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Singular Foliations : Problems sessions

Solutions

We intend to study vector fields that are tangent to a subvariety W ⊂ M . We shall deal with the
smooth, complex, algebraic settings altogether.

Exercice 1

The smooth setting.
Let M be a smooth manifold and W ⊂ M an embedded closed sub-manifold. We denote by XW (M)
the space of all compactly supported vector fields on M that are tangent to the sub-manifold W .

1. Check that XW (M) is a singular foliation on M . Give a set of local generators.

A. By definition XW (M) = {X ∈ X(M) | X|m ∈ TmW, for all m ∈ W}. We need to check that
XW (M)

— is a C∞(M)-module, which is obvious.
— is stable under the Lie bracket. Let X,Y ∈ XW (M). The commutator [X,Y ] is the vector

field on M whose value at m ∈M is given by

[X,Y ]|m = (LXY )|m =
d

dt |t=0
TϕX

−t(m)ϕ
X
t (YϕX

−t(m)),

where ϕXt is the local flow of X. Since the local flow ϕXt preserves W , TϕXt maps TW to TW ,
and TϕX

−t(m)ϕ
X
t (YϕX

−t(m)) belongs to TmW for all t for which it is defined. As a consequence,
[X,Y ]|m ∈ TmW .

— is locally finitely generated : it suffices to consider local coordinates. Every point m ∈M \W
admits an open neighborhood U on which the restriction of XW (M) is the space of all vector
fields. In particular, for any choice of local coordinates z1, . . . , zd near m ∈ U , ∂

∂z1
, . . . , ∂

∂zd
is a set of local generators.
Now, for every m ∈ W , it is a classical result of smooth differential geometry that there
exists local coordinates (U , x1, . . . , xa, y1, . . . , yb) around m on which W is given by y1 =
· · · = yb = 0. Without any loss of generality, we can assume that xi, yj ∈] − 1, 1[ for all
indices. We claim that XW (M) is generated by{

∂

∂xi
, yj

∂

∂yk

∣∣∣∣1 ≤ i ≤ a and 1 ≤ j, k ≤ b

}
.

A vector field X ∈ X(U) is tangent to W if and only if it reads

X =
a∑

i=1

hi(x1, . . . , xa, y1, . . . , yb)
∂

∂xi
+

b∑
j=1

fj(x1, . . . , xa, y1, . . . , yb)
∂

∂yj

with fj(x1, . . . , xa, 0, . . . , 0) = 0. The proof then relies on the so-called Hada-
mard Lemma, which states that for every smooth function fj(x1, . . . , xa, y1, . . . , yb)
such that fj(x1, . . . , xa, 0, . . . , 0) = 0, there exists smooth functions
gj1(x1, . . . , xa, y1, . . . , yb), . . . , g

j
b(x1, . . . , xa, y1, . . . , yb) on U such that

fj(x1, . . . , xa, y1, . . . , yb) =

b∑
k=1

yjg
k
j (x1, . . . , xa, y1, . . . , yb).
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This implies that

X =
a∑

i=1

hi(x1, . . . , xa, y1, . . . , yb)
∂

∂xi
+

b∑
j,k=1

gkj (x1, . . . , xa, y1, . . . , yb) yj
∂

∂yk

This completes the proof.
2. Describe the singular distribution m 7→ Tm(XW (M)).

A. For m ̸∈ W , Tm(XW (M)) = TmM . Take any local coordinates z1, . . . , zd on an coordinate
neighborhood that does not intersect W . For every v =

∑d
i=1 vi

∂
∂zi |m

∈ TmW the local vector
field

X = ϕm(z1, . . . , zd)

d∑
i=1

vi
∂

∂zi

with ϕm(z1, . . . , zd) a compactly supported "bump" function equal to 1 at m extends by 0 to a
compactly supported vector field on M tangent to W (because it vanishes at every point on W )
and satisfies X|m = v.
For m ∈ W , we claim that Tm(XW (M)) = TmW . Take local coordinates (x1, . . . , xa, y1, . . . , yb)
as in the previous question. Let v =

∑a
i=1 vi

∂
∂xi

|m ∈ TmW . Consider ψm a compactly supported
bump function which is 1 at m, and let

X = ψm

a∑
i=1

vi
∂

∂xi

that we extend by 0 on the whole manifoldM . We haveX|m = v, andX is a compactly supported
vector field tangent to W . This completes the argument.

3. Describe
(a) the leaves of XW (M) ?

A. The connected components of submanifold W and the connected components of M \W
are the leaves of XW (M), because these are submanifolds whose tangent space coincide at
every point with the tangent space of XW (M) computed in the previous question. Moreover,
if codim(W ) ≥ 2 and M,W are connected, then F has only 2 leaves : W and M \W . If
M,W are connected and codim(W ) = 1, one can have one or two connected component in
M \W .

(b) The set of all regular points.

A. The set of regular points is M \W .
(c) The transverse singular foliation to each one of these leaves.

A. For a leaf L which is a connected component of M \W , the transverse foliation is a point.
For a leaf L which is a connected component of W , the transverse foliation is represented
by vector fields on Rb vanishing at 0, with b the codimension of W in M . This can be
seen as follows. Let (x1, . . . , xa, y1, . . . , yb) be local coordinates on which W is given by
y1 = · · · = yd = 0 as in the first question. We saw then that vector fields in XW (M) are,
after restriction to that open set, vector fields of the form :

X =
a∑

i=1

hi(x1, . . . , xa, y1, . . . , yb)
∂

∂xi
+

b∑
j,k=1

gkj (x1, . . . , xa, y1, . . . , yb) yj
∂

∂yk
.
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Consider the transverse submanifold x1 = · · · = xa = 0. By restricting to the transversal
vector fields of the previous form which are tangent to that transversal, one obtains vector
fields of the form

b∑
j,k=1

gkj (0, . . . , 0, y1, . . . , yb) yj
∂

∂yk

This is exactly vector fields on a neighborhood of 0 in Rb that vanish at 0.
4. Compute

(a) the isotropy Lie algebras of F = XW (M) at every point.

A. Again, we will distinguish two types of points.
— If m ∈ W , F(m) is spanned by the vector fields (xi − xi(m)) ∂

∂xl
, yi

∂
∂xl

, and yj
∂

∂yk
for

1 ≤ i, l ≤ a and 1 ≤ j, k ≤ b. Also, ImF is spanned by the (xi−xi(m)) ∂
∂xl
, yj

∂
∂xl
, (xi−

xi(m))yj
∂

∂yj
, yjyl

∂
∂yk

’s. Hence,

gm =
F(m)

ImF
≃ gl(Rb).

We can use a fancier argument. The isotropy Lie algebra atm is the same as the isotropy
Lie algebra at the origin for the transverse singular foliation at m. This transverse
singular foliation is the space of all vector fields on Rd vanishing at 0. Therefore

gm ≃ vetors fields of Rb vanishing at 0

vector fields vanishing quadratically at 0

is the quotient of the space of vector fields on Rd vanishing at 0 by those that vanish
at order at least two. As a Lie algebra, this is easily seen to be isomorphic to gl(Rb).

— If m ∈M \W , then m is a regular point :

gm ≃ {0}.

(b) The rank of XW (M) at every point .
A. The rank of XW (M) is the dimension of M at every point in M \W , and is

dim(W ) + (codim(W ))2

at every point in W .
5. Is XW (M) the image through the anchor map of a Lie algebroid ?

A. Let us study different cases, of varying difficulties.
(a) In a neighborhood of every point, the answer is "yes". This can be proved as follows : XW (M)

is, locally, the direct product of the singular foliation of all vector fields on Ra (which is
obviouly a singular foliation coming from a Lie algebroid) with the singular foliation of all
vector fields on Rb that vanish at zero (which is the image through the anchor map of the
transformation Lie algebroid for the action of gl(Rb) on Rb). Hence it is the image through
the anchor map of a Lie algebroid.

(b) On the whole manifold M , the question is open : it does not seem obvious.
(c) There is a neighborhood of W on M where the answer is yes. This follows from the tubular

neighborhood theorem, which gives a diffeomorphism between a neighborhood of W in M
and a neighborhood of the zero section in the normal bundleNW . Under this diffeomorphism,
XW becomes the space of all vector fields on NW tangent to the zero section. It is easy to
check that :
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i. Fiberwise linear vector field on NW are the sections of a transitive Lie algebroid (called
CDO(NW ) in Kirill Mackenzie) over W ,

ii. that this Lie algebroid acts on NW ,
iii. and that the anchor of the transformation Lie algebroid admits for image all vector

fields tangent to the zero section.
(d) If the codimension of W is one, then XW (M) is Debord and the answer is yes.

6. Describe the holonomy groupoid of XW (M).

A. For the sake of simplicity, we assume that W and M \W are connected. Let us describe the
Androulidakis-Skandalis holonomy groupoid for each one of the leaf L of XW (M). Recall that the
holonomy groupoid is a topological groupoid, whose orbits are the leaves of the singular foliation,
and whose restriction to each leaf is a smooth Lie groupoid. It suffices therefore to describe that
restriction for the two leaves M \W and W .
(a) For L = M \W , the restriction of the holonomy groupoid to L is the pair groupoid (M \

W )× (M \W ) ⇒ (M \W ).
(b) For L =W , the restriction of the holonomy groupoid is the Lie groupoid

GL(NW ) ⇒W

where NW = TM|W /TW is the normal bundle (which is a vector bundle over W ) and
GL(NW ) is the Lie groupoid of all invertible linear endomorphisms from a fiber of NW to
an other fiber of NW . More precisely,

GL(NW ) := ∪m,n∈WGL(N
W
|m , N

W
|n ).

This identification is beyond the scope of these exercises. However, it is easy to check that the
Lie algebroid of these Lie groupoid are, indeed, the holonomy Lie algebroid of the leaf.

Exercice 2

The complex setting.

Readjust Exercice 1 to the complex case.

Exercice 3

The algebraic setting.
Now, we will allow W ⊂M to be a singular subvariety. This mainly makes sense while working within
the context of complex algebraic geometry (but also in the complex setting, as we shall explain).
More precisely, we will make the simplifying assumption that M = Cd. And we define W ⊂ Cd to be
an an affine variety, i.e. W is the zero locus of some polynomial functions φ1, . . . , φr ∈ C[x1, . . . , xd].
We denote by IW the ideal of vanishing functions on W . Without any loss of generality, we can assume
that IW is the ideal generated by φ1, . . . , φr, so we will make this assumption. Let F = XW (M) be
the space of all vector fields X on M = Cd, with polynomial coefficients, that satisfy :

X[IW ] ⊂ IW .

1. Explain and justify why it makes sense to define XW (M) as above.
(For instance, consider X ∈ XW (M) as a complex vector field and show that its flow - when it
exists - preserves W .)
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A. Let X be a vector field such that X[IW ] ⊂ IW . This implies that X is tangent to the regular
part of W , which is complex submanifold of Cd.
This also implies that the flow of X, if it exists, is a biholomorphism that maps W to itself. Let
us show this point : there exists a matrix A = (Aj

i )
k
i,j=1, with coefficients in C[x1, . . . , xd] such

that :

LX

φ1
...
φr

 =

 A


φ1

...
φr


with the understanding that ”LX” means that one applies the derivation X to any one of the
functions in the column vector. In turn, for every time t for which the flow of X is defined :

(ϕtX)∗

φ1
...
φr

 = etLX

φ1
...
φr

 = A(t)

φ1
...
φr

 ,

for some invertible matrix A(t), well defined for t near 0. Translated geometrically, it means that
the flow of X at time t maps IW to itself.
We remind the reader that it is not true in general, for X a smooth vector field and I an ideal
of smooth functions that X[I] ⊂ I implies (ϕXt )∗[I] ⊂ I. Fr instance, take M = R, I to be the
ideal of functions vanishing on R− and X = ∂

∂x . It is therefore crucial, in the previous argument,
to make use of the fact that IW is finitely generated.

2. Show that F is a singular foliation over the algebra of polynomials in d variables.

A. Let us check all axioms.
— It it clearly a C[x1, . . . , xd]-module.
— Stability under Lie bracket : for all X,Y ∈ XW (M), [X,Y ][φi] = X[Y [φi]]−Y [X[φi]], since

Y [φi], X[φi] ∈ IW , we have X[Y [φi]], Y [X[φi]] ∈ IW . Hence [X,Y ] ∈ XW (M).
— Finitely generated : By construction, F is a sub-C[x1, . . . , xd]-module of X(M) (with M =

Cd). Now, as a module C[x1, . . . , xd]-module, X(M) is isomorphic to

X(M) ≃ C[x1, . . . , xd]⊕ · · · ⊕ C[x1, . . . , xd]︸ ︷︷ ︸
d-times

, (1)

because any vector fields on M = Cd decomposes in a unique manner as a sum

P1(x1, . . . , xd)
∂

∂x1
+ · · ·+ Pd(x1, . . . , xd)

∂

∂xd
. (2)

Since C[x1, . . . , xd] is Noetherian, every sub-C[x1, . . . , xd]-module of (1) is finitely generated.
(Notice that the generators are global).

3. What is
(a) TmF for all m ∈M \W ?

A. let (v1, . . . , vd) ∈ Cd. For a ̸∈ W , we can assume that φ1 ∈ IW satisfies φ1(a) ̸= 0. The
vector field

X =
φ1

φ1(a)

d∑
i=1

vi
∂

∂xi

belongs to XW (Cd) and satisfies by construction X(a) = (v1, . . . , vd).
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(b) TmF for m in the subset Wreg ⊂W of regular points of W .

A. Do we still have TaF = TaW as in the smooth case ? Let us find this out. The local ring
at a is by definition the localisation Oa of C[x1 . . . , xd] with respect to the multiplicative set
of all polynomials that do not vanish at a. It is a classical property that a ∈W is a regular
point if and only if there exists "local coordinates" y1, . . . , yd ∈ Oa. such that W is of the
form

y1 = · · · = yk = 0,

i.e. the localization of IW is generated by these variables. Hence the tangent space at m is
the vector space, span{ ∂

∂yi |m
, i ≥ k + 1}. Therefore, for v ∈ TaW the local vector field

X =

dimW∑
i=1

vi
∂

∂yk+i

maps Oa to Oa, in particular it maps O to Oa and we have X[IW ] ⊂ (IW )ma . Therefore, for
every i ∈ {1, . . . , d} there exists a polynomial function gi that does not vanish at a such that
giY [xi] ∈ C[x1, . . . , xd]. Hence, the vector field X̂ = g1···gr

g1(a)···gr(a)X is tangent to W satisfies

X̂(a) = v and X̂[IW ] ⊂ IW .

(c) TmF for m an isolated singularity of W , i.e. a point m where dmφi = 0 for i = 1, . . . , r and
which is isolated among such points.
A. It is zero.

(d) (Requires the notion of strata of an affine variety). Show that the tangent space of F at
m ∈W is included into the tangent space of the strata of W at this point.

A. It suffices to prove that if X[IW ] ⊂ IW then X[IWsing ] ⊂ IWsing where IWsing is the ideal
of functions on the singular part of W . Since IWsing is obtained by considering the minors
of order k ≥ d− dimW of k elements chosen into the generators φ1, . . . , φr. That is, Wsing

is given the ideal〈
φ1, · · ·φr, P [φi1 , · · · , φik ], P ∈ Xk(Cd) for integers

1 ≤ i1 < · · · < ik ≤ r

d− dimW ≤ k ≤ r

〉
(3)

Let us explain why the vector fields that tangent to W are also tangent to its singular locus.
We recall that a k-multivector field P ∈ Xk(Cd) is of the form η1 ∧ · · · ∧ ηk for some vector
fields η1, . . . , ηk ∈ X(Cd) and is defined as follows

(η1 ∧ · · · ∧ ηk)[φi1 , · · · , φik ] :=

∣∣∣∣∣∣∣
η1[φi1 ] · · · η1[φik ]

...
...

ηk[φi1 ] · · · ηk[φik ]

∣∣∣∣∣∣∣ .
For a vector field X ∈ XW (Cd) one has,

X [P [φi1 , · · · , φik ]] = (LXP )[φi1 , · · · , φik ] +
k∑

j=1

P [φi1 , . . . , X[φij ], . . . , φik ] (4)

Notice that (LXP )[φi1 , · · · , φik ] ∈ Ising since (LXP ) ∈ Xk(Cd). On the other hand, for
every j there exists polynomial functions f1, . . . , fr such that X[φij ] =

∑r
i=1 flφl. Since P
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is a multi-derivation one has,

P [φi1 , . . . , X[φij ], . . . , φik ] =
r∑

l=1

φlP [φi1 , . . . , fl, . . . , φik ]+

r∑
i=1

flP [φi1 , . . . , φl, . . . , φik ]

It is now clear that the rhs of the equation above is in the ideal Ising.
Show that in the coming example, the latter inclusion is strict :

W = {(x, y, z) ∈ C3 |xy(x+ y)(x+ yz) = 0}

for any point in the straight line x = y = 0

A. The straight line x = y = 0 is a strata of the the previous affine variety W . Any vector
field tangent to W is tangent to this straight line. Let us show that it has to vanish at every
point of this straight line. If not, its flow at time t would map a point (0, 0, z0) to a point
(0, 0, z1) with z1 ̸= z0. Its differential then induce a linear automorphism of the normal
bundle of that straight line that has to preserve the straight lines x = 0, y = 0, x + y = 0.
Since a linear endomorphism of C2 preserving three straight lines has to be a multiple of
the identity map, this differential cannot map the straight line x+ z0y to the straight line
x+ z1y. This concludes the proof.

From now on, we assume that r = 1 and φ := φ1 is a homogeneous polynomial 1 and admits an
isolated singularity at zero.

A.

(a) Show that the complex singular foliation generated by F admits three leaves in this case :
M \W , W \ {0} and {0}.

A.
We invite the reader to start with the weight homogeneous polynomial φ(x, y, z) = xy− zn

with n ≥ 2 (the weights of x, y, z being n, n, 2 respectively) in order to understand the logic
of the construction.

A.
(b) Let

−→
E be the Euler vector field :

−→
E :=

d∑
i=1

nixi
∂

∂xi
.

Show that the Euler vector field is in XW (M).

A.
(c) Show that any vector field of the form P#(dφ) is in XW (M) , with P a bivector field on

Cd, and P# the corresponding 1− 1 tensor from T ∗M to TM .

A.

1. The variables may have non-negative weights n1, . . . , nd
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(d) Give a set of generators of F .

A.

(e) Compute the isotropy Lie algebras of F at the origin

i. when φ(x1, . . . , xd) =
∑d

i=1 x
2
i ,

A.

ii. when φ(x1, . . . , xd) =
∑d

i=1 x
3
i

A.

(f) We consider the singular foliation

Fφ := {X ∈ X(V ) | X[φ] = 0}.

i. Give a set of generators of Fφ.

A.

ii. Give an almost algebroid structure (A, [ · , · ]A, ρ) for Fφ.

A.

Look for the notion of a "Koszul resolution", and show that k-vector fields with k ≥ 2,
equipped with the contraction by dφ form a geometric resolution of Fφ.

A.

iii. The almost Lie algebroid is the beginning of a Lie ∞-algebroid structure on a geometric
resolution : compute a 3-ary bracket.

A.

(g) Apply the previous question to φ(x1, . . . , xd) =
∑d

i=1 x
3
i .

A.
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