit (this will be discussed later).

The other one is explicit and it is used only for error estimation.

When adjusting the step size a remeshing of the approximated points is required.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 29 / 49

Error estimation: Minle device

Error estimation for LMM can be approached with similar ideas to RKM.

Milne device: Use two steppers of the same order.

One of them is implicit (this will be discussed later).

The other one is explicit and it is used only for error estimation.

When adjusting the step size a remeshing of the approximated points is required.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 29 / 49

Error estimation: Minle device

Error estimation for LMM can be approached with similar ideas to RKM.

Milne device: Use two steppers of the same order.

One of them is implicit (this will be discussed later).

The other one is explicit and it is used only for error estimation.

When adjusting the step size a remeshing of the approximated points is required.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 29 / 49

Error estimation: Minle device

Error estimation for LMM can be approached with similar ideas to RKM.

Milne device: Use two steppers of the same order.

One of them is implicit (this will be discussed later).

The other one is explicit and it is used only for error estimation.

When adjusting the step size a remeshing of the approximated points is required.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 29 / 49

The Taylor method

Given a Cauchy problem: {
ẋ = f (t, x),

x(0) = x0.

If we differentiate the ODE w.r.t. t, we get:

ẍ = ∂t f (t, x) + Dx f (t, x)ẋ = ∂t f (t, x) + Dx f (t, x)f (t, x).

In general, we can get all the derivatives of the solution as a recurrence depending
on the derivatives of lower order.
Indeed, if we name the normalized derivatives

Xi =
1

i !
x (i)(t0), Fi =

1

i !
(f (t, x(t))(i) |x=x0 ,

then:

Xi =
1

i + 1
Fi .

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 30 / 49

The Taylor method

Given a Cauchy problem: {
ẋ = f (t, x),

x(0) = x0.

If we differentiate the ODE w.r.t. t, we get:

ẍ = ∂t f (t, x) + Dx f (t, x)ẋ = ∂t f (t, x) + Dx f (t, x)f (t, x).

In general, we can get all the derivatives of the solution as a recurrence depending
on the derivatives of lower order.

Indeed, if we name the normalized derivatives

Xi =
1

i !
x (i)(t0), Fi =

1

i !
(f (t, x(t))(i) |x=x0 ,

then:

Xi =
1

i + 1
Fi .

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 30 / 49

The Taylor method

Given a Cauchy problem: {
ẋ = f (t, x),

x(0) = x0.

If we differentiate the ODE w.r.t. t, we get:

ẍ = ∂t f (t, x) + Dx f (t, x)ẋ = ∂t f (t, x) + Dx f (t, x)f (t, x).

In general, we can get all the derivatives of the solution as a recurrence depending
on the derivatives of lower order.
Indeed, if we name the normalized derivatives

Xi =
1

i !
x (i)(t0), Fi =

1

i !
(f (t, x(t))(i) |x=x0 ,

then:

Xi =
1

i + 1
Fi .

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 30 / 49

The Taylor method

Going up to order N we can construct a Taylor Polynomial of the solution:

x(t0 + h) ≈
N∑
i=0

Xih
i .

The error is O(hN+1). Given N, we can pick h small enough so the approximation
has error below some prescribed tolerance.

Then, we can produce the next point of the solution as

x1 =
N∑
i=0

Xih
i .

For the next step, we re-compute the Taylor expansion of the solution about x1.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 31 / 49

The Taylor method

Going up to order N we can construct a Taylor Polynomial of the solution:

x(t0 + h) ≈
N∑
i=0

Xih
i .

The error is O(hN+1). Given N, we can pick h small enough so the approximation
has error below some prescribed tolerance.

Then, we can produce the next point of the solution as

x1 =
N∑
i=0

Xih
i .

For the next step, we re-compute the Taylor expansion of the solution about x1.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 31 / 49

The Taylor method

Going up to order N we can construct a Taylor Polynomial of the solution:

x(t0 + h) ≈
N∑
i=0

Xih
i .

The error is O(hN+1). Given N, we can pick h small enough so the approximation
has error below some prescribed tolerance.

Then, we can produce the next point of the solution as

x1 =
N∑
i=0

Xih
i .

For the next step, we re-compute the Taylor expansion of the solution about x1.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 31 / 49

The Taylor method

Going up to order N we can construct a Taylor Polynomial of the solution:

x(t0 + h) ≈
N∑
i=0

Xih
i .

The error is O(hN+1). Given N, we can pick h small enough so the approximation
has error below some prescribed tolerance.

Then, we can produce the next point of the solution as

x1 =
N∑
i=0

Xih
i .

For the next step, we re-compute the Taylor expansion of the solution about x1.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 31 / 49

The Taylor method

The main practical issue of this process is to compute the terms of the recurrence:

Fi =
1

i !
(f (t, x(t))(i) |x=x0 ,

(this can be achieved by means of automatic differentiation).

Given a threshold, there is an optimal choice of order and step-size.

1. The optimal step-size is ≈ e−2ρ(t) where ρ(t) is the radius of convergence of the
series.

2. The optimal order is linear in the number of digits D. For a single step, the global
computational cost is O(D4).

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 32 / 49

The Taylor method

The main practical issue of this process is to compute the terms of the recurrence:

Fi =
1

i !
(f (t, x(t))(i) |x=x0 ,

(this can be achieved by means of automatic differentiation).

Given a threshold, there is an optimal choice of order and step-size.

1. The optimal step-size is ≈ e−2ρ(t) where ρ(t) is the radius of convergence of the
series.

2. The optimal order is linear in the number of digits D. For a single step, the global
computational cost is O(D4).

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 32 / 49

The Taylor method

The main practical issue of this process is to compute the terms of the recurrence:

Fi =
1

i !
(f (t, x(t))(i) |x=x0 ,

(this can be achieved by means of automatic differentiation).

Given a threshold, there is an optimal choice of order and step-size.

1. The optimal step-size is ≈ e−2ρ(t) where ρ(t) is the radius of convergence of the
series.

2. The optimal order is linear in the number of digits D. For a single step, the global
computational cost is O(D4).

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 32 / 49

The Taylor method

The main practical issue of this process is to compute the terms of the recurrence:

Fi =
1

i !
(f (t, x(t))(i) |x=x0 ,

(this can be achieved by means of automatic differentiation).

Given a threshold, there is an optimal choice of order and step-size.

1. The optimal step-size is ≈ e−2ρ(t) where ρ(t) is the radius of convergence of the
series.

2. The optimal order is linear in the number of digits D. For a single step, the global
computational cost is O(D4).

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 32 / 49

The Taylor method

SUMMARY:

The Taylor method is based in producing a Taylor polynomial of the solution at
each step.

Both, the order and the step-size can be updated optimally according to a
prescribed accuracy.

The Taylor method is extremely competitive when high accuracy is required.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 33 / 49

The Taylor method

SUMMARY:

The Taylor method is based in producing a Taylor polynomial of the solution at
each step.

Both, the order and the step-size can be updated optimally according to a
prescribed accuracy.

The Taylor method is extremely competitive when high accuracy is required.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 33 / 49

The Taylor method

SUMMARY:

The Taylor method is based in producing a Taylor polynomial of the solution at
each step.

Both, the order and the step-size can be updated optimally according to a
prescribed accuracy.

The Taylor method is extremely competitive when high accuracy is required.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 33 / 49

Taylor vs RKF78

-16.5

-16

-15.5

-15

-14.5

-14

-13.5

 0 100 200 300 400 500 600 700 800 900 1000

lo
g

1
0
(L

0
 -

 L
(t

))

t

Taylor
RKF78

Figure: Integration of 1000 units of time using Taylor and RKF78 of an orbit with e = 0.5.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 34 / 49

Section 4

Cripples, Bastards, and Broken Things

Stiffness

Let us consider a linear ODE

ẋ = Mx , x(0) = I .

Suppose that M can be diagonalized by a change D = S−1MS ,

The equation ẏ = Dy is a system of uncoupled equations.

Suppose now that there exist an eigenvalue −λ with λ >> 1.

Its associated equations is {
ẋ = −λx ,
x(0) = 1,

and has solution x(t) = exp(−λt)

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 36 / 49

Stiffness

Let us consider a linear ODE

ẋ = Mx , x(0) = I .

Suppose that M can be diagonalized by a change D = S−1MS ,

The equation ẏ = Dy is a system of uncoupled equations.

Suppose now that there exist an eigenvalue −λ with λ >> 1.

Its associated equations is {
ẋ = −λx ,
x(0) = 1,

and has solution x(t) = exp(−λt)

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 36 / 49

Stiffness

Let us consider a linear ODE

ẋ = Mx , x(0) = I .

Suppose that M can be diagonalized by a change D = S−1MS ,

The equation ẏ = Dy is a system of uncoupled equations.

Suppose now that there exist an eigenvalue −λ with λ >> 1.

Its associated equations is {
ẋ = −λx ,
x(0) = 1,

and has solution x(t) = exp(−λt)

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 36 / 49

Stiffness

Let us consider a linear ODE

ẋ = Mx , x(0) = I .

Suppose that M can be diagonalized by a change D = S−1MS ,

The equation ẏ = Dy is a system of uncoupled equations.

Suppose now that there exist an eigenvalue −λ with λ >> 1.

Its associated equations is {
ẋ = −λx ,
x(0) = 1,

and has solution x(t) = exp(−λt)

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 36 / 49

Stiffness

Let us consider a linear ODE

ẋ = Mx , x(0) = I .

Suppose that M can be diagonalized by a change D = S−1MS ,

The equation ẏ = Dy is a system of uncoupled equations.

Suppose now that there exist an eigenvalue −λ with λ >> 1.

Its associated equations is {
ẋ = −λx ,
x(0) = 1,

and has solution x(t) = exp(−λt)

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 36 / 49

Domain of stability of Euler’s method

Let us apply Euler’s method:

ẋ = f (t, x), xn+1 = xn + hf (tn, xn)

For the previous equation (ẋ = −λx) the Euler method becomes

xn+1 = xn − hλxn = (1− hλ)xn =⇒ xn = (1− hλ)n.

This implies that, to have xn → 0, h has to be small enough:

h <
2

λ
.

Domain of stability: D = {z ∈ C : |1 + z | < 1}.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 37 / 49

Domain of stability of Euler’s method

Let us apply Euler’s method:

ẋ = f (t, x), xn+1 = xn + hf (tn, xn)

For the previous equation (ẋ = −λx) the Euler method becomes

xn+1 = xn − hλxn = (1− hλ)xn =⇒ xn = (1− hλ)n.

This implies that, to have xn → 0, h has to be small enough:

h <
2

λ
.

Domain of stability: D = {z ∈ C : |1 + z | < 1}.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 37 / 49

Domain of stability of Euler’s method

Let us apply Euler’s method:

ẋ = f (t, x), xn+1 = xn + hf (tn, xn)

For the previous equation (ẋ = −λx) the Euler method becomes

xn+1 = xn − hλxn = (1− hλ)xn =⇒ xn = (1− hλ)n.

This implies that, to have xn → 0, h has to be small enough:

h <
2

λ
.

Domain of stability: D = {z ∈ C : |1 + z | < 1}.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 37 / 49

Domain of stability of Euler’s method

Let us apply Euler’s method:

ẋ = f (t, x), xn+1 = xn + hf (tn, xn)

For the previous equation (ẋ = −λx) the Euler method becomes

xn+1 = xn − hλxn = (1− hλ)xn =⇒ xn = (1− hλ)n.

This implies that, to have xn → 0, h has to be small enough:

h <
2

λ
.

Domain of stability: D = {z ∈ C : |1 + z | < 1}.
Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 37 / 49

The implicit Euler method

Let us see what happens if we use an implicit Euler method:

ẋ = f (t, x), xn+1 = xn + hf (tn+1, xn+1)

For the equation ẋ = −λx we obtain

xn+1 = xn − hλxn+1 =⇒ (1 + hλ)xn+1 = xn,

and then

xn =
1

(1 + hλ)n
,

which goes to zero for any h > 0 and λ > 0.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 38 / 49

The implicit Euler method

Let us see what happens if we use an implicit Euler method:

ẋ = f (t, x), xn+1 = xn + hf (tn+1, xn+1)

For the equation ẋ = −λx we obtain

xn+1 = xn − hλxn+1 =⇒ (1 + hλ)xn+1 = xn,

and then

xn =
1

(1 + hλ)n
,

which goes to zero for any h > 0 and λ > 0.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 38 / 49

The implicit Euler method

Let us see what happens if we use an implicit Euler method:

ẋ = f (t, x), xn+1 = xn + hf (tn+1, xn+1)

For the equation ẋ = −λx we obtain

xn+1 = xn − hλxn+1 =⇒ (1 + hλ)xn+1 = xn,

and then

xn =
1

(1 + hλ)n
,

which goes to zero for any h > 0 and λ > 0.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 38 / 49

A-stability

The implicit Euler method has domain of stability ℜ(z) < 0.

The domain of stability can be computed for other methods.

A method is A-stable if ℜ(z) < 0 is contained in its domain of stability.

No explicit R-K method can be A-stable.

For any order p there exists an Implicit R-K method which is A-stable.

Dahlquist second barrier: The highest order of an A-stable multistep method is 2.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 39 / 49

A-stability

The implicit Euler method has domain of stability ℜ(z) < 0.

The domain of stability can be computed for other methods.

A method is A-stable if ℜ(z) < 0 is contained in its domain of stability.

No explicit R-K method can be A-stable.

For any order p there exists an Implicit R-K method which is A-stable.

Dahlquist second barrier: The highest order of an A-stable multistep method is 2.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 39 / 49

A-stability

The implicit Euler method has domain of stability ℜ(z) < 0.

The domain of stability can be computed for other methods.

A method is A-stable if ℜ(z) < 0 is contained in its domain of stability.

No explicit R-K method can be A-stable.

For any order p there exists an Implicit R-K method which is A-stable.

Dahlquist second barrier: The highest order of an A-stable multistep method is 2.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 39 / 49

A-stability

The implicit Euler method has domain of stability ℜ(z) < 0.

The domain of stability can be computed for other methods.

A method is A-stable if ℜ(z) < 0 is contained in its domain of stability.

No explicit R-K method can be A-stable.

For any order p there exists an Implicit R-K method which is A-stable.

Dahlquist second barrier: The highest order of an A-stable multistep method is 2.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 39 / 49

A-stability

The implicit Euler method has domain of stability ℜ(z) < 0.

The domain of stability can be computed for other methods.

A method is A-stable if ℜ(z) < 0 is contained in its domain of stability.

No explicit R-K method can be A-stable.

For any order p there exists an Implicit R-K method which is A-stable.

Dahlquist second barrier: The highest order of an A-stable multistep method is 2.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 39 / 49

A-stability

The implicit Euler method has domain of stability ℜ(z) < 0.

The domain of stability can be computed for other methods.

A method is A-stable if ℜ(z) < 0 is contained in its domain of stability.

No explicit R-K method can be A-stable.

For any order p there exists an Implicit R-K method which is A-stable.

Dahlquist second barrier: The highest order of an A-stable multistep method is 2.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 39 / 49

A remark on implicit methods

Implicit methods are meant to deal with stiff equations.

Those methods require to solve an algebraic equation to compute each step.

As a consequence, implicit methods are computationally more expensive than the
explicit ones.

It is not a good idea to use implicit methods “just in case”.

It is important to know if an equation is stiff.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 40 / 49

A remark on implicit methods

Implicit methods are meant to deal with stiff equations.

Those methods require to solve an algebraic equation to compute each step.

As a consequence, implicit methods are computationally more expensive than the
explicit ones.

It is not a good idea to use implicit methods “just in case”.

It is important to know if an equation is stiff.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 40 / 49

A remark on implicit methods

Implicit methods are meant to deal with stiff equations.

Those methods require to solve an algebraic equation to compute each step.

As a consequence, implicit methods are computationally more expensive than the
explicit ones.

It is not a good idea to use implicit methods “just in case”.

It is important to know if an equation is stiff.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 40 / 49

A remark on implicit methods

Implicit methods are meant to deal with stiff equations.

Those methods require to solve an algebraic equation to compute each step.

As a consequence, implicit methods are computationally more expensive than the
explicit ones.

It is not a good idea to use implicit methods “just in case”.

It is important to know if an equation is stiff.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 40 / 49

A remark on implicit methods

Implicit methods are meant to deal with stiff equations.

Those methods require to solve an algebraic equation to compute each step.

As a consequence, implicit methods are computationally more expensive than the
explicit ones.

It is not a good idea to use implicit methods “just in case”.

It is important to know if an equation is stiff.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 40 / 49

A feature from Taylor

The Taylor method also fails to deal
with stiffness.

However, this pathological behaviour
can be detected by means of the
Taylor series of the solution.

In the Figure, we plot the first 16
Taylor coefficients of exp(−104t):

∞∑
i=0

(λt)k

k!
, λ = −104.

The coefficients increase before the
factorial becomes dominant.

-20

-15

-10

-5

 0

 5

 10

 15

 20

 2 4 6 8 10 12 14 16

lo
g

10
(a

k
)

k

Figure: Taylor coefficients of the function
exp(−λt).

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 41 / 49

Fail in Fehlberg strategy

Let us consider the ODE{
ẋ = αx + cos(t)− α sin(t),

x(0) = 0,

which has x(t) = sin t as the exact solution. Let us choose α = 10−4.

A test of the error of integration is to compute the solution at t = 2π, and it
should be zero.

If we use a RKF78, asking for an accuracy of 10−12, we obtain than x(2π) is,
approximately, −2.383702× 10−7.

An alternative to the Fehlberg step size control is a step size control developed
(later) by J. Verner.

Using a Runge-Kutta-Verner for the previous example we obtain that x(2π) is,
approximately, −3.747003× 10−16.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 42 / 49

Fail in Fehlberg strategy

Let us consider the ODE{
ẋ = αx + cos(t)− α sin(t),

x(0) = 0,

which has x(t) = sin t as the exact solution. Let us choose α = 10−4.

A test of the error of integration is to compute the solution at t = 2π, and it
should be zero.

If we use a RKF78, asking for an accuracy of 10−12, we obtain than x(2π) is,
approximately, −2.383702× 10−7.

An alternative to the Fehlberg step size control is a step size control developed
(later) by J. Verner.

Using a Runge-Kutta-Verner for the previous example we obtain that x(2π) is,
approximately, −3.747003× 10−16.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 42 / 49

Fail in Fehlberg strategy

Let us consider the ODE{
ẋ = αx + cos(t)− α sin(t),

x(0) = 0,

which has x(t) = sin t as the exact solution. Let us choose α = 10−4.

A test of the error of integration is to compute the solution at t = 2π, and it
should be zero.

If we use a RKF78, asking for an accuracy of 10−12, we obtain than x(2π) is,
approximately, −2.383702× 10−7.

An alternative to the Fehlberg step size control is a step size control developed
(later) by J. Verner.

Using a Runge-Kutta-Verner for the previous example we obtain that x(2π) is,
approximately, −3.747003× 10−16.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 42 / 49

Fail in Fehlberg strategy

Let us consider the ODE{
ẋ = αx + cos(t)− α sin(t),

x(0) = 0,

which has x(t) = sin t as the exact solution. Let us choose α = 10−4.

A test of the error of integration is to compute the solution at t = 2π, and it
should be zero.

If we use a RKF78, asking for an accuracy of 10−12, we obtain than x(2π) is,
approximately, −2.383702× 10−7.

An alternative to the Fehlberg step size control is a step size control developed
(later) by J. Verner.

Using a Runge-Kutta-Verner for the previous example we obtain that x(2π) is,
approximately, −3.747003× 10−16.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 42 / 49

Fail in Fehlberg strategy

Let us consider the ODE{
ẋ = αx + cos(t)− α sin(t),

x(0) = 0,

which has x(t) = sin t as the exact solution. Let us choose α = 10−4.

A test of the error of integration is to compute the solution at t = 2π, and it
should be zero.

If we use a RKF78, asking for an accuracy of 10−12, we obtain than x(2π) is,
approximately, −2.383702× 10−7.

An alternative to the Fehlberg step size control is a step size control developed
(later) by J. Verner.

Using a Runge-Kutta-Verner for the previous example we obtain that x(2π) is,
approximately, −3.747003× 10−16.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 42 / 49

Energy drift

Let us consider hamiltonian model:

H =
1

2
(p2 + ωx2),

And integrate if with Euler’s method and Symplectic Euler’s method (ω = 1 and
h = 0.1)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

v

x

Euler
Symplectic

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16 18 20 22

H
t

Euler
Symplectic

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 43 / 49

Artefacts

The Chirikov Standard Map (SM) is a
well known Area Preserving Map
(APM).{

θn+1 = θn + pn+1,

pn+1 = pn + h sin(θn)

It can be obtained from applying a
symplectic Euler method to a
pendulum.

The SM is a simple model for
non-integrable APMs. Meaning that it
exhibits chaotic behaviour.

Figure: Phase portrait of Standard Map
(h = 0.5)

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 44 / 49

Section 5

Why we can’t predict the weather?

The Lorenz system

The Lorenz system is a simplified model for atmospheric convection:

ẋ = σ(y − x),

ẏ = x(ρ− z)− y ,

ż = xy − βz

For suitable values of the parameters,
it exhibits chaotic behaviour.

The motion is driven by an attractor
of Hausdorff dimension ≈ 2.06.

The flow is dissipative and there are
two repealing limit cycles.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-20 -15 -10 -5 0 5 10 15 20

z

x

Figure: x − z projection of the Attractor.
σ = 10, ρ = 28, β = 8/3. Integration time:
500. Initial condition (1, 0, 0).

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 46 / 49

The Lorenz system

The Lorenz system is a simplified model for atmospheric convection:

-30

-20

-10

 0

 10

 20

 30

-20 -15 -10 -5 0 5 10 15 20

y

x

Figure: Poincaré maps {z = 25}. Purple points
correspond to crossings with ż < 0. Green
points with ż > 0.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-20 -15 -10 -5 0 5 10 15 20

z

x

Figure: x − z projection of the Attractor.
σ = 10, ρ = 28, β = 8/3. Integration time:
500. Initial condition (1, 0, 0).

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 47 / 49

Growth of the error due to dynamics

Let us start an integration at (1, 0, 0) and (1, 0, 0) + v , check the outputs and track
the norm of the directional derivative w.r.t. v = (10−8, 0, 0).

T e ∥∇vφT∥
10 2.931815e-08 2.9318251e-08

20 7.950019e-08 7.9494469e-08

30 1.534007e-04 1.5333987e-04

40 9.850263e-01 9.7055406e-01

50 1.820953e+01 1.5527040e+04

For small times the propagation of
error is controlled.

For T = 30, the initial error has been
amplified by 104.

For T = 50, is amplified by 1012.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-20 -15 -10 -5 0 5 10 15 20

z

x

Figure: Two trajectories with initial distance
10−8. Integration time: 50.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 48 / 49

References

Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), “Solving ordinary
differential equations I: Nonstiff problems”, Berlin, New York: Springer-Verlag,
ISBN 978-3-540-56670-0.

Iserles, Arieh (1996), “A First Course in the Numerical Analysis of Differential
Equations”, Cambridge University Press, ISBN 978-0-521-55655-2.

Butcher, John C. (2008), “Numerical Methods for Ordinary Differential
Equations”, New York: John Wiley and Sons, ISBN 978-0-470-72335-7.

Jorba, Àngel and Zou, Maorong, “A software package for the numerical
integration of ODEs by means of high-order Taylor methods”. Exp. Math.,
14(1):99–117, 2005.

Alsedà, Jorba-Cuscó, Sardanyès Algorithms for the integration of ODE 49 / 49

	Previous concepts
	Euler's method
	Can we do better?
	The Runge-Kutta family
	Linear Multistep methods
	The Taylor method

	Cripples, Bastards, and Broken Things
	Why we can't predict the weather?

