Singular Foliations Problem session

Ruben LOUIS

Poisson Advanced School, CRM, Barcelona

July 21, 2022

Topic: Vector fields tangent to a subset

The smooth setting

2 The algebraic setting

Smooth setting

- *M* is a smooth manifold and $W \subset M$ an embedded closed sub-manifold.
- $\mathfrak{X}_W(M)$ is the space of all compactly supported vector fields on *M* that are tangent to the sub-manifold *W*.

Algebraic setting

- $M = \mathbb{C}^d$ and $W \subset M$ an affine variety i.e. W is the zero locus of some polynomial functions $\varphi_1, \ldots, \varphi_r \in \mathbb{C}[x_1, \ldots, x_d]$.
- We denote by $\mathfrak{X}_W(M)$ the space of all vector fields on M that are tangent to W.

Exercice 1: Vector fields tangent to a sub-manifold W

- 1. Check that $\mathfrak{X}_W(M)$ is a singular foliation on M. Give a set of local generators.
 - By definition

 $\mathfrak{X}_W(M) = \{ X \in \mathfrak{X}(M) \mid X|_m \in T_m W, \text{ for all } m \in W \}$

For all $X, Y \in \mathfrak{X}(M)$,

$$[X,Y]_{|_{m}} = (\mathcal{L}_{X}Y)_{|_{m}} = \frac{d}{dt}_{|_{t=0}} T_{\phi_{-t}^{X}(m)} \phi_{t}^{X}(Y_{\phi_{-t}^{X}(m)}),$$

where ϕ_t^X is the flow of X.

- 1. Check that $\mathfrak{X}_W(M)$ is a singular foliation on M. Give a set of local generators.
 - By definition

$$\mathfrak{X}_W(M) = \{X \in \mathfrak{X}(M) \mid X|_m \in T_m W, \text{ for all } m \in W\}$$

For all
$$X, Y \in \mathfrak{X}(M)$$
,

$$[X,Y]_{|_{m}} = (\mathcal{L}_{X}Y)_{|_{m}} = \frac{d}{dt}_{|_{t=0}} T_{\phi_{-t}^{X}(m)} \phi_{t}^{X}(Y_{\phi_{-t}^{X}(m)}),$$

where ϕ_t^X is the flow of X.

- 1. Check that $\mathfrak{X}_W(M)$ is a singular foliation on M. Give a set of local generators.
 - By definition

$$\mathfrak{X}_W(M) = \{X \in \mathfrak{X}(M) \mid X|_m \in T_m W, \text{ for all } m \in W\}$$

For all
$$X, Y \in \mathfrak{X}(M)$$
,

$$[X,Y]_{|_{m}} = (\mathcal{L}_{X}Y)_{|_{m}} = \frac{d}{dt}_{|_{t=0}} T_{\phi_{-t}^{X}(m)} \phi_{t}^{X}(Y_{\phi_{-t}^{X}(m)}),$$

where ϕ_t^X is the flow of X.

For every $m \in W$, there exists local coordinates $(\mathcal{U}, x_1, \ldots, x_a, y_1, \ldots, y_b)$ around m on which W is given by

$$y_1=\cdots=y_b=0.$$

The so-called Hadamard Lemma, states that every smooth function

$$y_1,\ldots,y_b\mapsto f_j(x_1,\ldots,x_a,y_1,\ldots,y_b)$$

such that $f_j(x_1, \ldots, x_a, 0, \ldots, 0) = 0$, there exists smooth functions g_1^j, \ldots, g_b^j on \mathcal{U} such that

$$f_j(x_1,...,x_a,y_1,...,y_b) = \sum_{k=1}^b y_j g_j^k(x_1,...,x_a,y_1,...,y_b).$$

- 2 Describe the singular distribution $m \mapsto T_m(\mathfrak{X}_W(M))$.
 - For $m \notin W$, $T_m(\mathfrak{X}_W(M)) = T_m M$:

For $m \in W$, $T_m(\mathfrak{X}_W(M)) = T_m W$:

2 Describe the singular distribution $m \mapsto T_m(\mathfrak{X}_W(M))$.

For
$$m \notin W$$
, $T_m(\mathfrak{X}_W(M)) = T_m M$:

For
$$m \in W$$
, $T_m(\mathfrak{X}_W(M)) = T_m W$:

2 Describe the singular distribution $m \mapsto T_m(\mathfrak{X}_W(M))$.

For
$$m \notin W$$
, $T_m(\mathfrak{X}_W(M)) = T_m M$:

For
$$m \in W$$
, $T_m(\mathfrak{X}_W(M)) = T_m W$:

3.a the leaves of $\mathfrak{X}_W(M)$

- The connected components of submanifold W and the connected components of M \ W are the leaves of X_W(M)
- Moreover,
 - if $\operatorname{codim}(W) \ge 2$ and M, W are connected, then $\mathfrak{X}_W(M)$ has only 2 leaves: W and $M \setminus W$.
 - If M, W are connected and codim(W) = 1, one can have one or two connected component in M \ W.

3.a the leaves of $\mathfrak{X}_W(M)$

- ► The connected components of submanifold W and the connected components of $M \setminus W$ are the leaves of $\mathfrak{X}_W(M)$
- Moreover,
 - if $\operatorname{codim}(W) \ge 2$ and M, W are connected, then $\mathfrak{X}_W(M)$ has only 2 leaves: W and $M \setminus W$.
 - If M, W are connected and $\operatorname{codim}(W) = 1$, one can have one or two connected component in $M \setminus W$.

- 3.a the leaves of $\mathfrak{X}_W(M)$
 - ► The connected components of submanifold W and the connected components of M \ W are the leaves of X_W(M)
 - Moreover,
 - if $\operatorname{codim}(W) \ge 2$ and M, W are connected, then $\mathfrak{X}_W(M)$ has only 2 leaves: W and $M \setminus W$.
 - If M, W are connected and codim(W) = 1, one can have one or two connected component in M \ W.

- 3.a the leaves of $\mathfrak{X}_W(M)$
 - ► The connected components of submanifold W and the connected components of M \ W are the leaves of X_W(M)
 - Moreover,
 - if $\operatorname{codim}(W) \ge 2$ and M, W are connected, then $\mathfrak{X}_W(M)$ has only 2 leaves: W and $M \setminus W$.
 - ❷ If *M*, *W* are connected and codim(*W*) = 1, one can have one or two connected component in *M* \ *W*.

3.b The set of all regular points.

 \blacktriangleright $M \setminus W$.

3.c The transverse singular foliation to each one of these leaves.

For a leaf $L \subset M \setminus W$, the transverse foliation is a point.

For a leaf L ⊂ W, it is represented by vector fields on ℝ^b vanishing at 0, with b the codimension of W in M: How to see this?

3.b The set of all regular points.

• $M \setminus W$.

- 3.c The transverse singular foliation to each one of these leaves.
 - For a leaf $L \subset M \setminus W$, the transverse foliation is a point.
 - For a leaf L ⊂ W, it is represented by vector fields on ℝ^b vanishing at 0, with b the codimension of W in M: How to see this?

3.b The set of all regular points.

• $M \setminus W$.

- 3.c The transverse singular foliation to each one of these leaves.
 - For a leaf $L \subset M \setminus W$, the transverse foliation is a point.
 - For a leaf L ⊂ W, it is represented by vector fields on ℝ^b vanishing at 0, with b the codimension of W in M: How to see this?

- Let (x₁,..., x_a, y₁,..., y_b) be local coordinates on which W is given by y₁ = ··· = y_d = 0
- ② Consider the transverse submanifold $x_1 = \cdots = x_a = 0$.
- Solution Vector fields in $\mathfrak{X}_W(M)$ are, after restriction to that open set, vector fields of the form:

$$X = \sum_{i=1}^{a} h_i \frac{\partial}{\partial x_i} + \sum_{j,k=1}^{b} g_j^k y_j \frac{\partial}{\partial y_k}.$$

 By restricting to the transversal, one obtains vector fields of the form

$$\sum_{j,k=1}^{b} g_j^k(0,\ldots,0,y_1,\ldots,y_b) y_j \frac{\partial}{\partial y_k}$$

This is exactly vector fields on a neighborhood of 0 in \mathbb{R}^{b} that vanish at 0.

4.a The isotropy Lie algebras of $\mathcal{F} = \mathfrak{X}_W(M)$ at every point.

4.b The rank of $\mathfrak{X}_W(M)$ at every point . $rk_m(\mathcal{F}) = \dim(L_m) + \dim(g_m)$

5. Is $\mathfrak{X}_W(M)$ the image through the anchor map of a Lie algebroid?

▶ There is a neighborhood of *W* on *M* where the answer is yes.

- ▶ This follows from the tubular neighborhood theorem, which gives a diffeomorphism between a neighborhood of W in M and a neighborhood of the zero section in the normal bundle N_W . Under this diffeomorphism, \mathfrak{X}_W becomes the space of all vector fields on N_W tangent to the zero section. It is easy to check that:
 - Fiberwise linear vector field on N_W are the sections of a transitive Lie algebroid (called CDO(N_W) in Kirill Mackenzie) over W,
 - 2 that this Lie algebroid acts on N_W ,
 - and that the anchor of the transformation Lie algebroid admits for image all vector fields tangent to the zero section.

6. Describe the holonomy groupoid of $\mathfrak{X}_W(M)$.

Assume that W and M \ W are connected.

- For $L = M \setminus W$, the restriction of the holonomy groupoid to L is the pair groupoid $(M \setminus W) \times (M \setminus W) \rightrightarrows (M \setminus W)$.
- For L = W, the restriction of the holonomy groupoid is the general linear groupoid of the normal bundle $N_W = TM_{|_W}/TW.$

- 6. Describe the holonomy groupoid of $\mathfrak{X}_W(M)$.
 - Assume that W and $M \setminus W$ are connected.
 - For $L = M \setminus W$, the restriction of the holonomy groupoid to L is the pair groupoid $(M \setminus W) \times (M \setminus W) \rightrightarrows (M \setminus W)$.
 - For L = W, the restriction of the holonomy groupoid is the general linear groupoid of the normal bundle $N_W = TM_{|_W}/TW$.

- 6. Describe the holonomy groupoid of $\mathfrak{X}_W(M)$.
 - Assume that W and $M \setminus W$ are connected.
 - For $L = M \setminus W$, the restriction of the holonomy groupoid to L is the pair groupoid $(M \setminus W) \times (M \setminus W) \rightrightarrows (M \setminus W)$.
 - **⊘** For *L* = *W*, the restriction of the holonomy groupoid is the general linear groupoid of the normal bundle $N_W = TM_{|_W}/TW$.

The algebraic setting

Exercice 3: Vector fields tangent to an affine variety W

- 1. Explain and justify why it makes sense to define $\mathfrak{X}_W(M)$ as above.
- 2. Show that \mathcal{F} is a singular foliation over the algebra of polynomials in d variables.
 - Any vector fields on M = C^d decomposes in a unique manner as a sum

$$P_1(x_1,\ldots,x_d)\frac{\partial}{\partial x_1}+\cdots+P_d(x_1,\ldots,x_d)\frac{\partial}{\partial x_d}.$$

3. What is

T_mF for all *m* ∈ *M* \ *W*?
Do we still have *T_aF* = *T_aW* as in the smooth case?

- 1. Explain and justify why it makes sense to define $\mathfrak{X}_W(M)$ as above.
- 2. Show that \mathcal{F} is a singular foliation over the algebra of polynomials in d variables.
 - Any vector fields on M = C^d decomposes in a unique manner as a sum

$$P_1(x_1,\ldots,x_d)\frac{\partial}{\partial x_1}+\cdots+P_d(x_1,\ldots,x_d)\frac{\partial}{\partial x_d}.$$

3. What is

T_mF for all *m* ∈ *M* \ *W*?
Do we still have *T_aF* = *T_aW* as in the smooth case

- 1. Explain and justify why it makes sense to define $\mathfrak{X}_W(M)$ as above.
- 2. Show that \mathcal{F} is a singular foliation over the algebra of polynomials in d variables.
 - Any vector fields on M = C^d decomposes in a unique manner as a sum

$$P_1(x_1,\ldots,x_d)\frac{\partial}{\partial x_1}+\cdots+P_d(x_1,\ldots,x_d)\frac{\partial}{\partial x_d}.$$

3. What is

- $T_m \mathcal{F}$ for all $m \in M \setminus W$?
- Do we still have $T_a \mathcal{F} = T_a W$ as in the smooth case?

It is a classical property that a ∈ W_{reg} there exists "local coordinates" y₁,..., y_d ∈ O_a. such that W is of the form

$$y_1=\cdots=y_k=0,$$

i.e. the localization of \mathcal{I}_W is generated by these variables. For $v \in T_a W$ the local vector field

$$X = \sum_{i=1}^{\dim W} v_i \frac{\partial}{\partial y_{k+i}}$$

maps \mathcal{O}_a to \mathcal{O}_a .

It is a classical property that a ∈ W_{reg} there exists "local coordinates" y₁,..., y_d ∈ O_a. such that W is of the form

$$y_1=\cdots=y_k=0,$$

i.e. the localization of \mathcal{I}_W is generated by these variables. For $v \in \mathcal{T}_a W$ the local vector field

$$X = \sum_{i=1}^{\dim W} v_i \frac{\partial}{\partial y_{k+i}}$$

maps \mathcal{O}_a to \mathcal{O}_a .

- ▶ $T_m \mathcal{F}$ for *m* an isolated singularity of *W*, i.e. a point *m* where $d_m \varphi_i = 0$ for i = 1, ..., r and which is isolated among such points.
- 4. Show that the tangent space of \mathcal{F} at $m \in W$ is included into the tangent space of the strata of W at this point.

Frame Title

 \mathcal{I}_{sing} is generated by the minors of order $k = d - \dim W$ of k elements chosen into the generators $\varphi_1, \ldots, \varphi_r$. That is, W_{sing} is given the ideal

$$\left\langle \mathcal{I}_{W}, P[\varphi_{i_{1}} \wedge \dots \wedge \varphi_{i_{k}}], \ P \in \mathfrak{X}^{k}(\mathbb{C}^{d}), \begin{array}{c} 1 \leq i_{1} < \dots < i_{k} \leq r \\ d - \dim W \leq k \leq r \end{array} \right\rangle$$

Frame Title

From now on, we assume that r = 1 and $\varphi := \varphi_1$ is a homogeneous polynomial and admits an isolated singularity at zero.

5. Let \overrightarrow{E} be the *Euler vector field*:

$$\overrightarrow{E} := \sum_{i=1}^d n_i x_i \frac{\partial}{\partial x_i}.$$

Show that the Euler vector field is in $\mathfrak{X}_W(M)$.

Consider the singular foliation

$$\mathcal{F}_{\varphi} := \{ X \in \mathfrak{X}(V) \mid X[\varphi] = 0 \}.$$

- 6. Give a set of generators of \mathcal{F}_{φ} .
- 7. Give an almost algebroid structure $(A, [\cdot, \cdot]_A, \rho)$ for \mathcal{F}_{φ} .

$$\begin{split} [\bar{E}, \bar{H}_{ij}]_{2} &:= (|\varphi| - 2)\bar{H}_{ij} \\ [\bar{H}_{ij}, \bar{H}_{kl}]_{2} &:= \frac{\partial^{2}\varphi}{\partial x_{i}\partial x_{l}}\bar{H}_{jk} - \frac{\partial^{2}\varphi}{\partial x_{i}\partial x_{k}}\bar{H}_{jl} + \frac{\partial^{2}\varphi}{\partial x_{j}\partial x_{k}}\bar{H}_{il} - \frac{\partial^{2}\varphi}{\partial x_{j}\partial x_{l}}\bar{H}_{ik}. \end{split}$$

►

Consider the singular foliation

$$\mathcal{F}_{\varphi} := \{ X \in \mathfrak{X}(V) \mid X[\varphi] = 0 \}.$$

- 6. Give a set of generators of \mathcal{F}_{φ} .
- 7. Give an almost algebroid structure $(A, [\cdot, \cdot]_A, \rho)$ for \mathcal{F}_{φ} .

$$\begin{split} &[\bar{E},\bar{H}_{ij}]_{2} := (|\varphi|-2)\bar{H}_{ij} \\ &[\bar{H}_{ij},\bar{H}_{kl}]_{2} := \frac{\partial^{2}\varphi}{\partial x_{i}\partial x_{l}}\bar{H}_{jk} - \frac{\partial^{2}\varphi}{\partial x_{i}\partial x_{k}}\bar{H}_{jl} + \frac{\partial^{2}\varphi}{\partial x_{j}\partial x_{k}}\bar{H}_{il} - \frac{\partial^{2}\varphi}{\partial x_{j}\partial x_{l}}\bar{H}_{ik}. \end{split}$$

►

Consider the singular foliation

$$\mathcal{F}_{\varphi} := \{ X \in \mathfrak{X}(V) \mid X[\varphi] = 0 \}.$$

- 6. Give a set of generators of \mathcal{F}_{φ} .
- 7. Give an almost algebroid structure $(A, [\cdot, \cdot]_A, \rho)$ for \mathcal{F}_{φ} .

$$\begin{split} &[\bar{E},\bar{H}_{ij}]_{2} := (|\varphi|-2)\bar{H}_{ij} \\ &[\bar{H}_{ij},\bar{H}_{kl}]_{2} := \frac{\partial^{2}\varphi}{\partial x_{i}\partial x_{l}}\bar{H}_{jk} - \frac{\partial^{2}\varphi}{\partial x_{i}\partial x_{k}}\bar{H}_{jl} + \frac{\partial^{2}\varphi}{\partial x_{j}\partial x_{k}}\bar{H}_{il} - \frac{\partial^{2}\varphi}{\partial x_{j}\partial x_{l}}\bar{H}_{ik}. \end{split}$$

►