Algorithms for the integration of ODE

Centre de Recerca Matemàtica

Lluis Alsedà, Marc Jorba-Cuscó, Josep Sardanyès
November 7, 2023

Previous concepts

Euler's method

Can we do better?
The Runge-Kutta family Linear Multistep methods
The Taylor method

Cripples, Bastards, and Broken Things

Why we can't predict the weather?

Section 1
Previous concepts

What is an ODE?

An Ordinary Differential Equation (ODE) is an expression

$$
\dot{x}(t)=f(t, x(t)),
$$

Where:
O $f: \mathbb{R} \times \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ is a known function called the vector-field.

What is an ODE?

An Ordinary Differential Equation (ODE) is an expression

$$
\dot{x}(t)=f(t, x(t)),
$$

Where:
O $f: \mathbb{R} \times \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ is a known function called the vector-field.
$0 x: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is an unknown function (the dependent variable).

What is an ODE?

An Ordinary Differential Equation (ODE) is an expression

$$
\dot{x}(t)=f(t, x(t)),
$$

Where:
O $f: \mathbb{R} \times \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ is a known function called the vector-field.
$O x: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is an unknown function (the dependent variable).
$\mathrm{O} t$ is dependent variable (often called time).

What is an ODE?

An Ordinary Differential Equation (ODE) is an expression

$$
\dot{x}(t)=f(t, x(t))
$$

Where:
O $f: \mathbb{R} \times \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ is a known function called the vector-field.
$\mathrm{O} x: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is an unknown function (the dependent variable).
$\mathrm{O} t$ is dependent variable (often called time).
O An ODE with a prescribed initial condition

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(t, x(t)) \\
x\left(t_{0}\right)=x_{0}
\end{array}\right.
$$

is called a Cauchy Problem.

Existence and Uniqueness

Under reasonable conditions (at least, continuous + Lipschitz), the Cauchy problem

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(t, x(t)), \\
x\left(t_{0}\right)=x_{0}
\end{array}\right.
$$

has a unique solution. Moreover.
o The solution also verifies the integral equation

$$
x(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s
$$

Existence and Uniqueness

Under reasonable conditions (at least, continuous + Lipschitz), the Cauchy problem

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(t, x(t)), \\
x\left(t_{0}\right)=x_{0}
\end{array}\right.
$$

has a unique solution. Moreover.
o The solution also verifies the integral equation

$$
x(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s
$$

O The map $\varphi: \mathbb{R}^{n+2} \mapsto \mathbb{R}^{n}$ given by

$$
\varphi\left(t_{0}, t, x_{0}\right)=x(t)
$$

is called flow.

Existence and Uniqueness

Under reasonable conditions (at least, continuous + Lipschitz), the Cauchy problem

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(t, x(t)), \\
x\left(t_{0}\right)=x_{0}
\end{array}\right.
$$

has a unique solution. Moreover.
O The solution also verifies the integral equation

$$
x(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s
$$

○ The map $\varphi: \mathbb{R}^{n+2} \mapsto \mathbb{R}^{n}$ given by

$$
\varphi\left(t_{0}, t, x_{0}\right)=x(t)
$$

is called flow.
0 The flow inherits the regularity of function f.

First order variational equations

O Given a trajectory $\varphi\left(t_{0}, t, x_{0}\right)$ of the original system, it holds that,

$$
\left\{\begin{array}{l}
\frac{d}{d t} D_{x_{0}} \varphi\left(t_{0}, t, x_{0}\right)=D_{x_{0}} f\left(t, \varphi\left(t_{0}, t, x_{0}\right)\right) D_{x_{0}} \varphi\left(t_{0}, t, x_{0}\right), \\
D_{x_{0}} \varphi\left(t_{0}, 0, x_{0}\right),=I_{n}
\end{array}\right.
$$

First order variational equations

O Given a trajectory $\varphi\left(t_{0}, t, x_{0}\right)$ of the original system, it holds that,

$$
\left\{\begin{array}{l}
\frac{d}{d t} D_{x_{0}} \varphi\left(t_{0}, t, x_{0}\right)=D_{x_{0}} f\left(t, \varphi\left(t_{0}, t, x_{0}\right)\right) D_{x_{0}} \varphi\left(t_{0}, t, x_{0}\right), \\
D_{x_{0}} \varphi\left(t_{0}, 0, x_{0}\right),=I_{n}
\end{array}\right.
$$

O Interesting for practical purposes: Newton method, Stability of orbits, Lyapunov spectrum, control theory, ...

First order variational equations

O Given a trajectory $\varphi\left(t_{0}, t, x_{0}\right)$ of the original system, it holds that,

$$
\left\{\begin{array}{l}
\frac{d}{d t} D_{x_{0}} \varphi\left(t_{0}, t, x_{0}\right)=D_{x_{0}} f\left(t, \varphi\left(t_{0}, t, x_{0}\right)\right) D_{x_{0}} \varphi\left(t_{0}, t, x_{0}\right), \\
D_{x_{0}} \varphi\left(t_{0}, 0, x_{0}\right),=I_{n} .
\end{array}\right.
$$

O Interesting for practical purposes: Newton method, Stability of orbits, Lyapunov spectrum, control theory, ...
o Classically, are computed by hand and integrated numerically together with the original differential equation.

First order variational equations

O Given a trajectory $\varphi\left(t_{0}, t, x_{0}\right)$ of the original system, it holds that,

$$
\left\{\begin{array}{l}
\frac{d}{d t} D_{x_{0}} \varphi\left(t_{0}, t, x_{0}\right)=D_{x_{0}} f\left(t, \varphi\left(t_{0}, t, x_{0}\right)\right) D_{x_{0}} \varphi\left(t_{0}, t, x_{0}\right), \\
D_{x_{0}} \varphi\left(t_{0}, 0, x_{0}\right),=I_{n} .
\end{array}\right.
$$

O Interesting for practical purposes: Newton method, Stability of orbits, Lyapunov spectrum, control theory, ...
o Classically, are computed by hand and integrated numerically together with the original differential equation.

O The whole system is of dimension $n+n^{2}$.

Section 2

Euler's method

Euler's method

The idea of Euler's method is to produce a linear approximation of the solution.
O Given an initial condition $\left(t_{0}, x_{0}\right)$:

$$
\left\{\begin{array}{l}
x_{1}=x_{0}+h f\left(t_{0}, x_{0}\right) \\
t_{1}=t_{0}+h
\end{array}\right.
$$

O Here, h is a small quantity called step.
o IDEA:

$$
\frac{x_{1}-x_{0}}{h} \approx f\left(t_{0}, x_{0}\right), \quad h=\left(t_{1}-t_{2}\right)
$$

O The sequence $\left\{\left(t_{i}, x_{i}\right)\right\}_{i \leq N}$ approximates the solution.

Local error

O Let $\left\{\left(t_{i}, x_{i}\right)\right\}_{i \leq N}$ be a sequence of approximations produced by Euler's method.

$$
x_{n+1}=x_{n}+h f\left(t_{n}, x_{n}\right),
$$

Local error

O Let $\left\{\left(t_{i}, x_{i}\right)\right\}_{i \leq N}$ be a sequence of approximations produced by Euler's method.

$$
x_{n+1}=x_{n}+h f\left(t_{n}, x_{n}\right)
$$

O The local error of Euler's method can be estimated by:

$$
\sigma\left(t_{n}, h\right)=\left\|x\left(t_{n}\right)-x_{n}\right\|=\mathcal{O}\left(h^{2}\right) .
$$

(is of order 1).

Local error

O Let $\left\{\left(t_{i}, x_{i}\right)\right\}_{i \leq N}$ be a sequence of approximations produced by Euler's method.

$$
x_{n+1}=x_{n}+h f\left(t_{n}, x_{n}\right)
$$

O The local error of Euler's method can be estimated by:

$$
\sigma\left(t_{n}, h\right)=\left\|x\left(t_{n}\right)-x_{n}\right\|=\mathcal{O}\left(h^{2}\right)
$$

(is of order 1).
O Notice that

$$
\lim _{h \rightarrow 0} \frac{\sigma\left(t_{n}, h\right)}{h}=0
$$

(is consistent).

A test equation

O During this lecture we will consider

$$
\left\{\begin{array}{l}
\dot{x}=x^{2}+2 t-t^{4} \\
x(0)=0
\end{array}\right.
$$

as our test equation.
O This equation can be solved by hand and the solution is t^{2}.

O This allow us to control the error in a trivial way.

Figure: 500 iterates of the Euler method with step $h=10^{-3}$

Example: The Kepler Problem

The motion of a test particle about a massive one is governed by Kepler ODE.

$$
\left\{\begin{array}{l}
\dot{x}=v_{x}, \\
\dot{y}=v_{y}, \\
\dot{v_{x}}=-x /\left(x^{2}+y^{2}\right)^{3 / 2} \\
\dot{v_{y}}=-y /\left(x^{2}+y^{2}\right)^{3 / 2}
\end{array}\right.
$$

O The solutions are known to be conic sections.

O The angular momentum

$$
L=x v_{y}-y v_{x},
$$

Figure: Circular solution of the Kepler problem.
is preserved.

Example: The Kepler Problem

The motion of a test particle about a massive one is governed by Kepler ODE.

$$
\left\{\begin{array}{l}
\dot{x}=v_{x} \\
\dot{y}=v_{y} \\
\dot{v_{x}}=-x /\left(x^{2}+y^{2}\right)^{3 / 2} \\
\dot{v_{y}}=-y /\left(x^{2}+y^{2}\right)^{3 / 2}
\end{array}\right.
$$

O Local error behaves as expected for t small.

O The errors accumulate and accuracy is lost as t increases.

Figure: Error estimated by L. Trajectory with eccentricity 0.1.

A strategy for step size control

O To control the step size it is mandatory to estimate the error.
O We use an extra double iteration of Euler with half the step size.
o The difference between the two predictions behave as

$$
e=\frac{1}{2} K h^{2}+\mathcal{O}\left(h^{3}\right)
$$

O if $r=e / h>\varepsilon$ we decrease the step

$$
h^{\prime}=0.9 \frac{\varepsilon}{r} h .
$$

Figure: Error estimated by L. Initial step size 1^{3}. Final $\approx 10^{-5}$

Generalisations

The concepts of order and consistency can be generalised to any other method to produce the approximation $\left\{\left(t_{i}, x_{i}\right)\right\}_{i \leq N}$:

O A method is of order p if

$$
\sigma\left(t_{n}, h\right)=\left\|x\left(t_{n}\right)-x_{n}\right\|=\mathcal{O}\left(h^{p+1}\right)
$$

O It is consistent if

$$
\lim _{h \rightarrow 0} \frac{\sigma\left(t_{n}, h\right)}{h}=0
$$

Section 3

Can we do better?

Improving Euler's method

In Euler's method uses a single value of the vectorfield at a given point of the trajectory to predict the next one.

Some strategies to improve this approach are:

1. Do intermediate evaluations.

Improving Euler's method

In Euler's method uses a single value of the vectorfield at a given point of the trajectory to predict the next one.

Some strategies to improve this approach are:

1. Do intermediate evaluations.
2. Use previously computed values.

Improving Euler's method

In Euler's method uses a single value of the vectorfield at a given point of the trajectory to predict the next one.

Some strategies to improve this approach are:

1. Do intermediate evaluations.
2. Use previously computed values.
3. Use higher order derivatives.

The idea behind the Runge-Kutta methods

O Let us go back to the weak formulation of the Cauchy Problem

$$
x(t)=x_{0}+\int_{t_{0}}^{t} f(\tau, x(\tau)) d \tau
$$

O The Gaussian quadrature is a method to compute integrals:

$$
\int_{a}^{b} \psi(\tau) \omega(\tau) d \tau \approx \sum_{i=1}^{s} b_{i} \psi\left(c_{i}\right)
$$

where b_{i} and c_{i} depend upon ω (a nonnegative function), a and b.

The idea behind the Runge-Kutta methods

O If we use the weak formulation for a integration step

$$
x_{n+1}=x_{n}+\int_{t_{n}}^{t_{n+1}} f(\tau, x(\tau)) d \tau=x_{n}+h \int_{0}^{1} f(\tau, x(\tau)) d \tau
$$

The idea behind the Runge-Kutta methods

O If we use the weak formulation for a integration step

$$
x_{n+1}=x_{n}+\int_{t_{n}}^{t_{n+1}} f(\tau, x(\tau)) d \tau=x_{n}+h \int_{0}^{1} f(\tau, x(\tau)) d \tau
$$

O We can replace the integral by a quadrature.

$$
x_{n+1}=x_{n}+h \sum_{i=1}^{s} b_{i} f\left(t_{n}+c_{i} h, x\left(t_{n}+c_{i} h\right)\right) .
$$

The idea behind the Runge-Kutta methods

O If we use the weak formulation for a integration step

$$
x_{n+1}=x_{n}+\int_{t_{n}}^{t_{n+1}} f(\tau, x(\tau)) d \tau=x_{n}+h \int_{0}^{1} f(\tau, x(\tau)) d \tau
$$

O We can replace the integral by a quadrature.

$$
x_{n+1}=x_{n}+h \sum_{i=1}^{s} b_{i} f\left(t_{n}+c_{i} h, x\left(t_{n}+c_{i} h\right)\right) .
$$

O Here, the quantities $x\left(t_{n}+c_{i} h\right)$ are not known. In R-K methods are approximated by linear combinations of evaluations of the vectorfield.

General formulation

The family of explicit Runge-Kutta methods of s stages

$$
x_{n+1}=x_{n}+h \sum_{i=1}^{s} b_{i} k_{i},
$$

O The methods are consistent if and only if

$$
\sum_{i=1}^{s} b_{i}=1
$$

O There is more freedom in choosing $a_{i, j}$. A standard choice is

$$
\sum_{j=1}^{i-1} a_{i, j}=c_{i}, \quad i=2, \ldots, s
$$

O The order of a RK is smaller or equal than the number of stages.

$$
\begin{aligned}
k_{1} & =f\left(t_{n}, x_{n}\right) \\
k_{2} & =f\left(t_{n}+c_{2} h, x_{n}+h a_{2,1} k_{1}\right) \\
\vdots & =\quad \vdots \\
k_{s} & =f\left(t_{n}+c_{s} h, x_{n}+h \sum_{j=1}^{s-1} a_{s, j} k_{j}\right)
\end{aligned}
$$

Butcher tableau of a RK method

Table: General Butcher tableau.

0			
$1 / 3$	$1 / 3$		
$2 / 3$	0	$2 / 3$	
	$1 / 4$	0	$3 / 4$

Table: Heun's method of 3 stages (order 3).

Table: Heun's method of 2 stages (order 2).

Table: Classical R-K method.

Order of R-K methods

O In general, it is not true that a method of s stages has order s.

Order of R-K methods

O In general, it is not true that a method of s stages has order s.
O THM 1: If an explicit s-stage RK method has order p, then $s \leq p$.

Order of R-K methods

O In general, it is not true that a method of s stages has order s.
O THM 1: If an explicit s-stage RK method has order p, then $s \leq p$.
O THM 2: If an explicit s-stage RK method has order $p \geq 5$, then $s>p$.

Order of R-K methods

O In general, it is not true that a method of s stages has order s.
O THM 1: If an explicit s-stage RK method has order p, then $s \leq p$.
O THM 2: If an explicit s-stage RK method has order $p \geq 5$, then $s>p$.
O THM 3 (Butcher): For $p \geq 7$ no explicit R-K method exists of order p with $s=p+1$ stages.

Order of R-K methods

O In general, it is not true that a method of s stages has order s.
O THM 1: If an explicit s-stage RK method has order p, then $s \leq p$.
O THM 2: If an explicit s-stage RK method has order $p \geq 5$, then $s>p$.
O THM 3 (Butcher): For $p \geq 7$ no explicit R-K method exists of order p with $s=p+1$ stages.
O THM 4 (Butcher): For $p \geq 8$ no explicit R-K method exists of order p with $s=p+2$ stages.

Order of R-K methods

O In general, it is not true that a method of s stages has order s.
O THM 1: If an explicit s-stage RK method has order p, then $s \leq p$.
O THM 2: If an explicit s-stage RK method has order $p \geq 5$, then $s>p$.
O THM 3 (Butcher): For $p \geq 7$ no explicit R-K method exists of order p with $s=p+1$ stages.
O THM 4 (Butcher): For $p \geq 8$ no explicit R-K method exists of order p with $s=p+2$ stages.

p	1	2	3	4	5	6	7	8
$\min s$	1	2	3	4	6	7	9	11

Table: Minimal number of stages s required to obtain order p.

Performance

O We solve the test equation

$$
\left\{\begin{array}{l}
\dot{x}=x^{2}+2 t-t^{4} \\
x(0)=0,
\end{array}\right.
$$

with

1. Euler's method,
2. Heun's method of order 2
3. Classical R-K method (RK4).

Figure: 500 iterates of Euler's, Heun's and RK4 $h=10^{-3}$

Error estimation

O Practical computations require local error estimation to control the step size.

Error estimation

O Practical computations require local error estimation to control the step size.
O The idea is to use two methods:

$$
x_{n}=x\left(t_{n}\right)+\mathcal{O}\left(h^{p+1}\right), \quad \overline{x_{n}}=x\left(t_{n}\right)+\mathcal{O}\left(h^{q+1}\right)
$$

here, $q>p$.

Error estimation

O Practical computations require local error estimation to control the step size.
O The idea is to use two methods:

$$
x_{n}=x\left(t_{n}\right)+\mathcal{O}\left(h^{p+1}\right), \quad \overline{x_{n}}=x\left(t_{n}\right)+\mathcal{O}\left(h^{q+1}\right)
$$

here, $q>p$.
o The error estimation is

$$
\bar{x}_{n}-x_{n}=x\left(t_{n}\right)-y_{n}+\mathcal{O}\left(h^{p+2}\right)
$$

Error estimation

O Practical computations require local error estimation to control the step size.
O The idea is to use two methods:

$$
x_{n}=x\left(t_{n}\right)+\mathcal{O}\left(h^{p+1}\right), \quad \overline{x_{n}}=x\left(t_{n}\right)+\mathcal{O}\left(h^{q+1}\right)
$$

here, $q>p$.
o The error estimation is

$$
\overline{x_{n}}-x_{n}=x\left(t_{n}\right)-y_{n}+\mathcal{O}\left(h^{p+2}\right)
$$

O \bar{x}_{n} is regarded as the "true solution".

Fehlberg's approach

O Fehlberg considered the following tableau:

c	A
	b^{\prime}
	\hat{b}^{\prime}
	d^{\prime}

Step size control

Let us assume that x_{n} and \hat{x}_{n} are approximations provided by methods of order p and $p+1$ respectively.

O Let $\varepsilon<0$ be a prescribed tolerance.

Step size control

Let us assume that x_{n} and \hat{x}_{n} are approximations provided by methods of order p and $p+1$ respectively.

O Let $\varepsilon<0$ be a prescribed tolerance.
O The estimation of the error is given by

$$
\delta=\left\|x_{n}-\hat{x}_{n}\right\|=\left\|K_{p} h^{p}+\mathcal{O}\left(h^{p+1}\right)\right\| .
$$

Step size control

Let us assume that x_{n} and \hat{x}_{n} are approximations provided by methods of order p and $p+1$ respectively.

O Let $\varepsilon<0$ be a prescribed tolerance.
O The estimation of the error is given by

$$
\delta=\left\|x_{n}-\hat{x}_{n}\right\|=\left\|K_{p} h^{p}+\mathcal{O}\left(h^{p+1}\right)\right\| .
$$

O If $\delta<\varepsilon$ we can proceed with the next step (both approximations can be used).

Step size control

Let us assume that x_{n} and \hat{x}_{n} are approximations provided by methods of order p and $p+1$ respectively.

O Let $\varepsilon<0$ be a prescribed tolerance.
O The estimation of the error is given by

$$
\delta=\left\|x_{n}-\hat{x}_{n}\right\|=\left\|K_{p} h^{p}+\mathcal{O}\left(h^{p+1}\right)\right\| .
$$

O If $\delta<\varepsilon$ we can proceed with the next step (both approximations can be used).
O If not, the step size must be reduced and the approximations recomputed. The new step is

$$
0.9\left(\frac{\varepsilon}{\delta}\right)^{p} h .
$$

Linear Multistep methods

O The idea is to use previous steps to improve the accuracy of the method as the integration advances.

Linear Multistep methods

O The idea is to use previous steps to improve the accuracy of the method as the integration advances.
O Originally proposed by Bashforth and Adams (1883).

Linear Multistep methods

O The idea is to use previous steps to improve the accuracy of the method as the integration advances.
O Originally proposed by Bashforth and Adams (1883).
O An stepper of Adams type is given by:

$$
x_{n+s}=x_{n+s-1}+h \sum_{j=0}^{s-1} \beta_{j} f\left(t_{n+j}, x_{n+j}\right) .
$$

Linear Multistep methods

O The idea is to use previous steps to improve the accuracy of the method as the integration advances.
O Originally proposed by Bashforth and Adams (1883).
O An stepper of Adams type is given by:

$$
x_{n+s}=x_{n+s-1}+h \sum_{j=0}^{s-1} \beta_{j} f\left(t_{n+j}, x_{n+j}\right)
$$

O The constants β_{j} are chosen to five the highest possible order.

How we get there?

O Assume we have already computed an approximation $x_{0}, x_{1}, \ldots x_{n+s-1}$ of order s i.e.

$$
x_{m}=x\left(t_{m}\right)+\mathcal{O}\left(h^{s+1}\right)
$$

How we get there?

O Assume we have already computed an approximation $x_{0}, x_{1}, \ldots x_{n+s-1}$ of order s i.e.

$$
x_{m}=x\left(t_{m}\right)+\mathcal{O}\left(h^{s+1}\right)
$$

O And consider

$$
x\left(t_{n+s}\right)=x\left(t_{n+s-1}\right)+\int_{t_{n+s-1}}^{t_{n+s}} f(\tau, x(\tau)) d \tau
$$

How we get there?

O Assume we have already computed an approximation $x_{0}, x_{1}, \ldots x_{n+s-1}$ of order s i.e.

$$
x_{m}=x\left(t_{m}\right)+\mathcal{O}\left(h^{s+1}\right)
$$

O And consider

$$
x\left(t_{n+s}\right)=x\left(t_{n+s-1}\right)+\int_{t_{n+s-1}}^{t_{n+s}} f(\tau, x(\tau)) d \tau
$$

O We can approximate $f(t, x(t)$ by

$$
P(t)=\sum_{j=0}^{s-1} p_{j}(t) f\left(t_{n+j}, x_{n+j}\right)
$$

here, p_{j} are the Lagrange interpolation polynomials.

Examples

O Adams method for $s=1$ is Euler's method.

Examples

O Adams method for $s=1$ is Euler's method.
O For $s=2$

$$
x_{n+2}=x_{n+1}+h\left[\frac{3}{2} f\left(t_{n+1}, x_{n+1}\right)-\frac{1}{2} f\left(t_{n}, x_{n}\right)\right] .
$$

Examples

O Adams method for $s=1$ is Euler's method.
O For $s=2$

$$
x_{n+2}=x_{n+1}+h\left[\frac{3}{2} f\left(t_{n+1}, x_{n+1}\right)-\frac{1}{2} f\left(t_{n}, x_{n}\right)\right] .
$$

0 For $s=3$

$$
x_{n+3}=x_{n+2}+h\left[\frac{23}{12} f\left(t_{n+2}, x_{n+2}\right)-\frac{4}{3} f\left(t_{n+1}, x_{n+1}\right)+\frac{5}{12} f\left(t_{n}, x_{n}\right)\right] .
$$

Examples

O Adams method for $s=1$ is Euler's method.
O For $s=2$

$$
x_{n+2}=x_{n+1}+h\left[\frac{3}{2} f\left(t_{n+1}, x_{n+1}\right)-\frac{1}{2} f\left(t_{n}, x_{n}\right)\right] .
$$

0 For $s=3$

$$
x_{n+3}=x_{n+2}+h\left[\frac{23}{12} f\left(t_{n+2}, x_{n+2}\right)-\frac{4}{3} f\left(t_{n+1}, x_{n+1}\right)+\frac{5}{12} f\left(t_{n}, x_{n}\right)\right] .
$$

O In general, an Adams method of s steps has order s.

Error estimation: Minle device

O Error estimation for LMM can be approached with similar ideas to RKM.

Error estimation: Minle device

O Error estimation for LMM can be approached with similar ideas to RKM.

O Milne device: Use two steppers of the same order.

Error estimation: Minle device

O Error estimation for LMM can be approached with similar ideas to RKM.

O Milne device: Use two steppers of the same order.

O One of them is implicit (this will be discussed later).

Error estimation: Minle device

O Error estimation for LMM can be approached with similar ideas to RKM.

O Milne device: Use two steppers of the same order.

O One of them is implicit (this will be discussed later).

O The other one is explicit and it is used only for error estimation.

Error estimation: Minle device

O Error estimation for LMM can be approached with similar ideas to RKM.

O Milne device: Use two steppers of the same order.

O One of them is implicit (this will be discussed later).

O The other one is explicit and it is used only for error estimation.

O When adjusting the step size a remeshing of the approximated points is required.

The Taylor method

Given a Cauchy problem:

$$
\left\{\begin{array}{l}
\dot{x}=f(t, x), \\
x(0)=x_{0}
\end{array}\right.
$$

O If we differentiate the ODE w.r.t. t, we get:

$$
\ddot{x}=\partial_{t} f(t, x)+D_{x} f(t, x) \dot{x}=\partial_{t} f(t, x)+D_{x} f(t, x) f(t, x) .
$$

The Taylor method

Given a Cauchy problem:

$$
\left\{\begin{array}{l}
\dot{x}=f(t, x) \\
x(0)=x_{0}
\end{array}\right.
$$

O If we differentiate the ODE w.r.t. t, we get:

$$
\ddot{x}=\partial_{t} f(t, x)+D_{x} f(t, x) \dot{x}=\partial_{t} f(t, x)+D_{x} f(t, x) f(t, x) .
$$

O In general, we can get all the derivatives of the solution as a recurrence depending on the derivatives of lower order.

The Taylor method

Given a Cauchy problem:

$$
\left\{\begin{array}{l}
\dot{x}=f(t, x) \\
x(0)=x_{0}
\end{array}\right.
$$

O If we differentiate the ODE w.r.t. t, we get:

$$
\ddot{x}=\partial_{t} f(t, x)+D_{x} f(t, x) \dot{x}=\partial_{t} f(t, x)+D_{x} f(t, x) f(t, x) .
$$

O In general, we can get all the derivatives of the solution as a recurrence depending on the derivatives of lower order.
O Indeed, if we name the normalized derivatives

$$
x_{i}=\frac{1}{i!} x^{(i)}\left(t_{0}\right), \quad F_{i}=\frac{1}{i!}\left(\left.f(t, x(t))^{(i)}\right|_{x=x_{0}}\right.
$$

then:

$$
X_{i}=\frac{1}{i+1} F_{i}
$$

The Taylor method

O Going up to order N we can construct a Taylor Polynomial of the solution:

$$
x\left(t_{0}+h\right) \approx \sum_{i=0}^{N} X_{i} h^{i}
$$

The Taylor method

O Going up to order N we can construct a Taylor Polynomial of the solution:

$$
x\left(t_{0}+h\right) \approx \sum_{i=0}^{N} X_{i} h^{i}
$$

O The error is $\mathcal{O}\left(h^{N+1}\right)$. Given N, we can pick h small enough so the approximation has error below some prescribed tolerance.

The Taylor method

O Going up to order N we can construct a Taylor Polynomial of the solution:

$$
x\left(t_{0}+h\right) \approx \sum_{i=0}^{N} X_{i} h^{i}
$$

O The error is $\mathcal{O}\left(h^{N+1}\right)$. Given N, we can pick h small enough so the approximation has error below some prescribed tolerance.
O Then, we can produce the next point of the solution as

$$
x_{1}=\sum_{i=0}^{N} X_{i} h^{i}
$$

The Taylor method

O Going up to order N we can construct a Taylor Polynomial of the solution:

$$
x\left(t_{0}+h\right) \approx \sum_{i=0}^{N} X_{i} h^{i}
$$

O The error is $\mathcal{O}\left(h^{N+1}\right)$. Given N, we can pick h small enough so the approximation has error below some prescribed tolerance.
O Then, we can produce the next point of the solution as

$$
x_{1}=\sum_{i=0}^{N} X_{i} h^{i}
$$

O For the next step, we re-compute the Taylor expansion of the solution about x_{1}.

The Taylor method

O The main practical issue of this process is to compute the terms of the recurrence:

$$
F_{i}=\frac{1}{i!}\left(\left.f(t, x(t))^{(i)}\right|_{x=x_{0}}\right.
$$

(this can be achieved by means of automatic differentiation).

The Taylor method

O The main practical issue of this process is to compute the terms of the recurrence:

$$
F_{i}=\frac{1}{i!}\left(\left.f(t, x(t))^{(i)}\right|_{x=x_{0}},\right.
$$

(this can be achieved by means of automatic differentiation).

O Given a threshold, there is an optimal choice of order and step-size.

The Taylor method

O The main practical issue of this process is to compute the terms of the recurrence:

$$
F_{i}=\frac{1}{i!}\left(\left.f(t, x(t))^{(i)}\right|_{x=x_{0}},\right.
$$

(this can be achieved by means of automatic differentiation).

O Given a threshold, there is an optimal choice of order and step-size.
1 . The optimal step-size is $\approx e^{-2} \rho(t)$ where $\rho(t)$ is the radius of convergence of the series.

The Taylor method

O The main practical issue of this process is to compute the terms of the recurrence:

$$
F_{i}=\frac{1}{i!}\left(\left.f(t, x(t))^{(i)}\right|_{x=x_{0}},\right.
$$

(this can be achieved by means of automatic differentiation).

O Given a threshold, there is an optimal choice of order and step-size.
1 . The optimal step-size is $\approx e^{-2} \rho(t)$ where $\rho(t)$ is the radius of convergence of the series.
2. The optimal order is linear in the number of digits D. For a single step, the global computational cost is $\mathcal{O}\left(D^{4}\right)$.

The Taylor method

SUMMARY:

O The Taylor method is based in producing a Taylor polynomial of the solution at each step.

The Taylor method

SUMMARY:

O The Taylor method is based in producing a Taylor polynomial of the solution at each step.

O Both, the order and the step-size can be updated optimally according to a prescribed accuracy.

The Taylor method

SUMMARY:

O The Taylor method is based in producing a Taylor polynomial of the solution at each step.

O Both, the order and the step-size can be updated optimally according to a prescribed accuracy.

O The Taylor method is extremely competitive when high accuracy is required.

Taylor vs RKF78

Figure: Integration of 1000 units of time using Taylor and RKF78 of an orbit with $e=0.5$.

Section 4

Cripples, Bastards, and Broken Things

Stiffness

O Let us consider a linear ODE

$$
\dot{x}=M x, \quad x(0)=I .
$$

Stiffness

O Let us consider a linear ODE

$$
\dot{x}=M x, \quad x(0)=I .
$$

o Suppose that M can be diagonalized by a change $D=S^{-1} M S$,

Stiffness

O Let us consider a linear ODE

$$
\dot{x}=M x, \quad x(0)=I .
$$

o Suppose that M can be diagonalized by a change $D=S^{-1} M S$,
o The equation $\dot{y}=D y$ is a system of uncoupled equations.

Stiffness

O Let us consider a linear ODE

$$
\dot{x}=M x, \quad x(0)=I .
$$

o Suppose that M can be diagonalized by a change $D=S^{-1} M S$,
O The equation $\dot{y}=D y$ is a system of uncoupled equations.
o Suppose now that there exist an eigenvalue $-\lambda$ with $\lambda \gg 1$.

Stiffness

O Let us consider a linear ODE

$$
\dot{x}=M x, \quad x(0)=I .
$$

o Suppose that M can be diagonalized by a change $D=S^{-1} M S$,
O The equation $\dot{y}=D y$ is a system of uncoupled equations.
o Suppose now that there exist an eigenvalue $-\lambda$ with $\lambda \gg 1$.
O Its associated equations is

$$
\left\{\begin{array}{l}
\dot{x}=-\lambda x, \\
x(0)=1,
\end{array}\right.
$$

and has solution $x(t)=\exp (-\lambda t)$

Domain of stability of Euler's method

O Let us apply Euler's method:

$$
\dot{x}=f(t, x), \quad x_{n+1}=x_{n}+h f\left(t_{n}, x_{n}\right)
$$

Domain of stability of Euler's method

O Let us apply Euler's method:

$$
\dot{x}=f(t, x), \quad x_{n+1}=x_{n}+h f\left(t_{n}, x_{n}\right)
$$

O For the previous equation $(\dot{x}=-\lambda x)$ the Euler method becomes

$$
x_{n+1}=x_{n}-h \lambda x_{n}=(1-h \lambda) x_{n} \quad \Longrightarrow \quad x_{n}=(1-h \lambda)^{n} .
$$

Domain of stability of Euler's method

O Let us apply Euler's method:

$$
\dot{x}=f(t, x), \quad x_{n+1}=x_{n}+h f\left(t_{n}, x_{n}\right)
$$

O For the previous equation $(\dot{x}=-\lambda x)$ the Euler method becomes

$$
x_{n+1}=x_{n}-h \lambda x_{n}=(1-h \lambda) x_{n} \quad \Longrightarrow \quad x_{n}=(1-h \lambda)^{n} .
$$

O This implies that, to have $x_{n} \rightarrow 0, h$ has to be small enough:

$$
h<\frac{2}{\lambda} .
$$

Domain of stability of Euler's method

O Let us apply Euler's method:

$$
\dot{x}=f(t, x), \quad x_{n+1}=x_{n}+h f\left(t_{n}, x_{n}\right)
$$

O For the previous equation $(\dot{x}=-\lambda x)$ the Euler method becomes

$$
x_{n+1}=x_{n}-h \lambda x_{n}=(1-h \lambda) x_{n} \quad \Longrightarrow \quad x_{n}=(1-h \lambda)^{n} .
$$

O This implies that, to have $x_{n} \rightarrow 0, h$ has to be small enough:

$$
h<\frac{2}{\lambda} .
$$

O Domain of stability: $\mathcal{D}=\{z \in \mathbb{C}:|1+z|<1\}$.

The implicit Euler method

O Let us see what happens if we use an implicit Euler method:

$$
\dot{x}=f(t, x), \quad x_{n+1}=x_{n}+h f\left(t_{n+1}, x_{n+1}\right)
$$

The implicit Euler method

O Let us see what happens if we use an implicit Euler method:

$$
\dot{x}=f(t, x), \quad x_{n+1}=x_{n}+h f\left(t_{n+1}, x_{n+1}\right)
$$

O For the equation $\dot{x}=-\lambda x$ we obtain

$$
x_{n+1}=x_{n}-h \lambda x_{n+1} \quad \Longrightarrow \quad(1+h \lambda) x_{n+1}=x_{n},
$$

The implicit Euler method

O Let us see what happens if we use an implicit Euler method:

$$
\dot{x}=f(t, x), \quad x_{n+1}=x_{n}+h f\left(t_{n+1}, x_{n+1}\right)
$$

O For the equation $\dot{x}=-\lambda x$ we obtain

$$
x_{n+1}=x_{n}-h \lambda x_{n+1} \quad \Longrightarrow \quad(1+h \lambda) x_{n+1}=x_{n},
$$

0 and then

$$
x_{n}=\frac{1}{(1+h \lambda)^{n}},
$$

which goes to zero for any $h>0$ and $\lambda>0$.

A-stability

O The implicit Euler method has domain of stability $\Re(z)<0$.

A-stability

O The implicit Euler method has domain of stability $\Re(z)<0$.

O The domain of stability can be computed for other methods.

A-stability

O The implicit Euler method has domain of stability $\Re(z)<0$.

O The domain of stability can be computed for other methods.

O A method is A-stable if $\Re(z)<0$ is contained in its domain of stability.

A-stability

O The implicit Euler method has domain of stability $\Re(z)<0$.

O The domain of stability can be computed for other methods.

O A method is A-stable if $\Re(z)<0$ is contained in its domain of stability.

O No explicit R-K method can be A-stable.

A-stability

O The implicit Euler method has domain of stability $\Re(z)<0$.

O The domain of stability can be computed for other methods.

O A method is A-stable if $\Re(z)<0$ is contained in its domain of stability.

O No explicit R-K method can be A-stable.

O For any order p there exists an Implicit R-K method which is A-stable.

A-stability

O The implicit Euler method has domain of stability $\Re(z)<0$.

O The domain of stability can be computed for other methods.

O A method is A-stable if $\Re(z)<0$ is contained in its domain of stability.

O No explicit R-K method can be A-stable.

O For any order p there exists an Implicit R-K method which is A-stable.

O Dahlquist second barrier: The highest order of an A-stable multistep method is 2 .

A remark on implicit methods

O Implicit methods are meant to deal with stiff equations.

A remark on implicit methods

O Implicit methods are meant to deal with stiff equations.

O Those methods require to solve an algebraic equation to compute each step.

A remark on implicit methods

O Implicit methods are meant to deal with stiff equations.

O Those methods require to solve an algebraic equation to compute each step.

O As a consequence, implicit methods are computationally more expensive than the explicit ones.

A remark on implicit methods

O Implicit methods are meant to deal with stiff equations.

O Those methods require to solve an algebraic equation to compute each step.

O As a consequence, implicit methods are computationally more expensive than the explicit ones.

O It is not a good idea to use implicit methods "just in case".

A remark on implicit methods

O Implicit methods are meant to deal with stiff equations.

O Those methods require to solve an algebraic equation to compute each step.

O As a consequence, implicit methods are computationally more expensive than the explicit ones.

O It is not a good idea to use implicit methods "just in case".

O It is important to know if an equation is stiff.

A feature from Taylor

O The Taylor method also fails to deal with stiffness.
O However, this pathological behaviour can be detected by means of the Taylor series of the solution.
O In the Figure, we plot the first 16 Taylor coefficients of $\exp \left(-10^{4} t\right)$:

$$
\sum_{i=0}^{\infty} \frac{(\lambda t)^{k}}{k!}, \quad \lambda=-10^{4}
$$

O The coefficients increase before the factorial becomes dominant.

Figure: Taylor coefficients of the function $\exp (-\lambda t)$.

Fail in Fehlberg strategy

O Let us consider the ODE

$$
\left\{\begin{array}{l}
\dot{x}=\alpha x+\cos (t)-\alpha \sin (t) \\
x(0)=0
\end{array}\right.
$$

which has $x(t)=\sin t$ as the exact solution. Let us choose $\alpha=10^{-4}$.

Fail in Fehlberg strategy

O Let us consider the ODE

$$
\left\{\begin{array}{l}
\dot{x}=\alpha x+\cos (t)-\alpha \sin (t) \\
x(0)=0
\end{array}\right.
$$

which has $x(t)=\sin t$ as the exact solution. Let us choose $\alpha=10^{-4}$.
O A test of the error of integration is to compute the solution at $t=2 \pi$, and it should be zero.

Fail in Fehlberg strategy

O Let us consider the ODE

$$
\left\{\begin{array}{l}
\dot{x}=\alpha x+\cos (t)-\alpha \sin (t) \\
x(0)=0
\end{array}\right.
$$

which has $x(t)=\sin t$ as the exact solution. Let us choose $\alpha=10^{-4}$.
O A test of the error of integration is to compute the solution at $t=2 \pi$, and it should be zero.
O If we use a RKF78, asking for an accuracy of 10^{-12}, we obtain than $x(2 \pi)$ is, approximately, -2.383702×10^{-7}.

Fail in Fehlberg strategy

O Let us consider the ODE

$$
\left\{\begin{array}{l}
\dot{x}=\alpha x+\cos (t)-\alpha \sin (t) \\
x(0)=0
\end{array}\right.
$$

which has $x(t)=\sin t$ as the exact solution. Let us choose $\alpha=10^{-4}$.
O A test of the error of integration is to compute the solution at $t=2 \pi$, and it should be zero.
O If we use a RKF78, asking for an accuracy of 10^{-12}, we obtain than $x(2 \pi)$ is, approximately, -2.383702×10^{-7}.
O An alternative to the Fehlberg step size control is a step size control developed (later) by J. Verner.

Fail in Fehlberg strategy

O Let us consider the ODE

$$
\left\{\begin{array}{l}
\dot{x}=\alpha x+\cos (t)-\alpha \sin (t) \\
x(0)=0
\end{array}\right.
$$

which has $x(t)=\sin t$ as the exact solution. Let us choose $\alpha=10^{-4}$.
O A test of the error of integration is to compute the solution at $t=2 \pi$, and it should be zero.
O If we use a RKF78, asking for an accuracy of 10^{-12}, we obtain than $x(2 \pi)$ is, approximately, -2.383702×10^{-7}.
O An alternative to the Fehlberg step size control is a step size control developed (later) by J. Verner.
O Using a Runge-Kutta-Verner for the previous example we obtain that $x(2 \pi)$ is, approximately, $-3.747003 \times 10^{-16}$.

Energy drift

Let us consider hamiltonian model:

$$
H=\frac{1}{2}\left(p^{2}+\omega x^{2}\right),
$$

And integrate if with Euler's method and Symplectic Euler's method ($\omega=1$ and $h=0.1$)

Artefacts

o The Chirikov Standard Map (SM) is a well known Area Preserving Map (APM).

$$
\left\{\begin{array}{l}
\theta_{n+1}=\theta_{n}+p_{n+1}, \\
p_{n+1}=p_{n}+h \sin \left(\theta_{n}\right)
\end{array}\right.
$$

O It can be obtained from applying a symplectic Euler method to a pendulum.
O The SM is a simple model for non-integrable APMs. Meaning that it exhibits chaotic behaviour.

Figure: Phase portrait of Standard Map ($h=0.5$)

Section 5

Why we can't predict the weather?

The Lorenz system

The Lorenz system is a simplified model for atmospheric convection:

$$
\left\{\begin{array}{l}
\dot{x}=\sigma(y-x), \\
\dot{y}=x(\rho-z)-y, \\
\dot{z}=x y-\beta z
\end{array}\right.
$$

O For suitable values of the parameters, it exhibits chaotic behaviour.

O The motion is driven by an attractor of Hausdorff dimension ≈ 2.06.
O The flow is dissipative and there are two repealing limit cycles.

Figure: $x-z$ projection of the Attractor. $\sigma=10, \rho=28, \beta=8 / 3$. Integration time: 500. Initial condition ($1,0,0$).

The Lorenz system

The Lorenz system is a simplified model for atmospheric convection:

Figure: Poincaré maps $\{z=25\}$. Purple points correspond to crossings with $\dot{z}<0$. Green points with $\dot{z}>0$.

Figure: $x-z$ projection of the Attractor. $\sigma=10, \rho=28, \beta=8 / 3$. Integration time: 500. Initial condition ($1,0,0$).

Growth of the error due to dynamics

Let us start an integration at $(1,0,0)$ and $(1,0,0)+v$, check the outputs and track the norm of the directional derivative w.r.t. $v=\left(10^{-8}, 0,0\right)$.

T	e	$\left\\|\nabla_{V} \varphi_{T}\right\\|$
10	$2.931815 \mathrm{e}-08$	$2.9318251 \mathrm{e}-08$
20	$7.950019 \mathrm{e}-08$	$7.9494469 \mathrm{e}-08$
30	$1.534007 \mathrm{e}-04$	$1.5333987 \mathrm{e}-04$
40	$9.850263 \mathrm{e}-01$	$9.7055406 \mathrm{e}-01$
50	$1.820953 \mathrm{e}+01$	$1.5527040 \mathrm{e}+04$

O For small times the propagation of error is controlled.
o For $T=30$, the initial error has been amplified by 10^{4}.
O For $T=50$, is amplified by 10^{12}.

Figure: Two trajectories with initial distance 10^{-8}. Integration time: 50.

References

O Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), "Solving ordinary differential equations I: Nonstiff problems", Berlin, New York: Springer-Verlag, ISBN 978-3-540-56670-0.

O Iserles, Arieh (1996), "A First Course in the Numerical Analysis of Differential Equations", Cambridge University Press, ISBN 978-0-521-55655-2.

O Butcher, John C. (2008), "Numerical Methods for Ordinary Differential Equations", New York: John Wiley and Sons, ISBN 978-0-470-72335-7.

O Jorba, Àngel and Zou, Maorong, "A software package for the numerical integration of ODEs by means of high-order Taylor methods". Exp. Math., 14(1):99-117, 2005.

