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Smooth setting

▶ M is a smooth manifold and W ⊂ M an embedded closed
sub-manifold.

▶ XW (M) is the space of all compactly supported vector fields
on M that are tangent to the sub-manifold W .
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Algebraic setting

▶ M = Cd and W ⊂ M an affine variety i.e. W is the zero locus
of some polynomial functions φ1, . . . , φr ∈ C[x1, . . . , xd ].

▶ We denote by XW (M) the space of all vector fields on M that
are tangent to W .
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Exercice 1: Vector fields tangent to a sub-manifold W
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Vector fields tangent to a sub-manifold W

1. Check that XW (M) is a singular foliation on M. Give a set of
local generators.
▶ By definition

XW (M) = {X ∈ X(M) | X |m ∈ TmW , for all m ∈ W }

▶ For all X ,Y ∈ X(M),

[X ,Y ]|m = (LXY )|m =
d

dt |t=0
TϕX

−t(m)ϕ
X
t (YϕX

−t(m)),

where ϕX
t is the flow of X .
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Vector fields tangent to a sub-manifold W

▶ For every m ∈ W , there exists local coordinates
(U , x1, . . . , xa, y1, . . . , yb) around m on which W is given by

y1 = · · · = yb = 0.
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Vector fields tangent to a sub-manifold W

▶ The so-called Hadamard Lemma, states that every smooth
function

y1, . . . , yb 7→ fj(x1, . . . , xa, y1, . . . , yb)

such that fj(x1, . . . , xa, 0, . . . , 0) = 0, there exists smooth
functions g j

1, . . . , g
j
b on U such that

fj(x1, . . . , xa, y1, . . . , yb) =
b∑

k=1

yj g
k
j (x1, . . . , xa, y1, . . . , yb).

Problem session Ruben LOUIS



The smooth setting The algebraic setting

Vector fields tangent to a sub-manifold W

2 Describe the singular distribution m 7→ Tm(XW (M)).

▶ For m ̸∈ W , Tm(XW (M)) = TmM:

▶ For m ∈ W , Tm(XW (M)) = TmW :
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Vector fields tangent to a sub-manifold W

3.a the leaves of XW (M)
▶ The connected components of submanifold W and the

connected components of M \W are the leaves of XW (M)
▶ Moreover,

1 if codim(W ) ≥ 2 and M,W are connected, then XW (M) has
only 2 leaves: W and M \W .

2 If M,W are connected and codim(W ) = 1, one can have one
or two connected component in M \W .
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Vector fields tangent to a sub-manifold W

3.b The set of all regular points.
▶ M \W .

3.c The transverse singular foliation to each one of these leaves.

▶ For a leaf L ⊂ M \W , the transverse foliation is a point.

▶ For a leaf L ⊂ W , it is represented by vector fields on Rb

vanishing at 0, with b the codimension of W in M: How to
see this?
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Vector fields tangent to a sub-manifold W

1 Let (x1, . . . , xa, y1, . . . , yb) be local coordinates on which W is
given by y1 = · · · = yd = 0

2 Consider the transverse submanifold x1 = · · · = xa = 0.
3 Vector fields in XW (M) are, after restriction to that open set,

vector fields of the form:

X =
a∑

i=1

hi
∂

∂xi
+

b∑
j ,k=1

gk
j yj

∂

∂yk
.
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Vector fields tangent to a sub-manifold W

▶ By restricting to the transversal, one obtains vector fields of
the form

b∑
j ,k=1

gk
j (0, . . . , 0, y1, . . . , yb) yj

∂

∂yk

This is exactly vector fields on a neighborhood of 0 in Rb that
vanish at 0.
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Vector fields tangent to a sub-manifold W

4.a The isotropy Lie algebras of F = XW (M) at every point.
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Vector fields tangent to a sub-manifold W

4.b The rank of XW (M) at every point .
▶ rkm(F) = dim(Lm) + dim (gm)
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Vector fields tangent to a sub-manifold W

5. Is XW (M) the image through the anchor map of a Lie
algebroid?
▶ There is a neighborhood of W on M where the answer is yes.
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Vector fields tangent to a sub-manifold W

▶ This follows from the tubular neighborhood theorem, which
gives a diffeomorphism between a neighborhood of W in M
and a neighborhood of the zero section in the normal bundle
NW . Under this diffeomorphism, XW becomes the space of all
vector fields on NW tangent to the zero section. It is easy to
check that:

1 Fiberwise linear vector field on NW are the sections of a
transitive Lie algebroid (called CDO(NW ) in Kirill Mackenzie)
over W ,

2 that this Lie algebroid acts on NW ,
3 and that the anchor of the transformation Lie algebroid admits

for image all vector fields tangent to the zero section.
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Vector fields tangent to a sub-manifold W

6. Describe the holonomy groupoid of XW (M).
▶ Assume that W and M \W are connected.

1 For L = M \W , the restriction of the holonomy groupoid to L
is the pair groupoid (M \W )× (M \W ) ⇒ (M \W ).

2 For L = W , the restriction of the holonomy groupoid is the
general linear groupoid of the normal bundle
NW = TM|W /TW .
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The algebraic setting

Exercice 3: Vector fields tangent to an affine variety W
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Vector fields tangent to an affine variety W

1. Explain and justify why it makes sense to define XW (M) as
above.

2. Show that F is a singular foliation over the algebra of
polynomials in d variables.
▶ Any vector fields on M = Cd decomposes in a unique manner

as a sum

P1(x1, . . . , xd)
∂

∂x1
+ · · ·+ Pd(x1, . . . , xd)

∂

∂xd
.

3. What is
▶ TmF for all m ∈ M \W ?
▶ Do we still have TaF = TaW as in the smooth case?
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Vector fields tangent to an affine variety W

▶ It is a classical property that a ∈ Wreg

there exists "local coordinates" y1, . . . , yd ∈ Oa. such that W
is of the form

y1 = · · · = yk = 0,

i.e. the localization of IW is generated by these variables. For
v ∈ TaW the local vector field

X =
dimW∑
i=1

vi
∂

∂yk+i

maps Oa to Oa.
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Vector fields tangent to an affine variety W

▶ TmF for m an isolated singularity of W , i.e. a point m where
dmφi = 0 for i = 1, . . . , r and which is isolated among such
points.

4. Show that the tangent space of F at m ∈ W is included into
the tangent space of the strata of W at this point.
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Frame Title
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Vector fields tangent to an affine variety W

Ising is generated by the minors of order k = d − dimW of k
elements chosen into the generators φ1, . . . , φr . That is, Wsing is
given the ideal〈

IW ,P[φi1 ∧ · · · ∧ φik ], P ∈ Xk(Cd),
1 ≤ i1 < · · · < ik ≤ r

d − dimW ≤ k ≤ r

〉
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Frame Title
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Vector fields tangent to an affine variety W

From now on, we assume that r = 1 and φ := φ1 is a homogeneous
polynomial and admits an isolated singularity at zero.

5. Let
−→
E be the Euler vector field:

−→
E :=

d∑
i=1

nixi
∂

∂xi
.

Show that the Euler vector field is in XW (M).
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Vector fields tangent to an affine variety W

Consider the singular foliation

Fφ := {X ∈ X(V ) | X [φ] = 0}.

6. Give a set of generators of Fφ.
7. Give an almost algebroid structure (A, [ · , · ]A, ρ) for Fφ.

▶

[Ē , H̄ij ]2 := (|φ| − 2)H̄ij

[H̄ij , H̄kl ]2 :=
∂2φ

∂xi∂xl
H̄jk −

∂2φ

∂xi∂xk
H̄jl +

∂2φ

∂xj∂xk
H̄il −

∂2φ

∂xj∂xl
H̄ik .
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