Title:

Long-range first-passage percolation on the complete graph

Abstract:

We consider first-passage percolation on the complete graph K_n , where vertices have a spatial position on the *d*-dimensional torus \mathbb{Z}_n^d . For $\alpha \geq 0$, each edge *e* in the graph is assigned an independent transmission time $T_e = ||e||^{\alpha} E_e$, where E_e denotes a rate-one exponential random variable and ||e|| denotes the length of the edge (with respect to a *p*-norm on the torus \mathbb{Z}_n^d for some $p \in [1, \infty) \cup \{\infty\}$). When $\alpha = 0$ we obtain the non-spatial case of first-passage percolation on the complete graph.

We study the behaviour of the random metric induced by the transmission times in the case that $\alpha < d$. In particular, we investigate the typical distance, flooding time, and diameter of the graph, and obtain results akin to the well-established results for $\alpha = 0$ case. If time permits, we shall also look into on-going work on competing long-range first-passage percolation, where two infections with transmission times T_e and λT_e for some $\lambda > 0$ and each edge e in the graph, respectively, occupy the vertices of the graph over time. Here, we investigate the possibility of coexistence for different values of λ , among other things.

Mostly joint work with Remco van der Hofstad, and partially with Neeladri Maitra.