Introduction to Singular Foliations (And mainly to its Geometry)

Camille Laurent-Gengoux

with R. Louis and L Ryvkin.

CRM, Barcelona, Poisson 2022

Towards a Definition	Singular foliations do admit leaves
Table of content	

Schedule :

- Itesday : What are singular foliations?
- Wednesday : What structures do they hide ?
- S Thursday : exercises, symmetries of a subset.
- Friday : More (higher) structures they hide + open questions.

There is a (not totally finished) handout on-line.

Introduction to Singular Foliations I

Camille Laurent-Gengoux

Towards a Definition	Singular foliations do admit leaves
Table of content	

Schedule :

- I uesday : What are singular foliations?
- Wednesday : What structures do they hide ?
- S Thursday : exercises, symmetries of a subset.
- Friday : More (higher) structures they hide + open questions.

Schedule :

- Tuesday : What are singular foliations?
- Wednesday : What structures do they hide ?
- S Thursday : exercises, symmetries of a subset.
- Seriday : More (higher) structures they hide + open questions.

Copyright Joe deSousa

Too many definitions?

Towards a Definition ●0000000	Singular foliations do admit leaves

What is a singular foliation ? A first attempt

A first attempt to define singular foliations on M :

Definition

A *partitionifold* of M is a partition of M into connected immersed submanifolds ^{*a*}, called leaves.

a. From now on, "submanifold" means by default "immersed submanifolds".

Notation $L_{\bullet}: m \mapsto L_m$.

Question

Should we take it as a definition of singular foliation?

Towards a Definition 0000000	Singular foliations do admit leaves

Annoying examples

One has to make a choice

A choice has to be made, What do we wish to study?		
Isolated lasagna in	Isolated spaghetti in	
a spaghetti dish?	a lasagna dish ?	
No	Yes	
Defined with forms	Defined with tangent vector	

Other problems : magnetic or pinch partitionifolds have little interesting geometry : we need one more assumption !

A second attempt : smooth partitionifolds

Definition

A partitionifold L_{\bullet} is said to be <u>smooth</u> if for every $\ell \in M$ and every tangent vector $u \in T_{\ell}L_{\ell}$, there exists a vector field X through u which is tangent to all leaves.

This forbids isolated lasagnas, magnetic or pinch-partitioniolds. It is better.

Question

Should we take it as a definition of singular foliation?

The flow of a vector field tangent to all leaves preserves L_{\bullet} .

Proposition

Let L. be a smooth partitionifold.

- Travelling along a leaf is boring
- Every leaf has a transverse structure
- Which is unique
- And there is a Weinstein-splitting-like theorem.

The flow of a vector field tangent to all leaves preserves L_{\bullet} .

Proposition

Let L. be a smooth partitionifold.

- Two points on the same leaves have open neighborhoods on which L_• are isomorphic.
- 2 Every leaf has a transverse structure
- Which is unique
- And there is a Weinstein-splitting-like theorem.

The flow of a vector field tangent to all leaves preserves L_{\bullet} .

Proposition

Let L. be a smooth partitionifold.

- Two points on the same leaves have open neighborhoods on which L_• are isomorphic.
- **②** For Σ transverse to L, $m \mapsto (\Sigma \cap L_m)_0$ is a smooth partitionifold on a neighborhood of $L \cap \Sigma$.
- Which is unique
- And there is a Weinstein-splitting-like theorem.

The flow of a vector field tangent to all leaves preserves L_{\bullet} .

Proposition

- Let L. be a smooth partitionifold.
 - Two points on the same leaves have open neighborhoods on which L. are isomorphic.
 - **②** For Σ transverse to L, $m \mapsto (\Sigma \cap L_m)_0$ is a smooth partitionifold on a neighborhood of $L \cap \Sigma$.
 - And any two such transverse smooth partitionifolds have isomorphic germs.
 - And there is a Weinstein-splitting-like theorem.

The flow of a vector field tangent to all leaves preserves L_{\bullet} .

Proposition

- Let L. be a smooth partitionifold.
 - Two points on the same leaves have open neighborhoods on which L. are isomorphic.
 - **②** For Σ transverse to L, $m \mapsto (\Sigma \cap L_m)_0$ is a smooth partitionifold on a neighborhood of $L \cap \Sigma$.
 - And any two such transverse smooth partitionifolds have isomorphic germs.
 - And near any point m, L. is a isomorphic to the direct product of the leaf by any representative of the transverse structure

For any smooth partitionifold L_{\bullet} :

• The singular distribution :

 $m \mapsto T_m L_m$

is involutive, integrable, any of its section has a flow that preserves it.

- has a upper-semi-continuous dimension,
- and on the open dense subset where this rank is locally maximum, we obtain a "good old" regular foliation.

(So there is a dense open subset where it is a regular foliation + some singularities where leaves are strictly smaller in dimension.)

Question

So, is it a good definition of a singular foliation?

Definition

A singular foliation on a smooth manifold M is a subspace $\mathcal{F} \subset \mathfrak{X}_c(M)$ which

 $\left(\alpha \right) \,$ is involutive,

- (β) is a $\mathcal{C}^{\infty}(M)$ -module
- $(\gamma)\,$ is locally finitely generated.

Definition

- A singular foliation on a smooth manifold M is a subspace $\mathcal{F} \subset \mathfrak{X}_c(M)$ which
- $(\alpha) \ [\mathcal{F},\mathcal{F}] \subset \mathcal{F}$
- (eta) is a $\mathcal{C}^\infty(M)$ -module
- $(\gamma) \,$ is locally finitely generated.

Definition

A singular foliation on a smooth manifold M is a subspace $\mathcal{F} \subset \mathfrak{X}_c(M)$ which

$$(\alpha) \ [\mathcal{F},\mathcal{F}] \subset \mathcal{F}$$

$$(\beta)$$
 For all $F \in \mathcal{C}^{\infty}(M)$, $X\mathcal{F} \implies FX \in \mathcal{F}$.

 (γ) is locally finitely generated.

Definition

A singular foliation on a smooth manifold M is a subspace $\mathcal{F} \subset \mathfrak{X}_c(M)$ which

$$(\alpha) \ [\mathcal{F},\mathcal{F}] \subset \mathcal{F}$$

- (β) For all $F \in \mathcal{C}^{\infty}(M)$, $X\mathcal{F} \implies FX \in \mathcal{F}$.
- (γ) For every point $m \in M$ there exists $X_1, \ldots, X_r \in \mathcal{F}$ and an open neighborhood \mathcal{U} of m such that every for every $X \in \mathcal{F}$ there exists $f_1, \ldots, f_r \in C^{\infty}(M)$ such that $X \sum_{i=1}^r f_i X_i$ is zero on \mathcal{U}_m .

Towards a Definition 000000●0	Singular foliations do admit leaves
Yes. but it has lost	

Definition

A singular foliation on a smooth manifold M is a subspace $\mathcal{F} \subset \mathfrak{X}_c(M)$ which

- $\left(\alpha \right) \,$ is involutive,
- (eta) is a $\mathcal{C}^\infty(M)$ -module

 (γ) is locally finitely generated.

Complain

Come on ! How do you dare to call foliation something which has no leaves !

The holomophic setting, and a bit of algebraic geometry

If you hate compactly supported, and like sheaves, here is an equivalent definition on a smooth manifold ${\cal M}$:

Definition

A singular foliation on a smooth manifold M is a subsheaf

$$\mathcal{F}_{\bullet} : \mathcal{U} \mapsto \mathcal{F}_{\mathcal{U}}$$

of the sheaf \mathfrak{X}_{ullet} of vector fields on M such that

 $(\alpha) \ \mathcal{F}_{\bullet}$ is involutive,

 $(\beta) \,$ is a sub-sheaf of $\mathcal{C}^\infty_{\bullet}\text{-modules}$,

 (γ) is locally finitely generated.

The holomophic setting, and a bit of algebraic geometry

If you hate compactly supported, and like sheaves, here is the definition for a complex manifold M with holomorphic functions \mathcal{O}_{\bullet} .

Definition

A singular foliation on a smooth complex manifold M is a subsheaf

$$\mathcal{F}_{\bullet} : \mathcal{U} \mapsto \mathcal{F}_{\mathcal{U}}$$

of the sheaf \mathfrak{X}_{ullet} of vector fields on M such that

- $(\alpha) \ \mathcal{F}_{\bullet}$ is involutive,
- (β) is a sub-sheaf of $\mathcal{C}^{\infty}_{\bullet}$ -modules \mathcal{O}_{\bullet} -modules,
- (γ) is locally finitely generated forget (γ) , germs of holomorphic functions are Noetherian anyway

Towards a Definition	Examples and constructions •0	Singular foliations do admit leaves
Examples		

- Image through anchor map of a Lie algebroids :
 - Symplectic leaves of a Poisson structure,
 - Infinitesimal actions of Lie group actions.
- Vector fields tangent to a (reasonable) subset, or that "kill" prescribed functions.
- Vector fields vanishing at prescribed order at prescribed points.
- Representations.

Towards a Definition	Examples and constructions 0•	Singular foliations do admit leaves

Some natural operations

- Direct product,
- Pull-back through a transverse map. Includes :
 - Pull-back through submersions.
 - **@** Restriction to a transverse submanifold Σ (i.e. $T\Sigma + TF = TM$).
- O Push-forward (sometimes).
- Suspension through a symmetry.
- Blow-up along a leaf.

What are leaves? And why finitely generated

Definition

Let \mathcal{F} be a singular foliation on M. Choose $m \in M$

• the <u>R-leaf</u> through *m* is the set of points reachable from *m* by following finitely many flows of vector fields in \mathcal{F} .

We call T-leaf a submanifold L :

- containing m
- ② such that $T_x L = T_x \mathcal{F}$ for all $x \in M$
- and maximal among those.

Structure of the proof.

Proposition

The flow of a vector field in \mathcal{F} is a symmetry of \mathcal{F} .

Démonstration.

Setter proof tomorrow.

Theorem

Near a point m, a singular foliation is the direct product of :

- the singular foliation of all vector fields on \mathbb{R}^a , with $a = \dim(T_m \mathcal{F})$.
- Some singular foliation on R^b made of vector fields that vanish at 0.

Corollary

```
T-leaves = R-leaves form a smooth partitionifold.
```

Towards a Definition	Examples and constructions	Singular foliations do admit leaves
		000

Proposition

Let \mathcal{F} be a singular foliation.

- Travelling along a leaf is boring
- ② Every leaf has a transverse structure
- Which is unique
- And there is a Weinstein-splitting theorem.

Proposition

Let \mathcal{F} be a singular foliation.

- Two points on the same leaves have open neighborhoods on which *F* are isomorphic.
- ② Every leaf has a transverse structure
- Which is unique
- And there is a Weinstein-splitting theorem.

Proposition

- Let \mathcal{F} be a singular foliation.
 - Two points on the same leaves have open neighborhoods on which *F* are isomorphic.
 - e For Σ transverse to L, 𝔅_Σ is a singular foliation on a neighborhood of L ∩ Σ.
 - Which is unique
 - And there is a Weinstein-splitting theorem.

Proposition

- Let \mathcal{F} be a singular foliation.
 - Two points on the same leaves have open neighborhoods on which *F* are isomorphic.
 - e For Σ transverse to L, 𝔅_Σ is a singular foliation on a neighborhood of L ∩ Σ.
 - And any two such transverse singular foliations have isomorphic germs.
 - And there is a Weinstein-splitting theorem.

Proposition

Let \mathcal{F} be a singular foliation.

- Two points on the same leaves have open neighborhoods on which *F* are isomorphic.
- e For Σ transverse to L, 𝔅_Σ is a singular foliation on a neighborhood of L ∩ Σ.
- And any two such transverse singular foliations have isomorphic germs.
- And near any point m, F is a isomorphic to the direct product of the leaf by any representative of the transverse structure (Hermann, Nagoya, Cerveau, Dazord, Androulidakis-Skandalis, Garmendia-Villatoro).