Introduction to Singular Foliations (And mainly to its Geometry)

Camille Laurent-Gengoux

with R. Louis and L Ryvkin.

CRM, Barcelona, Poisson 2022

Table of content

Schedule :

- Tuesday : What are singular foliations?
- Wednesday : What structures do they hide ?
- O Thursday : exercises, symmetries of a subset.
- Friday : More structures they hide + open questions.

Where are we?

Definition

A bi-submersion over (M, \mathcal{F}) is a triple (M, s, t) where :

- X is a manifold,

such that

- ⓐ and $s^{-1}\mathcal{F} = t^{-1}\mathcal{F}$ coincides with the sheaf of sections of the form *X* + *Y* with *X* ∈ Γ(ker(*Ts*)) and *Y* ∈ Γ(ker(*Tt*)).

Bi-submersions over (M, \mathcal{F}) shall be denoted by $M \stackrel{s}{\leftarrow} X \stackrel{t}{\rightarrow} M$.

Example : Lie groupoids, anchored bundles.

Is it like Lie groupoids?

YES	NO
$\exists s, t, \epsilon$	There is no product nor inverse!
\exists inverse X^{-1}	Not an inner rule.
$\exists product \ X \circ Y$	Still not inner rule
Inner on fundamental atlases	But it is not a <u>real</u> inverse!
∃ Morita Equivalence	Not like Morita at all !
Bisections induce symmetries	\checkmark
A quotient is a groupoid	But not Lie!
Debord : on each leaf "Yes".	Not on transversal!

This is how **AS** holonomy Lie groupoid is defined.

Question

What does properness (or compactness) of the AS holonomy Lie groupoid implies? For instance, does it imply that, for any point, the transverse singular foliation is given by a linear action of a compact Lie group by isometries of a finite dimensional Euclidian space?

Even simpler :

Question

Does $\mathfrak{g}_m(\mathcal{F})$ compact Lie algebra implies it is a linear action of a compact Lie group ?

Origin : Cerveau, Conn, Zung, Crainic, Fernandes, Marcut (...)'s linearization results...

```
Question (A.-Zambon)
```

Is any singular foliation the image through the anchor map of a Lie algebroid ?

Even more basic.

Question

It the singular foliation of vector fields on \mathbb{R}^2 vanishing quadratically at 0 the image \cdots ?

A personal take :

- Probably not,
- Image: ...but it is not the good question.

Proposition

Most singular foliation admit a geometric resolution of finite length

+ Unique up to homotopy equivalence. The next theorem has a long story :

```
Theorem (CLG, Lavau, Strobl)
```

There is a Lie ∞ -algebroid on any one of these geometric resolutions, and any two are homotopy equivalent.

Call them universal Lie $\infty\text{-algebroid}$ of $\mathcal F$

Proposition

A locally real analytic singular foliation admit a geometric resolution of finite length on any relatively compact open subset.

+ Unique up to homotopy equivalence. The next theorem has a long story :

Theorem (CLG, Lavau, Strobl)

There is a Lie ∞ -algebroid on any one of these geometric resolutions, and any two are homotopy equivalent.

Call them universal Lie $\infty\text{-algebroid}$ of $\mathcal F$

Question (Lavau, CLG)

Is there a Maurer-Cartan equation in a DGLA that would classify deformations of a singular foliation ?

Question (Louis)

Can a Lie algebra action on an affine variety be extended to the ambient space ?

Question

(Open) What is the Molino-Atiyah class of a singular foliation and what is its geometrical interpretation ?

Question

How to classify neighborhood of leaves?

The regular case is too easy : only $\pi_1(L)$. Partial results by CLG and Ryvkin. Involves $\pi_n(L)$...

Question

What are the good cohomologies?