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Abstract
The current mainstream view in neuroscience and machine learning is that neural networks com-

press representations into low-dimensional manifolds [Op de Beeck et al., 2001, Gao and Ganguli,
2015, Gallego et al., 2017, Ansuini et al., 2019, Recanatesi et al., 2019]. A recent study challenges
this view, by arguing that neural networks benefit from high-dimensional representations [Elmoznino
and Bonner, 2022].

In contrast to these positions, we argue that learning in deep neural networks optimizes signal-
to-noise processing. According to this view, neural networks may benefit from feature compression
and expansion to (i) increase signal processing and (ii) diminish noise, while (iii) mapping input
representations into outputs categories. We speculate also that nonlinearities (e.g., in activation
functions) facilitate this process.

A causal relationship must exist between the signal-to-noise ratio (SNR) and the behavioral per-
formance of a network (e.g., in terms of classification accuracy) if SNRs are indeed optimized through
learning. To test this hypothesis, we first adapted the SNR presented in [Sorscher et al., 2022], so
it can be applied to neural representations associated with predictions of unseen data. We then
computed the SNR to quantify the separability between category-based manifolds through different
layers of neural processing, and tested the SNR with and without input noisy fluctuations, as well as
with linear and nonlinear transformations (Linear, ReLU and Sigmoid).

Our results show that: (i) increasing noise fluctuations diminishes the SNR and the accuracy,
whereas the dimensionality increases, and (ii) the accuracy increases with the SNR with nonlinear
functions and with additional hidden layers. Undergoing analyses aim to test whether an inflection
point exists that optimizes the SNR through changes in dimensionality. We speculate a potential
benefit of an initial signal-aligned feature expansion followed by dimensionality reduction in latter
processing stages close to the output representation, based on output categories being typically low-
dimensional.
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