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Introduction

These notes are not finished. Please consider them as a draft. In particular:

1. Many citations are missing.

2. Many proofs are missing.

3. Notations are not yet 100 per cent consistent.

4. Among parts which are not written: Claire Debord’s proof of longitudinal smoothness,
Stepan-Sussmann theorem, proofs of existence in the construction of Androulidakis-Skandalis
holonomy groupoid, and some open questions.

Warning !
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Flying under radar: Singular foliations.
Singular foliations are so common in mathematics that they often go unnoticed.

Regular foliations have been long studied; The Frobenius theorem is taught quite early in the differ-
ential geometry curriculum. Holonomy (or ”first return”) is a very classical notion. In contrast, singular
foliations have never been studied with such an intensity. Still, there is a long story behind foliations
that have leaves which are not all of the same dimension:

1. As pointed by Sylvain Lavau [Lav18], the 1960’s saw an intense debate about finding a correct
definition of a singular foliation. The discussion led to some major discoveries by H. Hermann
(1962), T. Nagano (1966), P. Stefan (1970), H. Sussmann (1973)1. See [Her62]-[Nag66]-[Ste74]-
[Ste80]-[Sus73a]-[Sus73b].

2. Then the subject seems to have been slightly forgotten, or at least put aside. There were, still,
important contributions to the linearization problem by Dominique Cerveau [Cer79] (where ”sin-
gular foliations” appear under the name of ”involutive distributions”) in 1977, and Pierre Dazord
[Daz85], who defined a holonomy map for a singular leaf in 1984. There were other contributions
coming from complex geometry. Also, Poisson geometers knew that symplectic leaves of a Poisson
manifold, or Lie algebroid leaves, were a sort of ”singular foliation” [Lic77]-[Wei83], but, to our
knowledge, rarely saw it as such.

3. Then, starting in the 2000’s, a ”singular foliations renewal” arose from non-commutative geometry,
with pioneering and fundamental works by Iakovos Androulidakis, Claire Debord, and Georges
Skandalis in particular. It is unfair to summarize their contributions in one sentence, but since we
have to do so, let us claim that the main feat is the construction, by Androulidakis and Skandalis
[AS09], of a holonomy groupoid of a singular foliation, that extends holonomy groupoids of regular
foliations [MM03], and a smooth groupoid previously constructed by Claire Debord for projective
singular foliations [Deb01]. A theorem of crucial importance was also made by Claire Debord:
although Androulidakis-Skandalis holonomy groupoid is not smooth, it is longitudinally smooth
[Deb13a].

This holonomy groupoid, or more precisely its natural C∗-algebra, is used by this school to de-
fine elliptic pseudodifferential operators, their analytic indexes, to investigate its Baum-Connes
conjecture [AS19], Boutet de Monvel calculus [DS21] - in one word, to do analysis of singular
foliations.

The purpose of the present introduction is not to do analysis of singular foliations, although it is certainly
the most active topic at the moment. We are not competent in non-commutative geometry, in index
theorem and so on. Our purpose is to introduce to the geometry of a singular foliation.

Let us go back to the initial debate - in a very anachronistic manner: Should singular foliations be
seen:

(0) as level sets (called ”leaves”) of non-independent functions?

1. as a partition of a manifold into submanifolds?

2. as the data, at each point, of sub-spaces of the tangent space, (satisfying an involutivity condition)?

3. or as an involutive C∞(M)-module of vector fields morally thought to be tangent to the leaves?

Definition (0) (i.e. ”level set of non-independent functions”) is opposite to what we intend to study here:
leaves would not be manifolds, and even if we work within the context of algebraic geometry (so that
these level sets would be affine varieties) there is still a problem: exceptional leaves would be of bigger
dimensions than the ”regular” ones. Such partitions into affine varieties seem to have very few interesting
geometric properties. We do not claim that it is not interesting by itself, but this is clearly opposite to
what we are looking for.
Now, the three remaining points of view (1) partition into submanifolds, 2) distribution, 3) defined
through its tangent vector fields) have to be made more precise to yield a reasonable definition of a

1We refer to Sylvain Lavau’s excllent article [Lav18] for the historical aspects. [Lav18] can also be read as an introduction
to the subject.
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singular foliation. As we shall see in the first chapter, all of them allow counter-examples to properties
that we wish to be true. This does not mean that they have to be rejected, but they have to be made
precise.

We may dare to say that after that debate took place in the late 1960’s, only two definitions survived
to the XXI-st century:

(?) ”Consensus definition” A singular foliation is a sub-sheaf of the sheaf of vector fields which is stable
under Lie bracket, and under multiplication by a smooth function and locally finitely generated as
a module over smooth functions. 2.

(??) ”Variation” A singular foliation is a partition of a submanifold into leaves, such that through any
vector tangent to a leaf there is at least a vector field tangent to all leaves [Sus73b, DLPR12].

We will work with the first of these definitions, for the following reasons:

1. Definition (?) implies definition (??): Singular foliations in the sense of (?) do admit leaves which
are honest submanifolds and partition the manifold3 and the henceforth obtained partition satisfies
(ii),

2. the tangent spaces of these leaves form a (singular) involutive distribution,

3. it is -according to us- general enough to contain most interesting examples,

4. but it is restrictive enough to be able to prove strong results,

Singular foliations as in (??) may not admit a AS-holonomy groupoid (at least, this is not known).

5. (?) is used by a now well-established community of non-commutative geometers (Androulidakis,
Debord, Mohsen, Skandalis, Yuncken, Skandalis, Zambon - to cite a few) and some theoretical
physicists (e.g. Kotov, Strobl), while (??) is less commonly used [?, Miy21].

In conclusion: we will present the theory of singular foliations using Definition (?). We have no time to
detail here, but it would in fact not be a very different theory using Definition (??).

Are singular foliations worth studying?

Since we are given the opportunity to present our work to (mostly young) Poisson geometers, we have
to argue: is there a point in studying singular foliations?

First, whoever studies Poisson geometry will encounter a highly non-trivial singular foliation: the
symplectic leaves of a Poisson structure. But we claim more: whoever understands Poisson geometry has
understood objects which are more or less analogous to those used in the geometry of singular foliations.
Half of the way is behind you.

Below, we listed classical notion of Poisson geometry on the left, and its equivalent object in the
SF-theory on the left4: if you know what the left hand column is about, understanding the right hand
column should not be overly difficult.

2For those unfamiliar with or hostile to sheaves, this definition can be equivalently stated as: a locally finitely generated
involutive sub-C∞(M)-module of the module of compactly supported vector fields.

3and this is the least we can require to dare calling an object ”singular foliation”: leaves have to make sense!
4We use the abbreviations SF= Singular Foliations, AS =Androulidakis-Skandalis
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Notion in Poisson geometry The equivalent notion in Singular Foliation theory
Poisson manifold (M,π) Singular foliation F on M
Hamiltonian flow are Poisson diffeo. Flows of vector fields in F are symmetries of F
Weinstein’s splitting theorem Singular Foliations’ splitting theorem
Decomposition into symplectic leaves Decomposition into leaves
Transverse Poisson structure (of a leaf) Transverse singular foliation (of a leaf)
Poisson-Dirac reduction Induced SF on a transverse submanifold
Lie algebroid structure on T ∗M (easy) almost Lie-algebroid structures covering F

or (harder) universal Lie ∞-algebroids of F
Isotropy Lie algebra kerπ#

m at m ∈M (easy) isotropy Lie algebra of F at m
(harder) isotropy Lie ∞-algebra of F at m.

Poisson cohomology Longitudinal cohomology (easy)
Cohomology of the universal Lie ∞-algebroid (harder)

Symplectic realization Bi-submersions
Morita equivalences Equivalences of Bi-submersions

(arguably)
Symplectic Groupoid AS holonomy groupoid

But please do not be mistaken and think that singular foliations are simply a generalization of Poisson
geometry, like quasi-Poisson or Jacobi structures. The previous two-columns presentation is misleading:
some of the objects on the right hand side are much more involved than those in the left hand side -
although some are also easier. We therefore repeated the previous picture, but added comparison signs
>>>,>>,>,=, <,<<,<<< to indicate our (subjective) opinion about the difference in difficulty:

Notion in Poisson geometry The equivalent notion in Singular foliation theory
Poisson manifold (M,π) = Singular foliation F on M
Hamiltonian flow are Poisson diffeo. Vector fields tangent to F are symmetries of F
(This is almost trivial) << (This is really hard, at least in the smooth case,

Many existing proofs have gaps...)
Weinstein’s splitting theorem = Singular Foliations’ splitting theorem
Decomposition in symplectic leaves > Decomposition into leaves
Transverse Poisson structure (of a leaf) = Transverse singular foliation (of a leaf)
Poisson-Dirac reduction > Induced SF on a transverse submanifold
Lie algebroid structure on T ∗M > (easy) almost Lie-algebroid structures generating F

<< or (harder) the universal Lie ∞-algebroid of F
Isotropy Lie algebra kerπ#

m at m ∈M = (easy) isotropy Lie algebra of F at m
<< (harder) isotropy Lie ∞-algebra of F at m.

Poisson cohomology > Longitudinal cohomology (easy)
<< Cohomology of the universal Lie ∞-algebroid (harder)

Symplectic realization = Bi-submersions
Morita equivalences = Equivalences of Bi-submersions
Symplectic Groupoid AS holonomy groupoid
(This is often a smooth groupoid <<< (This is almost never a smooth groupoid,
at worst, a stacky groupoid) not even a stacky groupoid)

In particular, the AS holonomy groupoid is not like any Lie groupoid Poisson geometry has so far
produced. Its non-smoothness is at the origin of the subtle analysis developed by non-commutative
geometers. Although the AS holonomy groupoid is certainly the most studied aspect of singular foliation
at the present time [AS09]-[Deb13a]-[AS11]-[AS19]-[AZ13a], we will in fact say very little about it: these
notes are about geometry more than about analysis, while AS holonomy groupoid’s complex beauty is
better understood while trying to understand the meaning of notions in analysis in presence of a singular
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foliation.

To which area of mathematics do singular foliations belong to?
As we will see, singular foliations shall be defined as a sub-algebra F of vector fields, stable under the
Lie bracket and under multiplication by a function, and the leaf through a point m ∈ M shall be the
set of points reachable from m following the flows of vector fields in F . Those vector fields in F are,
heuristically, vector fields ”tangent to all leaves”. But there is an additional assumption in the consensus
definition: ”locally finitely generated”. Also the consensus definition works with compactly supported
vector field. Before dealing with those, we have to address a more fundamental question: in which area
of mathematics are we?

The present manuscript is mainly written having in mind the universe of smooth differential geometry.
But singular foliations do make sense in real analytic differential geometry, in complex geometry, and in
algebraic geometry as well. And we will try to deal with all three aspects altogether. For that purpose,
we will use the language of sheaves. The reader interested only in the smooth case may perfectly ignore
the word ”sheaf” and replace it by the corresponding global objects. For technical reasons, it is then
better to use ”compactly supported” objects. More precisely:

1. In real differential geometry, sheaves can be ignored, and singular foliations on a manifold M will
be defined as a locally finitely generated sub-C∞(M)-module of compactly supported vector fields
stable under Lie brackets.

2. In real analytic or holomorphic or algebraic settings, global objects may not exist, or it may be
that are too few of them. One has to work with the sheaf of vector fields, and it does not make
sense to consider compactly supported vector fields any more.

However, the rings of germs of real analytic, holomorphic or regular functions being Noetherian,
the ”locally finitely generated” assumption is always satisfied and can therefore be omitted. A
singular foliation is then simply a sub-sheaf of the sheaf of vector fields stable by multiplication
under a function and stable under Lie bracket.

3. In smooth, real analytic or complex settings, singular foliations induce a partition of M into leaves
which are smooth, real analytic or complex submanifolds respectively. This is not true anymore
in algebraic geometry: the ”leaves” are not algebraic sub-varieties. This is highly related to the
well-known fact that the flow of a polynomial vector field is a real-analytic or holomorphic map
but not a polynomial map in general.

Again, although we will deal with real analytic or holomorphic or algebraic settings, we will mostly
take the smooth differential geometry point of view. Also, we will assume that the reader knows every-
thing about differential geometry: classical or less-classical theorems about flows of vector fields will be
mostly left to the reader, and only those specific to singular foliations shall be detailed.

Conventions

Throughout these whole notes: manifolds shall be separated and second countable, X stands for the sheaf
of vector fields on a manifold M . Compactly supported vector fields shall be denoted by Xc(M). Smooth
functions shall be denoted by C. For holomorphic or polynomial functions, we shall use the symbol O.

Also, for X a vector field on M or e a section of a vector bundle E →M , we denote by X|m and e|m
their value at a point m ∈M .

Sections over an open subset U ⊂M of a vector bundle E →M shall be denoted by ΓU (E).
Restrictions to an open U ⊂M or ”any-mathematical-notion-N -that-restricts” will often be denoted

by i∗UN .
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Chapter 1

What is a singular foliation ?

1.1 Naive and less naive attempts of a definition of a singular
foliation

In order to understand the geometric ideas behind the consensus definition of a singular foliation, let us
make a list of definitions that are natural, but turned out to be mostly dead ends. This chapter is widely
inspired by Sylvain Lavau’s ”A short guide through integration theorems of generalized distributions”
[Lav18], and by Iakovos Androuilidakis and Marco Zambon’s ”Stefan-Sussmann singular foliations, sin-
gular subalgebroids, and their associated sheaves” [AZ16]. [].

1.1.1 Is a singular foliation simply a partition by smooth manifolds?

A regular foliation partitions a manifold into submanifolds, all of the same dimension. As a consequence,
the most natural idea that comes in mind when trying to make up a definition of a singular foliation is to
try to define them as being a a disjoint union of submanifolds called ”leaves” - now of varying dimension.
This perfectly makes sense, but let us give it an other name.

Definition 1.1.1: A first attempt to define singular foliations: partitionifolds

Let M be a manifold. A partitionifold of M is a partition of M into connected immersed sub-
manifoldsa, called leaves.

aFrom now on, ”submanifold” means by default ”immersed submanifolds”.

Partitionifolds are such a general object that -as far as we know- nothing interesting can be said
about them. Still, we will see that properly defined singular foliation induce a partitionifold of M , but
it is certainly not its definition.

Notation 1.1.2: To a point, we associate its leaf

A partitionifold on a manifold M shall be denoted as a map:

L• : M → {Submanifolds of M}
m 7→ Lm

that assigns a point m ∈ M to the submanifold in the partition to which it belongs. Also, for all
m ∈M , Lm shall be called the leaf through m.

Below are two examples of partitionifolds that we not wish to allow as being decent ”singular folia-
tions”.
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Example 1.1.3. The magnetic partition is an example of partitionifold that behaves badly, although it
is ”regular” in the sense that all its leaves have the same dimension. It is given as follows:

These can be seen as being the lines of a magnetic field generated by an electric current in the red circle,
to which the red circle itself is added. The problem with this partitionifold is that

1. all leaves have dimension 1 (they are all circles, except for one straight line),

2. but it is not a regular foliation in a neighborhood of the red circle.

French speakers may also look at the Agrégation de Mathématiques of 1998, ”Sujet de mathématiques
générales”: Its first part is dedicated to the construction of a partitionifold on R3 whose leaves are all
circles.

�

Example 1.1.4. ”Isolated lasagna in a dish of spaghetis”. Consider the partitionifold on M = R3 whose
leaves are defined to be:

1. The plane z = 0 (the ”isolated lasagna” in red). This is the only leaf of dimension 2.

2. All the straight lines (the ”spaghettis” in black) parallel to the x-axis (in red) and not contained
in the plane z = 0.

�

To explain why partitionifolds are too large a class to deserve to be called singular foliations, let us
introduce a very natural sub-space (in fact, sub-sheaf) of the sheaf of vector fields.
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Notation 1.1.5: Vector fields tangent to every leaves

Let L• be a partitionifold on M . We denote by T(L•) ⊂ X(M) the sub-sheafa of vector fields
tangent to all leaves, i.e. such that X|` ∈ T`L` for all ` in the open space on which X is defined.
We call such vector fields tangent to L• at all points or simply tangent to the partitionifold.

aThe reader unfamiliar to sheaves could define instead T(L•) to be the sub-spaces of compactly supported
vector fields satisfying X|` ∈ T`L` for all ` ∈ M . Sheaves are only necessary while working within the framework
of complex or real analytic geometry.

Paritionifolds are too general an object to satisfy many properties, but here is at least a result that
they satisfy:

Proposition 1.1.6: Can not jump from leaves to leaves

Let L• be a partitionifold on M . An integral curve γ(t) of a vector field X ∈ T(L•) ⊂ X(M) is
always contained in one leaf.

Proof. There is a difficulty: a vector field X may be tangent to a submanifold L ∈ M but its flow may
not preserve it (for instance, consider the Euler vector field on M = Rn, and let L be any open ball
entered at 0).

In the present situation however, we are given a vector field X is tangent to L• at all points. This
implies that any integral curve t 7→ γ(t) of X is ”locally lies in the same leaf”, i.e. for any t0 there is
ε > 0 such that Lγ(t) = Lγ(t0) if |t− t0| < ε. Since intervals are connected sets and L• form a partition
of M , the integral curve γ must be in one leaf on its full domain.

Remark 1.1.7. It is clear that for any partitionifold L• on M , and any open subset U ⊂ M , a parti-
tionifold on U is obtained by mapping m ∈ U to the connected component of m in Lm ∩ U .

We denote by i∗UL
• this partitionifold and call it restriction to U of L•.

Given partitionifolds L• on M and L′• on M ′, we call isomorphism from L• to L′• a diffeomorphism
φ : M →M ′ such that φ(Lm) = φ(L′φ(m)) for all m ∈ L. When M = M ′ and L• = L′•, we shall speak of
a symmetry of L•.

Proposition 1.1.8: Flows are symmetries

Let M be a manifold equipped with a partitionifold L•. The flow at time t of a complete vector
field X ∈ T(L•) tangent to all leaves is a symmetry of L•.
More generally, for a maybe non-complete vector field X ∈ T(L•) tangent to all leaves, its flow
φXt at time t, provided it is well-defined on some open subset U ⊂ L, is a isomorphism from the
restriction of L• to U to the restriction of L• to φXt (U).

Proof. The first part of Proposition 1.1.8 is a consequence of the second one. We therefore only prove
the second part and use notations of Remark 1.1.7. Consider two points m0,m1 ∈ U that are in the same
leaf of i∗UL•, and therefore in the same leaf L of L•. There is a smooth path m : [0, 1]→ U starting from
m0 and arriving at m1 which is entirely contained in L∩U . Since integral curves can not jump from one
leaf to an other one by Proposition 1.1.6, for every u ∈ [0, 1], s ∈ [0, t], non-finitely-many 7→ φXs (m(u)) is
valued in the leaf L. In particular, the curve

u 7→ φXt (m(u))

is entirely contained in L. It is also contained in φXt (U). Hence φXt (m0) and φXt (m1) are in the same
leaf of i∗

φXt (U)L•. This proves the claim.
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For L• a partitionifold on L, and S ⊂M a submanifold, we can associate to every s ∈ S the connected
component (Ls ∩ S)0 of s in the intersection Ls ∩ S. The map

S → {Connected subsets of S}
s 7→ (Ls ∩ S)0

may not be a partitionifold: it is valued in connected subsets, but not in smooth manifolds. However,

Proposition 1.1.9: Restriction to a submanifold

Let M be a manifold equipped with a partitionifold L•. For every submanifold S ∩M such that

TsS + TsLs = TsM, (1.1)

the connected component (Ls ∩ S)0 of s ∈ S in L ∩ S is a submanifold of S. In particular,
s 7→ (Ls ∩ S)0 is a partitionifold of S.

Proof. It is a classical result of differential geometry that Ls ∩S is a submanifold in S provided that the
tangent spaces of Ls and S add up to the tangent space of the ambiant manifold M at all points.

Notation 1.1.10: How to denote a restriction?

Let M be a manifold equipped with a partitionifold L•. A manifold S satisfying (1.1) shall be
called transverse to L•. We denote by i∗SL• the partitionifold on S as in Proposition 1.1.9 and
call it restriction of L• to M

Remark 1.1.11. Since open subsets of M are transverse to any smooth partitionifold L• on M , the
terminology and notations of Remark 1.1.7 match the previous conventions.

We now suggest a second notion that we claim could be the definition of a singular foliation: it is
still not the consensus definition, but we are getting closer from a workable notion. It is in fact enough
for certain purposes and is used in [Miy21, DLPR12, Sus73b].

Definition 1.1.12: A more subtle attempt: smooth partitionifolds

A partitionifold L• is said to be smooth if for every ` ∈ M and every tangent vector u ∈ T`L` ,
there exists a vector field X through u which is tangent to all leavesa.

ai.e. X|m ∈ TmLm for all m ∈M

Said differently, a partitionifold is smooth if and only if, for every ` ∈M , the evaluation map

T(L•) → T`L`
X 7→ X|`

is a surjective linear map.
Let us start by a non-example.

Exercice 1.1.13. Show that neither the ”magnetic partition” (Example 1.1.3) nor the ”isolated lasagna
in a spaghetti dish” (Example 1.1.4) are smooth partitionifolds.

�

Here is a second non-example.
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Exercice 1.1.14. Consider the partitionifold on R2, with coordinates x, y whose leaves are the graph of
the function fλ : x 7→ λ (th( 3

√
x) + 1) with λ ∈ R. For each value of λ, the graph of fλ is a smooth1

submanifold of dimension 1 in R2.
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Show that this partitionifold of R2 is not smooth. Hint: consider a neighborhood of (0, 0) and use the
fact that the tangent space of L(0,y) is for all y 6= 0 a vertical straight line.

�

Smooth partitionifolds behave much better than partitionifolds, as we will briefly show by giving
several reasonable theorems that they satisfy.

The first interest of these results is that for a smooth partitionifold L•, along a given leaf, L• ”always
looks the same”.

Theorem 1.1.15: Along a leaf, landscape is always identical

Two points on the same leaf of a smooth partitionifold L• have neighborhoods where the restrictions
of L• are isomorphic.

Theorem 1.1.15 is then an immediate consequence of Proposition 1.1.8 together with the following
lemma, the proof of which is left to the reader.

Lemma 1.1.16. Given any two points x, y on the same leaf L of an smooth partitionifold L•, there exists
a finite number of complete vector fields X1, . . . , Xn ∈ T(L•) (i.e. vector fields tangent to all leaves) such
that if we apply successively the flows at time 1 of X1, . . . , Xn to the point x, we obtain the point y.

The following proposition means that singular leaves have smaller dimensions than regular ones:

Proposition 1.1.17: The dimension of the leaf is lower semi-continuous

Let M be a manifold equipped with an smooth partitionifold L•, the function:

M → N0
m 7→ dim(Lm)

is lower semi-continuousa.
aI.e. for all k ∈ N0, {m ∈M | dim(Lm) ≥ k} is an open subset in M

Proof. Let us choose a point m0 ∈M , let r be the dimension of the leaf through Lm0 , and let (e1, . . . , er)
be a basis of Tm0Lm0 . By assumption, there exist r vector fields X1, . . . , Xr through (e1, . . . , er), defined
in a neighborhood U of m0 and tangent to all leaves. They are therefore independent at each point of a
sub-neighborhood U ′ ⊂ U , so that dim(Lm) ≥ r for all m ∈ U ′.

Let L a leaf of a smooth partitionifold L•. A pointed submanifold (Σ, `) that intersect L at ` (i.e.
Σ ⊂M is a submanifold and ` ∈ Σ ∩ L) is said to be transverse to L if

T`Σ⊕ T`L = T`M.
1Even if fλ is not a smooth function at x = 0 for λ 6= 0, its graph is a smooth submanifold of dimension 1 in R2.
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Lemma 1.1.18. Any pointed submanifold (Σ, `) transverse to a leaf L admits a neighborhood of ` on
which is it transverse to L•.

Proof. Let X1, . . . , Xk ∈ T(L•) be vector fields tangent to all leaves whose evaluations at ` form a basis
of T`L. There exists a neighborhood of ` is Σ into which

TσΣ⊕ 〈X1
|σ , . . . , X

k
|σ 〉 = TσM.

This implies TσΣ + TσLσ = TσM , which is precisely the definition of a transverse submanifold.

In particular, for any pointed submanifold (Σ, `) transverse to a leaf L, there exists a neighborhood
U of ` in M such that the restriction i∗Σ∩UL• is a smooth partitionifold, that we call a transverse
partitionifold of the leaf L.

Corollary 1.1.19: The germ of a slice transverse to a leaf

Let M be a manifold equipped with an smooth partitionifold L•. Any two transverse partitionifolds
of a given leaf L have neighborhoods on which their restrictions are isomorphic a.

aMore precisely, for any two pointed submanifolds (Σ1, `1) and (Σ2, `2) transverse to the same leaf L, there
exists neighborhoods U1 ⊂ Σ1,U2 ⊂ Σ2 of `1, `2 and an isomorphism

i∗Σ1∩U1
L•

∼ // i∗Σ2∩U2
L• .

This theorem implies that it makes sense to speak of the local transverse model of a leaf L of a smooth
partitionifold.

We will have very similar theorems for singular foliations. Hence we simply decompose the proofs
into exercises.

Again, we will see that singular foliations induce an smooth partitionifold, but this class is still too
large. The following example illustrates two an oddity that we want to avoid.
Exercice 1.1.20. ”Vector fields tangent to the leaves are not finitely generated”. On M = R, consider the
partitionifold whose 0-dimensional leaves are {1}, { 1

2}, {
1
3}, . . . , {

1
n}, . . . and {0} and whose 1-dimensional

leaves are the open intervals bounded by these points. Show that vector fields tangent to L are not a
finitely generated module over C∞(M), and that there is no neighborhood U of 0 on which such vectors
form a locally finitely generated C∞(U)-module.

Question 1.1.21: Are smooth partitionifolds a good definition of singular foliations?

It is fine, but it not so widely used, and it has some limitations, see, e.g. exercice 1.1.20. However,
the theory would not be so different from the one we will develop with the consensus definition.

As a consequence, we will try a new manner to define foliations with leaves of non-constant dimensions:

1.1.2 Is a singular foliation an involutive distribution?
A regular foliation may be defined as being an integrable sub-vector bundle D ⊂ TM . It is therefore
tempting to allow the fibers of the vector bundle D to be of non-constant dimension, as long as its
sections are closed under the Lie bracket of vector fields:

Definition 1.1.22: Integrable singular distributions

A singular distribution on a manifold M is a map D associating to a point m ∈ M a subspace
Dm ⊂ TmM . A singular distribution D is said to be:

1. involutive when [Γ(D),Γ(D)] ⊂ Γ(D), where Γ(D) ⊂ X(M) is the C∞(M)-module of vector
fields X such that Xm ∈ Dm for all m ∈M .

2. integrable when there exists a partitionifold L• such that for all m ∈M , TmLm = Dm.
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Exercice 1.1.23. Show that for any partitionifold L• on M , the map

D : m 7→ TmLm

is an involutive and integrable singular distribution.
Exercice 1.1.24. Let M be a manifold and m0 a point. Show that the map

m 7→
{
Tm0M if m = m0
0TmM if m 6= m0

is an involutive but non-integrable singular distribution. (Here, 0E stands for the zero element of a vector
space E).

Let us have a discussion about leaves. There is a natural manner to define leaves for a singular
distribution D, even if it is not integrable. Consider the equivalence relation on M generated by the
relation x0 ∼ x1 if there exists a path of class C1 such that

x(0) = x0, x(1) = x1 and d

dt
x(t) ∈ Dx(t) and d

dt
x(t) 6= 0. (1.2)

Equivalently, one could define an equivalence relation as follows: call integral submanifold of D a sub-
manifold Σ such that TσΣ ⊂ Dσ for all σ ∈ Σ. We could then consider the equivalence relation generated
by the relation x0 ∼ x1 if there exists an integral submanifold containing both x0 and x1. The classes
of this equivalence relation can not decently be called leaves, because they are not submanifolds, as seen
in the following exercice.
Exercice 1.1.25. Here is an example (the ”trumpet foliation”) of an involutive singular distribution for
which one class of the equivalence definition (1.2) is not a manifold. Take M = R2 with coordinates
(x, y). Let k(x) = e−1/x for x > 0 and k(x) = 0 for x ≤ 0. Divide R2 in three zones:

North := {y ≥ k(x)},Middle := {x > 0 and − k(x) < y < k(x)}, South := {y ≤ −k(x)}

Define a singular distribution by:

Dm =

 〈(1, k′(x))〉 for m ∈ North
TmR2 for m ∈Middle

〈(1,−k′(x))〉 for m ∈ South

1. Show that D is involutive (but not integrable).

2. Show that the equivalence class of (0, 0) is {y = 0} ∪Middle.

It is clear that we have to avoid situations like the one in Exercice 1.1.24, as well as the tangent spaces
of the partitionifolds of Examples 1.1.3 and 1.1.4 (”magnetic foliation” or ”isolated lasagnas”). For that
purpose, we will impose a second condition, similar to Definition 1.1.12 of smooth parititionifolds.

Definition 1.1.26: Smooth singular distributions

A singular distribution D is said to be smooth if for every point m ∈M and u ∈ Dm, there exists
a vector field X ∈ Γ(D) through u.
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Exercice 1.1.27. Let L• be a smooth partitionifold of M . Consider the singular distribution DL : m 7→
TmLm.

1. Show that it is integrable and involutive,

2. and smooth

3. and that the flow of any section in Γ(DL) preserves DL.

Exercice 1.1.28. For an involutive and integrable smooth distribution, show the classes of the equivalence
relation (1.2) are precisely the leaves of L•

The two exercices above seem to indicate that smooth involutive singular distributions are a ”good”
notion.

There is however a type of counter-example which is quite annoying:
Exercice 1.1.29. Here is an integrable distribution, the ”infinite comb”, that will be a source of several
counter-examples. Consider on M = R2 with variables (x, y) the singular distribution given by

D(x,y) =
{

〈 ∂∂x 〉 if x ≤ 0 i.e. ”Dimension 1 in the black zone - and horizontal.”
〈 ∂∂x ,

∂
∂y 〉 if x > 0 i.e. ”Dimension 2 in the red zone.” (1.3)

1. Show that the singular distribution D is smooth.

2. Show that the singular distribution D is involutive.

3. Show that any two points in R2 are in the same equivalence class of the relation 1.2.

4. Show that it is not integrable.

The last exercice shows that smooth involutive singular distributions may not be integrable. Another
issue of the notion of smooth integrable distribution is that the flow of a complete vector field in Γ(D)
may not be a symmetry of D. Again, the infinite comb is a counter-example:
Exercice 1.1.30. Show that the vector field ∂

∂x belongs to D but that its flow does not preserve D.
Stefan-Sussmann theorems is a way out of these counter-examples.
Theorem 1.1.31: Stefan-Sussmann Theorem (1973) [Ste74]-[Ste80]-[Sus73a]-[Sus73b]-

[DLPR12]

Let D be an involutive smooth distribution on a manifold M . The following items are equivalent:

(i) D is integrable.a

(ii) There exists a C∞(M)-module F of vector fields such that:
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(a) F generates D. b

(b) The flow φXt of any vector field X ∈ F preserves D. c

aI.e. there exists a smooth partitionifold L• such that TmLm = Dm at all points m ∈M .
bI.e. for all m ∈M and u ∈ Dm, there exists X ∈ F with X|m = u.
cI.e. φXt (Dm) = DφX

t
(m) for all m ∈ M,X ∈ F , t ∈ R for which the flow is well-defined in a neighborhood of

m.

It has been proven by [DLPR12] for any involutive smooth singular distribution, F ⊂ Γ(D) in the
above theorem can be assumed to be locally finitely generated over smooth functions. In the next section,
we will see that ”locally finitely generated” together with ”closed under Lie bracket” are the conditions
required for the modern ”consensus definition” of what a singular foliation should be.

Let us conclude this section:

Question 1.1.32: Are involutive smooth singular distributions a good notion of sin-
gular foliations?

No, it is not!
Foliations should have leaves, and there is an issue with the notion of leaves. See discussion about
infinite combs, which are not integrable.
However, with an additional condition on flows, Stefan-Sussmann Theorem 1.1.31 grants integra-
bility. But this condition is hard to check in a concrete manner.

1.2 The consensus definition: Singular foliations through vector
fields

Singular foliations may be seen as a subspace F of vector fields, subspace assumed to ”behave like” vector
fields tangent to the leaves of a partition of M by submanifolds. Notice that if what is given is a space
of vector fields, satisfying some conditions, leaves are therefore not a priori given in the definition, and
existence of leaves will be a theorem.

1.2.1 The smooth case
We now give the consensus consensus definition as it emerges nowadays in non-commutative geometry
when the manifold is smooth. We denote by Xc(M) the space of compactly supported vector fields on
M . It is a module over the algebra C∞(M) of smooth functions.

Definition 1.2.1: The consensus definition of a smooth singular foliation

A singular foliation on a smooth manifold M is a subspace F ⊂ Xc(M) which

(α) is involutive,

(β) is stable under multiplication under C∞(M),

(γ) is locally finitely generated.

If only the first two conditions are satisfied, then we speak of an Lie-Rinehart subalegbraa (of the
Lie-Rinehart algebra of vector fields).

a(In fact, generic Lie-Rinehart subalgebras of vector fields behave very badly in the smooth case and there is
not much to say about them: We mainly need them for the complex case, and for pedagogical reasons in order to
explain why we impose condition γ.)
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Let us spell out Definition 1.2.1 item by item.

α ”F is involutive” means
[F ,F ] ⊂ F

where [·, ·] stands for the bracket of vector fields. In words, F is a sub-Lie algebra of the Lie algebra
of compactly supported smooth vector fields on the manifold M .

β ”F is stable under multiplication under C∞(M)” means that for all F ∈ C∞(M), X ∈ F , FX ∈ F .
In algebraic terminology, it means that F is a C∞(M)-sub-module of the C∞(M)-module Xc(M)
of compactly supported vector fields.

γ The meaning of ”F is locally finitely generated” has to be made very precise. It means that for
any point m ∈ M , there exists a finite family X1, . . . , Xr ∈ F and an open neighborhood U such
that for every X ∈ F , there exists f1, . . . , fr ∈ C∞(M) satisfying

X|x =
r∑
i=1

fi(x) Xi
|x for all x ∈ U .

Let us justify Definition 1.2.1 item by item. Now that we have explained the meaning of the
three items, let us explain why one imposes this definition.

1. Why compactly supported vector fields?

Let M be a non-compact manifold. The following C∞(M)-modules:

(a) compactly supported vector fields on M ,
(b) all smooth vector fields on M (compactly supported or not).

are different as modules over C∞(M). But we do not wish to distinguish them. They obviously
have the same leaf (M itself), and they have the same local behaviour. Hence, it is reasonable to
impose all vector fields to be compactly supported. An other possible definition involves sheaves,
as we will see later.

2. Why assuming α, i.e. F integrable ? If two vector fields X,Y are tangent to a submanifold L, so
is its bracket. Since F must be thought of as being a replacement of vector fields tangent to the
leaves of a smooth partitionifold L•, it makes sense to require [F ,F ] ⊂ F .

3. Why assuming α? Because, obviously, if X is tangent to all leaves in a partitionifold L•, so is FX
for all smooth function F .

4. Why assuming γ, i.e. ”locally finitely generated”? The idea is to avoid weird counter-examples as
the infinite comb. Imposing locally finitely generated guaranties that leaves will make sense. This
is the topic of a subsequent section.

The next exercice is crucial, for quite a few singular foliations are defined as families X1, . . . , Xr that
satisfy one the equivalent conditions listes there.
Exercice 1.2.2. Let M be a compact manifold, and let X1, . . . , Xr ∈ X(M) be vector fields. Show that
the following three items are equivalent:

(i) The C∞(M)-module generated by X1, . . . , Xr is a singular foliation,

(ii) There exists functions cki,j ∈ C∞(M), with i, j, k ∈ {1, . . . , r}3, such that

[Xi, Xj ] =
n∑
k=1

ckijXk

for all i, j ∈ 1, . . . , r.

20



(iii) There exists functions cki,j ∈ C∞(M), with i, j, k ∈ {1, . . . , r}3 satisfying

ckij = −ckji and [Xi, Xj ] =
n∑
k=1

ckijXk

for all possible indices.

Exercice 1.2.3. For F a singular foliation on M and V ⊂M an open subset, call FV the C∞(V)-module
generated by the restrictions to V of vector fields in F . Show that the map F• : V 7→ FV

1. is a sheaf on M ,

2. that coincides with the sheaf of vector fields that coincide, in a neighborhood of each point, with
a vector field in F .

Here is a lemma, whose proof is left to the reader:

Lemma 1.2.4. Let F be a singular foliation. For every point m ∈M , there exists X1, . . . , Xr ∈ X and
an open neighborhood U of m in M and such that for any V ⊂ U , FV is generated over C∞(V) by the
restriction to V of X1, . . . , Xr ∈ X(U).

Proof. This is an immediate consequence of Exercice 1.2.3.

1.2.2 Smooth singular foliations: a sheaf definition
The use of compactly supported global vector fields is conceptually easy, but some reader may prefer to
use sheaves. Let us give a definition of singular foliations, equivalent to the previous one, and that uses
the notion of sheaves. In this section, let us denote by

X• : U −→ X(U) and C∞• : U −→ C∞(U)

the sheaves of vector fields and smooth functions on the manifold M .

Definition 1.2.5: The consensus definition of a smooth singular foliation, version 2,
with sheaves

A singular foliation on a smooth manifold M is a subsheaf

F• : U 7→ FU

of the sheaf X• of vector fiels on M such that

(α) F• is involutive,a

(β) is a sub-sheaf of C∞• -modules,b

(γ) is locally finitely generated (See below).
aI.e. [FU ,FU ] ⊂ FU for all open subset U ⊂M .
bI.e. C∞(U)FU ⊂ FU for all U ⊂M .

For sheaves of modules over functions, the meaning of locally finitely generated needs to be made
more precise: here we mean that every point admits an open neighborhood U on which there exists
X1, . . . , Xd ∈ FU such that for every V ⊂ U , the restrictions of X1, . . . , Xd to V generate FV as a
C∞(V)-module.

Let us compare it with
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Proposition 1.2.6: No difference!

Let M be a smooth manifold. There is a one to one correspondence between:

(i) Singular foliations defined as in Definition 1.2.1.

(ii) Singular foliations defined as in Definition 1.2.9.

Proof. The correspondence (i) 7→ (ii) consists, given F as in Definition ??, in considering the sheaf of
vector fields that coincide locally with an element in F , see Exercice 1.2.3.

The correspondence (ii) 7→ (i) consists in considering global compactly supported section of the sheaf
in Definition 1.2.9.

The previously described maps are easily checked to be inverse one to the other.

1.2.3 Singular foliations on complex or real analytic manifolds
For complex manifolds, singular foliations have to be defined through sheaves - essentially because almost
all differential geometric objects have to be defined through sheaves, since there is no or few globally
defined functions, vector fields and so on.

In this section, we fix M a complex or real analytic manifold, and denote by O• its sheaf of holomor-
phic or real analytic functions. For the reader not used to sheaves, it means that for any open subset
U ⊂M , we denote by OU the C-algebra of holomorphic C-valued functions on U .

In view of the smooth case, it would be tempting to define a complex singular foliation on the complex
manifold M to be a sub-sheaf F• of the sheaf X• of holomorphic vector fields on M which is is involutive,
stable under multiplication by O• and locally finitely generated as a module over O•. This definition
is perfectly correct, but the last assumption can in fact be dropped, in view of the following classical
theorem:
Theorem 1.2.7. [Tou68] Germs of holomorphic (resp. real analytic) functions near O ∈ Cn (resp. Rn)
form a Noetherian ring.

In a chart neighborhood U of a point m ∈ M , with coordinates z1, . . . , zd, holomorphic vector fields
decompose as sums

d∑
i=1

fi(z1, . . . , zd)
∂

∂zi

with f1, . . . , fd being C-valued holomorphic functions on U . This means that, as a module over holomor-
phic functions, holomorphic vector fields of U decomposes as

XU ' OU ⊕ · · · ⊕ OU︸ ︷︷ ︸
d terms

(with d the dimension of the manifold). Consider now the germs Om of holomorphic functions at m.
Considering the germs in

Om ⊕ · · · ⊕ Om︸ ︷︷ ︸
d terms

of all elements in X ∈ FV for V ⊂ U . The henceforth obtained sub-module is finitely generated over
Om by Theorem 1.2.7. This does not imply that any submodule FU ⊂ XU is finitely generated. But
this implies that there is a second neighborhood V ⊂ U on which there exist r holomorphic vector
fields X1, . . . , Xr such that any X ∈ FU is a linear combinaison of them in a neighborhood of m. As a
consequence, the assumption ”locally finitely generated” can be removed.

Definition 1.2.8: The consensus definition of a complex singular foliation

A singular foliation on a complex (or real analytic) manifold M is a subsheaf F of the sheaf X(M)
which
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(α) involutive,

(β) stable under multiplication under O•.

This definition can be adapted immediately to the real analytic setting - we leave it to the reader.

1.2.4 Singular foliation on an affine complex variety

Consider a (maybe non-irreducible) affine variety W ⊂ Cn. Let denote by On the algebra of polynomial
functions in n-variables, by IW ⊂ On the ideal if functions vanishing on W . We call functions on W the
quotient ring OW := On

IW . We call vector fields on W and denote by XW the OW -module of derivations
of OW . It is equipped with the commutator as a Lie bracket.

Again, OW is a Noetherian ring, and XW is a OW -module of finite rank, so that any sub OW -module
is finitely generated. The assumption ”locally finitely generated” is therefore useless in that context, and
we suggest the following definition.

Definition 1.2.9: The consensus definition of a algebraic singular foliation

A singular foliation on an affine variety W is a sub-OW -module F of the sub-OW -module of XW
which

(α) is involutive,

(β) is stable under multiplication under OW .

Notice that the definition does not make reference to the ambient space.
For schemes, or affino-projective varieties, again, the use of sheaves will be necessary, but the as-

sumption of ”locally finitely generated” can be dropped, since affine varieties are the local model.

Exercice 1.2.10. Write the definition of a singular foliation on a scheme.

1.2.5 Abstract singular foliation on a commutative algebra.

There is purely algebraic definition of what a singular foliation is. Let O be a commutative unital algebra
(which may be thought of as being an algebra of ”functions” - whatever it means).

Definition 1.2.11: Algebraic singular foliations

A sub-O-module F of Der(O) is said to be an algebraic singular foliation if:

1. F is a stable under the Lie bracket of Der(O),

2. and is finitely generated as an O-module.

It is said to be an involutive O-module if it only satisfies the first condition.

Exercice 1.2.12. If the algebra O is (i) finitely generated and (ii) Noetherian, then every involutive
O-sub-module of derivations of O is a singular foliation.

The definition above makes sense, in particular, in algebraic geometry, in order to define algebraic
singular foliations on Kn or on an affine variety of Kn. They can even be used to make sense of singular
foliation on any ideal (not attached to an affine variety).
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Definition 1.2.13

A singular foliation on an ideal I ⊂ O is a locally finitely generated sub-O/I-module F of the
sub-O/I-module of Der(O/I) which

(α) is involutive,

(β) is stable under multiplication under O/I.

1.2.6 Globally finitely generated singular foliations
There has been a lot of discussions about the limits and sense of the ”locally finitely generated” condition.
But quite a few singular foliations are in fact globally finitely generated.

Let M be a smooth, complex or real analytic manifold induced by an affino-projective variety. Let
U 7→ OU be the relevant ring of functions in any of these contexts.

Although we needed adaptations to define singular foliations, globally finitely generated can be defined
in the same manner in all contexts.

Definition 1.2.14: A common definition

A singular foliation F on a manifold M is said to be finitely generated if there exists vector
fields X1, . . . , Xr such that for every open subset U ⊂M , FU is the OU module generated by the
restrictions to U of X1, . . . , Xr.

Remark 1.2.15. Notice that we do not assume, in the smooth case, X1, . . . , Xr to be in F since they
may not be compactly generated. When singular foliations are seen as sheaves, X1, . . . , Xn belongs to
FM .

Remark 1.2.16. Let F be a singular foliation on M . Every point m ∈M has a neighborhood on which
it is finitely generated.

For a globally finitely generated singular foliation F , and any choice of generators X1, . . . , Xr, we
call a choice of Christoffel symbols of F with respect to X1, . . . , Xr a family (ckij)ri,j,k=1 such that

[Xi, Xj ] =
r∑

k=1
ckijXk.

Since there are, in general, relations between the generators X1, . . . , Xk, the Christoffel symbols ckij
are not unique.
Exercice 1.2.17. Let X1, . . . , Xr be generators of a finitely generated singular foliation F , and (ckij)ri,j,k=1
a choice of Christoffel symbols of F with respect to X1, . . . , Xr.

1. Show that (
ckij − ckji

2

)r
i,j,k=1

is again a choice of Christoffel symbols of F with respect to X1, . . . , Xr.

2. Show that, without any loss of generality, Christoffel symbols of F with respect to X1, . . . , Xr can
be assumed to satisfy ckji = −ckij for all possible indices.

Exercice 1.2.18. The ”non-finitely-many” singular foliation - an example due to Iakovos Androulidakis
and Marco Zambon. On M = R2, call F the space of all vector fields X ∈ X(R2) that vanish at order n
at the point of coordinates (n, 0). I.e. vector fields of the form:

X = f(x, y) ∂
∂x

+ g(x, y) ∂
∂y
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such that for all a, b, n ∈ N0 such that a+ b ≤ n:
∂a+bf

∂xa∂yb

∣∣∣∣
(0,n)

= ∂a+bg

∂xa∂yb

∣∣∣∣
(0,n)

= 0.

A representation of the ”non-finitely-many” singular foliation.
Show that
1. F is an integrable distribution.

2. F is locally finitely generated.

3. F is not globally finitely generated.

4. F is not the image through the anchor map of a Lie algebroid on R2.

1.2.7 The rank at a point of a singular foliation
Given a singular foliation on a smooth, real analytic or complex manifold M , there are two notions that
must not be confused: the rank at that point and the dimension of the tangent space at that point.

The rank of an O-module A is the minimal number of its generators. It is denoted by rkO(A) and
takes values in N ∪ {+∞}.

Let m be a point in a (smooth, complex, or real analytic) manifold. We say that a sequence (Ui)i≥0
of open neighborhoods of m converges to m if for any open neighborhood V of m, there exists i0 such
that for all i ≥ i0, we have Ui ⊂ V.

Proposition 1.2.19: The rank at a point is well-defined

Let F be a singular foliation on a smooth, complex, or real analytic manifold M . The sequence

n 7→ rkOUn (FUn).

is constant and finite after a certain rank, and this constant does not depend on the choice of a
sequence of open neighborhoods converging to m.
It is therefore an integer that depends only on m and F . It is called the rank of F at m, and
denoted by rkm(F).

Proof. The proofs will be different in the smooth or real analytic / complex cases. We leave it to the
reader.

Exercice 1.2.20. (Difficult!) We now work in the smooth case. Let F be a singular foliation of rank less
than or equal to r at every point of the manifold M . Prove that it is finitely generated.

Hint: start by proving that the C∞(M)-module of sections of a vector bundle is always finitely
generated.
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1.2.8 The tangent space of a singular foliation, and its dimension
Let F be a singular foliation on a complex, real analytic or smooth manifold M .

We call tangent space of F at m ∈M the subspace of TmM , denoted by TmF), obtained by evaluating
at m all vector fields in F , defined in any open neighborhood U of m in M .

Remark 1.2.21. In the smooth case, if a singular foliation F is defined through compactly supported
vector fields, then:

TmF := {X|m |X ∈ F}.

If it is defined as a sub-sheaf F• of the sheaf X of vector fields, it is defined by:

TmF := ∪U∈Vm{X|m |X ∈ FU}

where Vm stands for the set of all open neighborhoods of m in M . However, since singular foliation are
locally finitely generated, it is then a theorem that there exists an open neighborhood U such that:

TmF := {X|m |X ∈ FU}.

Lemma 1.2.22. For every point m ∈ M in a manifold M equipped with a singular foliation F , the
dimension of the tangent space at m is less or equal than the rank of F at m. In equation:

dim(TmF) ≤ rkm(F)

Proof. This follows from the discussion in Remark 1.2.21.

1.2.9 The regular part of a singular foliation
Let F be a singular foliation on a manifold M . The map:

m 7→ TmF

is a singular distribution. It is smooth by construction. We denote it by F.

Remark 1.2.23. It is not obvious that F is involutive. It happens to be true, because we will see later
on that it is integrable, but this point will come after a long discussion.

Definition 1.2.24: Regular point

A regular point of a singular foliation F on a smooth, complex or real analytic manifold M is a
point m in a neighborhood of which dim(TmF) is constant.

Remark 1.2.25. Since it is a singular distribution, the map

M → N
m 7→ dim(TmF)

is lower upper continuous. This implies that it reaches a local maximum if and only if it is locally
constant.

In the complex or real analytic case, if M is connected, it implies that a point m is regular if and
only if dim(TmF) reaches its maximal value.

The subset of all regular point of a singular foliation F on a smooth, complex or real analytic manifold
M is an open subset. We call it the regular part of F and denoted by Mreg (at least when there is no
ambiguity on the singular foliation that we consider). By upper semi-continuity, it is also a dense subset.
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Proposition 1.2.26

The regular part Mreg of a singular foliation F is a dense open subset of M .
Moreover, the restriction of F to Mreg is a regular foliation.

As a consequence, for any singular foliation, there exists a dense open subset on which is it simply a
”good old” regular foliation.

1.2.10 Some conventions
From now on:

1. We will call foliated manifolds pairs made of a manifold equipped with a singular foliation.

2. We will not make any more notation distinction, in the smooth case, between F and F• (I.e.
between singular foliations seen as sub-modules of compactly supported vector fields or seen as
sheaves).

1.3 Examples of singular foliations
Let us give an ordered list of examples of singular foliations.

1.3.1 Regular foliations
Although it seems grammatically problematic, regular foliations are examples of singular foliations. More
precisely:

Proposition 1.3.1: Good old regular foliations are singular foliations

A singular foliation on a complex, real analytic or smooth connected manifold is regular if and
only if the map m 7→ dim(TmF) is constant.

We leave the proof to the reader.

1.3.2 Singular foliations and Lie algebroids
Recall that a Lie algebroid over M is a triple (A, ρ, [·, ·]) with A a vector bundle over M , ρ : A→ TM a
vector bundle morphism over the identity of M called anchor map and [·, ·] a Lie bracket on the sheaf of
sections of A such that the so-called Leibniz identity holds for all a, b ∈ Γ(A), f ∈ OM :

[a, fb] = f [a, b] + ρ(a)[f ] b.

The smooth case

Let us consider that singular foliations on a smooth manifold are defined as in Definition 1.2.9, through
compactly supported vector fields.

Proposition 1.3.2: Image through anchor map of Lie algebroids: smooth case

The image through the anchor map of compactly supported sections of Lie algebroid over M is a
singular foliation on M .
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The complex or real-analytic case

Proposition 1.3.2 can not be extended immediately from the smooth context to the complex or real
analytic contexts altogether2. We denote by OU the relevant sheaf of functions. For A → M a vector
bundle, we denote by ΓU (A) the sections of A over an open subset U . Of course, ΓU (A) is a OU -module,
and, assigning to an open subset the sections over it

U 7→ ΓU (A),

one defines a sheaf of O-modules over M .
The technical difficulty is that

U 7→ ρ(ΓU (A))

is not a sheaf on M (and therefore not a sub-sheaf of the sheaf X• of vector fields on M). It is only a
pre-sheaf. To turn it into a sheaf, one has to ”sheafify” it, i.e. to map an open subset U ⊂ M to the
sub-OU -module of vector fields X ∈ X(U) on U such that every m ∈ U admits a neighborhood V on
which there exists a ∈ ΓV(A) with ρ(a) = X (on V). This defines a sheaf of O-module ρ(Γ(A)) that we
call the image of the Lie algebroid (A, ρ, [·, ·]) through its anchor map.

Proposition 1.3.3: Image through anchor map of Lie algebroids: complex case

Let (A, ρ, [·, ·]) be a Lie algebroid over a complex or real analytic manifold M . The sheaf ρ(Γ(A))
(=image of the Lie algebroid (A, ρ, [·, ·]) through its anchor map) is a singular foliation on M .

Examples

Exercice 1.3.4. Using the relevant Lie algebroid, prove that for any smooth, complex or real-analytic
manifold M , the following C∞(M)-modules are singular foliations, that come from a Lie algebroid.

1. ”Tangent Lie algebroid”. Compactly supported vector fields on M form a smooth singular foliation.

2. ”Transformation Lie algebroid”. Let g be a Lie algebra and g→ X(M) be a Lie algebra morphism,
denoted x 7→ x. The C∞(M)c module generated by {x, x ∈ g} is a singular foliation.

3. For any Poisson manifold (M,π), the C∞(M)-module generated by Hamiltonian vector fields is a
singular foliation on M . The corresponding Lie algebroid is T ∗M with anchor π# and the bracket
[·, ·]. See [CFM21] for a recent introduction to the subject, or [CDW87] for an excellent and now
classical article on the subject.

Exercice 1.3.5. [LGL22] Let F be a singular foliation and ϕ ∈ C∞(M) a function. Check that that

ϕF := {ϕX,X ∈ F}

is a singular foliation again. Show that if F is the image through the anchor map of a Lie algebroid, so
is ϕF .

Projective singular foliations

Here is an important class of singular foliations that come from a Lie algebroid. We will state the results
in the smooth case, and leave the generalisation to the reader for the complex or real analytic setting.

2The presentation we do here also essentially works on affine varieties or scheme, but we will leave it to the interested
reader to adapt
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Definition 1.3.6: Generators and no relations

[Deb01] We say that a singular foliation on a smooth manifold M is Debord if F is a projective
C∞(M)-module.

In a concrete manner, Debord foliations are those which admit, in a neighborhood U of every point,
generators X1, . . . , Xr between which there is no relation. I.e. if

r∑
i=1

fiXi = 0

when each one of the functions f1, . . . , fr are zero.
Remark 1.3.7. Equivalently, we could use Definition 1.2.9. A singular foliation F is then Debord if for
every open subset U , FU is a C∞(U)-module which is projective in the category of C∞(U)-modules.

By the smooth Serre-Swan theorem [Nes20], there exists a vector bundle A → M and a C∞(M)-
module isomorphism

Γc(A) ' F .
Composing this isomorphism with the inclusion

Γc(A) ' F ↪→ Xc(M),

we obtain a morphism of C∞(M)-modules Γc(A) ↪→ Xc(M), which has to be given by a vector bundle
morphism:

ρ : A→ TM.

The vector bundle morphism ρ does not need to be injective at all points, but only at the level of sections.
More precisely:

Proposition 1.3.8: Debord algebroids

A singular foliation on a smooth manifold M is Debord if and only if it is the image of a Lie
algebroid whose anchor map is injective on a dense open subset.

Exercice 1.3.9. Show that compactly supported vector fields on a manifold M vanishing on a codimension
1 submanifold form a Debord singular foliation.

1.3.3 Singular foliations attached to a submanifold (I) the affine variety case
We now work within complex algebraic geometry. Let O be the algebra of polynomial functions on
an affine variety M . The reader not familiar with algebraic geometry can assume M = Cn so that
O = C[x1, . . . , xn] is the algebra of polynomials in n variables.

By definition, vector fields on M are the O-module X(M) of derivations of O. For M = Cn, vector
fields are simply expressions of the form

n∑
i=1

Pi(x1, . . . , xn) ∂

∂xi
,

and are uniquely determined by the polynomial functions (Pi(x1, . . . , xn))i=1,...,n.
Let W ⊂M be an affine variety. Let IW ⊂ O be the ideal of polynomial functions vanishing on W .

Since O is Noetherian, this ideal has finitely many generators ϕ• = (ϕ1, . . . , ϕk).
A difficulty with algebraic geometry is that geometrical properties have to be translated in a purely

algebraic language. For instance, for X a vector field on M , we have the following correspondence.

Geometry Algebra
X vanishes at all points in W ⇔ X ∈ IWX(W )
X is tangent to W ⇔ X[IW ] ⊂ IW

We will take the right column as a definition of the left column:
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Proposition 1.3.10: Two foliations associated to an affine variety

Let W ⊂ M be an affine variety. Vector fields tangent to W and vector fields vanishing on W
are singular foliations.

The proof is based on the more general result.
Lemma 1.3.11. Let ϕ• = (ϕ1, . . . , ϕk) be polynomial functions on M . The following families are
singular foliations (in the sense of algebraic geometry3).

1. The O-module Xϕ•=0 of all vector fields X ∈ X(Cn) such that X[Iϕ• ] ⊂ Iϕ• , with Iϕ• the ideal
generated by ϕ•.

2. Iϕ•X(Cn), i.e. vector fields X ∈ X(Cn) of the form
∑k
i=1 ϕiXi with X1, . . . , Xk ∈ X(Cn).

Remark 1.3.12. The O-module dϕ⊥• of vector fields X ∈ X(M) such that X[ϕ1] = · · · = X[ϕk] = 0 is
also a singular foliation. We invite the reader to see as the singular foliation of all vector fields tangent
to the fibers of ϕ• : M → Ck.
Remark 1.3.13. When M is a smooth manifold, a singular foliation Fpol over the algebra of polynomial
functions may be seen as a complex singular foliation: it suffices to consider the sheaf of all vector fields
which are linear combinations, with coefficients in holomorphic functions, of vector fields in Fpol. In
short, it suffices to take the tensor product with holomorphic functions.

1.3.4 Vector fields vanishing at a point at prescribed order
We can also construct singular foliations by playing with order of vanishing at certain points. Let F1 be
the space of all smooth vector fields on Rn vanishing at 0.
Exercice 1.3.14. Show that F1 is a singular foliation generated by the finite family of vector fields(

xi
∂

∂xj

)n
i,j=1

.

Hint: use the ”Hadamard’s lemma”, i.e. the fact that any compactly supported smooth function F on
Rn vanishing at 0 decomposes as

F =
n∑
i=1

xiFi

for some compactly supported smooth functions F1, . . . , Fn ∈ C∞(Rn).
What about vector fields whose coefficients vanish at order 2 at the origin? Those are vector fields

X =
n∑
i=1

Fi(x1, . . . , xn) ∂

∂xi

such that
Fi(0, . . . , 0) = 0 and ∂Fi

∂xj
(0, . . . , 0) = 0 for all i, j = 1, . . . , n.

It is a classical result that a smooth function F on Rn vanishes at 0 ∈ Rn if and only if it decomposes as

F =
n∑

i,j=1
xixjFi,j

for some smooth functions Fi,j ∈ C∞(Rn). As a consequence, vector fields whose coefficients vanish at
order 2 at the origin are generated, as a C∞c (Rn)-module by the family{

xixj
∂

∂k

∣∣∣∣ 1 ≤ i ≤ j ≤ n and k = 1, . . . , n
}
.

Since this module is obviously stable under Lie bracket, this space forms a singular foliation.
More generally, let Fk be smooth vector fields on Rn that vansih at 0 together with all their partial

derivatives or order i ≤ k − 1. The following exercice shows that it is a singular foliation.
3I.e. it is a finitely generated sub-O-module or vector fields on M (=derivations of O) stable under Lie bracket.
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Exercice 1.3.15. 1. Show that Fk is a C∞(Rn)-module stable under Lie bracket.

2. Show that Fk = Ik0F where I0 is the ideal of smooth functions on Rn vanishing at the origin.

3. Find an explicit family of generators of Fk over C∞(Rn).

4. For the case of R2 and k = 2 find all possible relations between these generators.
This example could be also seen as a complex, real analytic or algebraic singular foliation. In all

these contexts: Fk = Ik0F where I0 is the ideal of relevant (sheaf of) functions vanishing at the origin.
Of course, this can be enlarged to any point in a manifold. In conclusion:

Proposition 1.3.16: An example

Let M be a smooth, real analytic or complex manifold. For every point m ∈M , and every choice
of an integer k ≥ 1, compactly supported vector fields on M vanishing together with their k first
derivatives is a singular foliation on M .

More sophisticated examples

This example, (inspired by Grabowska and Grabowski [GG20]), appeared in [LGR21]. We present it as
a real analytic singular foliation on Rn (we could see of course also see it as a complex singular foliation
on Cn).

On M = Rn, we attribute to the canonical coordinates (x1, . . . , xn) the strictly positive weights
(i1, . . . , in). Equipped with this weight, the ring A real analytic functions on M become a graded
algebra.

A =
∞∑
i=0
Ai.

It is also a filtered algebra, with respect to the filtration:

A≥k =
∞∑
i=k
Ai.

Example 1.3.17. Assume i1 = 1, i2 = 2 and so on. The weight of x3
1x

2
3x5 is 1× 3 + 3× 2 + 1× 5 = 14,

so that x3
1x

2
3x5 ∈ A14.

Let k be a non-negative integer. The space of real analytic vector fields X such that:

X[A≥n] ⊂ An+k for all n ∈ N

is a module, that we denote by Fk, over real analytic functions. It is stable under Lie bracket. It is
generated by the family {

xj11 . . . xjnn
∂
∂xa

∣∣∣i1j1 + i2j2 + · · ·+ injn ≥ ja + k
}
.

If (j1, . . . , jn) satisfies the above condition, so does (j′1, . . . , j′n) as long as j′i ≥ ji for all indices i = 1, . . . , n.
This implies that the generating family can be chosen to be finite. Therefore, Fk is finitely generated,
and is a real analytic singular foliation.

1.3.5 Singular foliations attached to a submanifold (II) the smooth or com-
plex case

This section makes sense in the smooth, real analytic or complex contexts indifferently.
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Proposition 1.3.18: Vector fields tangent to L of vanishing along L

Let L be a submanifold of M , and k ∈ N an integer.

1. Vector fields tangent to L,

2. vector fields vanishing at order k at all point in L

3. vector fields X such that X[IL] ⊂ IkL
are singular foliations.
Here IL stands for the ideal of functions vanishing on L.

Proof. The proof consists in

1. Checking that the space XL(M) of all vector fields on M tangent to the sub-manifold L,

(a) is a module on functions
(b) stable under Lie bracket,
(c) and that in any local coordinates (x1, . . . , xa, y1, . . . , yb) where L is given by 0 = y1 = · · · = yb,

is generated by {
∂

∂xi
, yj

∂

∂yk

∣∣∣∣1 ≤ i ≤ a and 1 ≤ j, k ≤ b
}

(This verification is only necessary in the smooth case)

2. Then in checking that the second and third spaces are algebraically described by IkLX(M) and
Ik−1
L XL(M) respectively. Since the ideal IL is locally finitely generated, this completes the proof.

Exercice 1.3.19. Let L1, L2 ⊂M be submanifolds of M that intersect transversally, i.e. such that:

TxL1 + TxL2 = TxM ∀x ∈ L1 ∩ L2.

Consider the space of all vector fields on M tangent to both L1 and L2. Show that it is a singular
foliation.

1.3.6 Linear singular foliations
A faithful finite-dimensional representation of a Lie algebra may be seen as singular foliation: it suffices
to consider the singular foliation associated to its transformation Lie algebroid. Let us be more precise.

Notice that for every vector space V of finite dimension, there is a Lie algebra morphism X 7→ X̂
mapping a linear endomorphism of X ∈ End(V ) to the vector field X̂ on V such that X̂[α] = X∗(α) for
any α ∈ V ∗ (seen as a function on V ).

Remark 1.3.20. Upon choosing a basis (e1, . . . , ed) of V , and the corresponding coordinates (x1, . . . , xd),
this morphism maps a matrix (ai,j)di=1 to the vector field

∑d
i,j=1 ai,jxi

∂
∂xj

.

Let g be a Lie algebra, and V be a finite-dimensional representation of g, described by a Lie algebra
morphism η : g→ End(V ). Consider the OV -module4 Fθ generated by the vector fields {η̂(x), x ∈ g}.

Proposition 1.3.21. Let (V, η) be a representation of a Lie algebra g. Then Fθ is a singular foliation
on V .

The exercise supposes that the notion of leaves is already familiar to the reader. It also assumes the
notion of ”isotropy Lie algebra at a point”. It explains how the initial representation can be deduced
from the induced singular foliation in the faithful case.

4With OV being smooth, holomorphic, or polynomial functions depending on whether the base field is R or C, and
depending on the preferences of the reader.

32



Exercice 1.3.22. Let (g, V, θ,Fθ) be as in Proposition 1.3.21.

1. Show that the leaves of Fθ are the orbits for the Lie group action G→ GL(V ) integrating θ.

2. This question supposes that the notion of isotropy Lie algebra at a point is known. Show that the
isotropy Lie algebra of Fθ at 0 ∈ V is g

ker(θ) .

3. Is the following statement correct: ”Two faithful representations (V, θ) and V ′, θ′) are isomorphic
if and only if their induced singular foliations Fθ and Fθ′ are diffeomorphic.

4. Is it true that the isotropy Lie algebra of Fθ at a point v is coincides with the stabilizer of v?

5. Is it at least true for a faithful representation?

Example 1.3.23. The singular foliation by concentric spheres, i.e. the singular foliation on Rn generated
by the vector fields {

xi
∂

∂xj
− xj

∂

∂xi

∣∣∣∣1 ≤ i < j ≤ n
}

comes from the action of so(n) on Rn. Its leaves are by concentric spheres.

Concentric spheres in three dimensions.

1.3.7 Miscellaneous examples
We list as exercises several instances of singular foliations (or at least Lie-Rinehart algebras) that do not
enter in any of the previous categories.
Exercice 1.3.24. The double tangent bundle TM := TM ⊕T ∗M can be equipped with a Leibniz bracket,
due to Irene Dorfman and a non-degenerate bilinear form, that, altogether, form what is called a Courant
Lie algebroid, see []. Let D ⊂ TM be a Dirac structure. Show that:

1. {X ∈ X|∃α ∈ Ω1(M) s.t. (X,α) ∈ Γ(D)} is a singular foliation.

2. {X ∈ X|(X, 0) ∈ Γ(D)} is a Lie-Rinehart subalgebra of vector fields (and therefore a singular
foliation in the real analytic of complex cases).

The singular foliation of the second item is included into the singular foliation of the first item.
As a particular case, it can be shown that, for ω a closed real analytic or holomorphic form on a

manifold M ,
{X ∈ X|iXω = 0}

is a singular foliation on M . In the smooth case, the result holds also provided it is locally finitely
generated.
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Exercice 1.3.25. Yahya Turki [Tur15] introduced the following notion: we say that a bivector field
π ∈ Γ(∧2TM) is foliated if π](Ω1(M)) is closed under the Lie bracket, i.e. if is a singular foliation.

1. Show that for any twisted Poisson structure (π,Ω) (also, called ”Poisson structures with back-
ground” or ”WSW-structures”, see [KS05]-[KS02] for a definition) on a manifold M , π is a foliated
bi-vector field.

2. In the neighborhood of a regular point of π, there exists a closed 3-form Ω such that the pair (π,Ω)
is a twisted Poisson structure.

3. Give an example of a foliated bivector field which is not a twisted Poisson structure.

(Hint: this is done in [Tur15]!).

1.4 New constructions from old ones
In the present section, we work indifferently in the context of smooth, complex or real analytic geometry.
Most arguments presented here, however, make no sense in algebraic geometry, and have to be adapted.
Conversely, some of them only make sense in algebraic geometry. We will be more precise in due time.

Here is a first exercice to train on these notions.
Exercice 1.4.1. Let F be a smooth singular foliation on M and ϕ ∈ OM be a function. Show that

ϕF := {ϕX,X ∈ F}

is a singular foliation again. State and show the corresponding result in the real analytic, complex and
algebraic settings.

1.4.1 Direct products of singular foliations
For X1, X2 vector fields on M1,M2 respectively, we shall denote by (X1, X2) the vector field on M1×M2
whose valued at (m1,m2) ∈M1 ×M2 is (X1|m1 , X2|m2) ' T(m1,m2)M1 ×M2.

For (M1,F1) and (M2,F2) foliated manifolds, the product manifold M1 ×M2 can be equipped with
the direct product both foliations.

Definition 1.4.2: Direct product of singular foliations

The direct product of two singular foliations F1,F2 on M1 and M2 is the singular foliation F1×F2
on M1 ×M2 such that, for every open subset U1 ⊂M1,U2 ⊂M2, F1 ×F2 is the OU1×U2-module
generated by vector fields of the form (X1, X2) with X1 ∈ F1 and X2 ∈ F2.

This definition has to be justified.
Exercice 1.4.3. Show that the direct product of finitely generated singular foliations is a finitely generated
singular foliation. Compare their ranks.

1.4.2 Pull-back (version 1)
Let us give the easiest version of the pull-back of a singular foliation: the pull-back through surjec-
tive submersion. We will come back to this notion later on, using a more general definition due to
Androulidakis and Skandalis [AS09].

Proposition 1.4.4: Pull-back of singular foliations

Let F be a singular foliation on M and let ψ : P → M be a surjective submersion. We call
pull-pack of F by ψ and denote by ψ−1(F) the singular foliation generated, as an OP -module, by
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vector fields ψ-compatible to a vector field in F .

Remark 1.4.5. In particular, all vector fields tangent to the fibers of ψ are contained in ψ−1(F).

Remark 1.4.6. In the smooth case, there were two manners to define singular foliations: one with
compactly supported vector fields and one with sheaves. There is a difficulty if we use compactly
supported vector fields: the pull-back singular foliation ψ−1(F) can not be defined as being the C∞(M)-
module generated by compactly supported vector fields on P which are ψ-compatible to a compactly
supported vector field in F . Indeed, if the fibers of ψ are not compact, there is no compactly supported
vector field on P which is ψ-compatible to a non-zero vector field on M .

Exercice 1.4.7. A horizontal distribution on the surjective submersion ψ : P → N , is a regular distribution
p 7→ Hp on P such that5

Hp ⊕ ker(Tpψ) = TpP for all p ∈ P .

We call horizontal lift of X ∈ X(M) and denote H(X) the unique section of H such that Tψ(H(X)|p) =
X|ψ(p) for all p ∈ P . Show that ψ−1(F) is generated, as a sheaf of C∞(P )-module, horizontal lifts of
vector fields in F and vertical vector fields (= vector fields tangent to the fibers of ψ).
Exercice 1.4.8. Let φ : M → N be a surjective submersion with connected fibers. For FM a singular
foliation on M , show that the following are equivalent:

1. There exists a singular foliation FN on N such that φ−1(FN ) = FM .

2. Vector fields tangent to the fibers of φ belong to FM .

1.4.3 The suspension of a singular foliation
We call suspension of the manifold M with respect to a diffeomorphism φ : M → M the quotient of
M × R by the action of the additive group Z by:

k · (m, t) ∼ (φk(m), t+ k)

for all k ∈ Z,m ∈M, t ∈ R. Since the action of Z is discrete and proper, the quotient is a manifold that
we call suspension of M by Z and denote by M×R

Zφ .
Let us assume now that M comes equipped with a singular foliation F and that φ : M → M is a

symmetry of F , i.e. that φ(F) = F .

Proposition 1.4.9: Suspension

Let φ : M → M be a symmetry for a singular foliation F . Then there exists a unique singular
foliation on the suspension M×R

Zφ whose pull-back on M ×R is the direct product singular foliation
F × X(R).
We call this singular foliation the suspension of F by the symmetry φ and denote it by F×X(R)

Zφ .

Proof. The proof simply relies on the fact that for all k ∈ Z:

(m, t) 7→ (φk(m), t+ k)

is a symmetry of the direct product singular foliation F × X(R).

Let us now recall a classical result of differential geometry about suspensions of diffeomorphisms:

Lemma 1.4.10. If a diffeomorphism φ is the time 1 flow of a complete vector field X, then the suspension
M×R
Zφ is diffeomorphic to the direct product M × S1 (= the suspension M×R

ZidM
of the identity of M).

In view of Lemma 1.4.10 following proposition is therefore not a surprise.
5Those are also called Ehresmann connection. They exist for any surjective submersion.
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Proposition 1.4.11: Inner symmetry have trivial suspension

If a symmetry φ of a singular foliation F on M is the time 1 flow of a complete vector field
in F , then its suspension F×X(R)

Zφ on M×R
Zφ is isomorphic to the direct product singular foliation

F × X(S1) on M × S1.

1.4.4 Restriction of a singular foliation to a transverse submanifold
Let F be a singular foliation on a smooth manifold M , and let S ⊂M be a sub-manifold. We would like
to restrict the singular foliation F to S.

The next exercise presents a naive idea - which works, but has to be made more precise.
Exercice 1.4.12. Let F be a singular foliation on a singular foliation M . Consider i∗SFnaive to be the
sub-space of all vector fields on a smooth embedded submanifold S obtained by restricting to S vector
fields in F that are tangent to S. Show that i∗SFnaive

1. is a sub-Lie algebra of X(S),

2. is a sub-C∞(S)-module of X(S).

It is therefore a Lie-Rinehart subalgebras of vector fields on S, but may not be locally finitely generated.

1. Give an example where i∗SFnaive is not locally finitely generated.

Not being locally finitely generated is not the only problem with i∗SFnaive:

1. The sheaf description is not so clear.

2. If S is only immersed and not embedded, it is not a C∞(S)-module.

So we have to be more precise. Let S ⊂ M be a (maybe only immersed) submanifold of M : we now
work in the smooth real analytic or complex settings altogether. We denote by i : ↪→ M the canonical
inclusion.

We have to define the sheaf i∗SF ⊂ X(S) as a subsheaf of the sheaf U 7→ X(S)U of vector fields on S.
We proceed as follows. To every U ⊂ S, we associate the space of all vector fields Y ∈ X(S)U such that
for every s ∈ U , there exists X ∈ FW (for some open subset W containing i(s)) such that

Tsi(Y|s′ ) = X|i(s′)

for every s′ is a neighborhood of s in S. It is easily checked that the previous assignment

1. is a sheaf of C∞(S)-modules

2. is closed under Lie bracket.

This settles the real analytic and complex cases.
Proposition 1.4.13: Restriction: the complex case.

et F be a singular foliation on a complex or real analytic manifold M . For every submanifold
S ⊂M , i∗SF is a singular foliation on S. In the smooth case, it is a sub-Lie-Rinehart algebra of
vector fields on S.
It is called the restriction of F to S

In the smooth case, the situation is more involved, as seen through the following example.
Exercice 1.4.14. Here is an example of a sub-manifold S in a foliated manifold (F , S) for which i∗SF is
not finitely generated, hence is not a singular foliation.

Consider the foliation of R2 by horizontal lines, i.e. { is generated by ∂
∂x . Let f be a function which

has support [0,∞). Then the graph of f yields an embedded submanifold. Show that i∗SF is not finitely
generated. (Instead consider i : R → R2, t 7→ (t, f(t)) and show that i∗F is exactly the space of vector
fields which are supported in (−∞, 0] ⊂ R. This space of vector fields is not finitely generated.
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However, even in the smooth case, there is a situation where the restriction yields a locally finitely
generated module, and therefore a singular foliation. We will have to make use of some transversality
condition.

Definition 1.4.15. We say that a submanifold S of a foliated manifold (M,F) is transverse to F if
TsS + TsF = TsM for all s ∈ S.

Transversality is enough to be guaranty that i∗SF is locally finitely generated.
Proposition 1.4.16: Transverse submanifolds

Let S ⊂M be a submanifold transverse to a smooth singular foliation F . Then i∗SF is a singular
foliation on S.
It is called the restriction of the singular foliation to S.

The following exercises describe this structure more precisely.
Exercice 1.4.17. Let S be a transverse manifold in (M,F), and let i∗SF be its induced singular foliation.

1. Show that the rank of i∗SF at a point s is rksF − codim(S).

2. Show that Tsi∗SF = TsF ∩ TsS

3. (Supposes that the notion of leaf is known.) Show that the leaf of i∗SF through s is the connected
component containing s of S with the leaf through s of F .

4. (Supposes that the notion of isotropy Lie algebra is known.) Show that the isotropy Lie algebra of
F and i∗SF coincide at any point s ∈ S.

Exercice 1.4.18. The goal of this exercise is to show that there is a neighborhood of a transverse sub-
manifold S in a foliated manifold (M,F) on which F coincides with a neighborhood of the zero section
in the normal bundle NS := TL/TS

p→ S, equipped with the pull-pack singular foliation p∗i∗SF .

1. Show the ”tubular neighborhood theorem”, i.e. that there is a neighborhood U of S in L diffeo-
morphic to a neighborhood of the zero section in the normal bundle NS := TL/TS

p→ S, through
a diffeomorphism which is the identity on S.

2. Show that the tubular neighborhood in the previous item can be chosen such that vector fields
tangent to the fibers of p : NS → S are included in F .

3. Conclude that F is isomorphic to p∗i∗SF (Hont, see Exercice 1.4.8.)

Exercice 1.4.19. This exercise requires the notion of almost Lie algebroid. Let (A, [·, ·), ρ) be an almost
Lie algebroid over a singular foliation F . Let S ⊂ M a a submanifld Show that ρ−1(TS) ⊂ i∗SA is an
almost Lie algebroid over FS . Here i∗SA stands for the restriction of the vector bundle A to S.

1.4.5 Blow-up of a singular foliation along a leaf
In this section, we work in the realm of complex algebraic geometry over C. We could work over R, dealing
with smooth objects: indeed, this is the context in which Debord and Skandalis [Deb13a] introduced the
notion of Blow-up of a singular foliation.

Blow-up at a point

Recall that for any d ∈ N, the set Pd (or PdC) of all straight lines through the origin of Cd+1 is a complex
manifold of dimension d over C, called the d-dimensional projective space. Formally, it is defined as the
equivalence classes of relation on the quotient Cd+1 \ {(0, . . . , 0)} under the equivalence relation:

u = (u0, u1, . . . , ud) ∼ v = (v0, v1, . . . , vd)⇐⇒ ∃λ ∈ C \ {0} such that u = λv.

Equivalently, it can be defined as the quotient manifold

Pd := Cd+1 \ {(0, . . . , 0)}/C \ {0},

37



where the group C \ {0} acts by diagonal multiplication on Cd+1. In particular, elements in Pd shall
be denoted as d+ 1-tuples of elements not all equal to zero and defined up to a non-zero constant, and
denoted by [x1, . . . , xd+1].

Lemma 1.4.20. The projective space Pd is a complex manifold of dimension d. It is given by the d+ 1
following charts:

ψi : (x1, . . . , xd) 7→ [x1, . . . xi−1, 1︸︷︷︸
ith term

, xi+1 . . . xd+1].

The idea of the blow-up at the origin consists in replacing Cd+1, by pairs made of straight lines
through the origin (=elements of Pd) and a point on that straight line.

Definition 1.4.21. The blow-up Bl0(Cd+1) of Cd+1 at the origin consists of all pairs (D, z) ∈ Pd×Cd+1

such that z ∈ D.

Given coordinates [x1, . . . , xd+1] and (z1, . . . , zd) on Pd and Cd+1 respectively, we can describe
Bl0(Cd+1) in terms of coordinates:

Bl0(Cd+1) = {(x, z) ∈ Pd × Cd+1 | zixj = zjxi, i, j = 0, . . . , d}.

These equations make sense, because multiplying all the xi be a non-zero factor leave them invariant.

Lemma 1.4.22. Bl0(Cd+1) is a complex manifold of dimension d+ 1. It is given by the d+ 1 following
charts:

φi : (x1, . . . , xd+1) 7→ ([x1, . . . xi−1, 1︸︷︷︸
ith term

, xi+1 . . . xd+1], (xix1, . . . xixi−1, xi︸︷︷︸
ith term

, xixi+1, . . . , xixd+1)).

The projection on the second factor

σ : Bl0(Cd+1) −→ Cd+1

is a smooth map. For z 6= 0 the pre-image σ−1(z) is pair (D, z) with D being the unique line D ∈ Pd
passing through z ∈ Cd+1. But σ−1(0) = Pd. In particular:

σ : Bl0(Cd)\σ−1({0}) −→ Cd+1\{0} (1.4)

is a biholomorphism.

Proposition 1.4.23: Blow-up of a vector field

For a holomorphic vector field X of Cd+1, the following two points are equivalent:

(i) X vanishes at 0

(ii) there exists a vector field X̃ on Bl0(Cd) such that σ(X̃) = X.

If it exists, then the vector field in item (ii) is unique.

Proof. The set Bl0(Cd+1) is a complex manifold of dimension d+ 1. It is given on the i-th of the d+ 1
following charts of Lemma 1.4.22 by:

(x1, . . . , xd+1) 7→ (xix1, . . . xixi−1, xi, xixi+1, . . . , xixd+1).

It is then a direct computation to check that the pull-back of the coordinate functions (z1, . . . , zd+1) of
Cd+1 are given by

σ∗(zj) =
{
xixj j 6= i
xi j = i
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This implies that the unique vector field Xj on that chart such that

σ∗(Xj) = ∂

∂zj

is

Xj =
{

1
zi

∂
∂zj

j 6= i
1
zi

∂
∂zi
−
∑
j 6=i

zj
zi

∂
∂zj

j = i

In turn, this implies that for every vector field X =
∑d+1
i=1 Pi(z1, . . . , zd) ∂

∂zj
the unique vector field on

the i-th chart such that σ∗(Z) = X is

Z =
∑
j 6=i

(
Pj(z1zi, . . . , zi, zizd)

zi
− zjPi(z1zi, . . . , zi, zizd)

zi

)
∂

∂zj
+ Pi(z1zi, . . . , zi, zizd)

zi

∂

∂zi

This vector field is well-defined on the whole chart if and only if the functions P1, . . . , Pd+1 vanish at the
origin. This proves the claim.

Proposition 1.4.24: Blow-up of a singular foliation at the origin

Let F be a complex or algebraic singular foliation on Cd+1. Assume all vector fields on Cd+1

vanish at 0. Then there exists an unique singular foliation F̃ on Bl0(Cd) such that (1.4) is an
isomorphism of foliated manifolds.
We call F̃ the blow-up of F at the origin.

Exercice 1.4.25. We call σ−1(0) the exceptional divisor of the blow-up: its points are canonically identified
with straight lines through the origin. Let F be a singular foliation on Cd+1 made of vector fields vanishing
at 0, and let F̃ be its blow up.

1. Let X ∈ X(Cd) be a vector field vanishing at 0 and X̃ ∈ X(Bl0(Cd)) such that σ∗(X̃) = X. Show
that X̃ vanishes at every point of the exceptional divisor if and only if

X = λ

d+1∑
i=1

zi
∂

∂zi
+ quadratic terms

for some λ ∈ C where ”quadratic terms” means vector fields vanishing at least quadratically at
zero.

2. Show that some point D in the exceptional divisor is a point-leaf6 if and only if D (seen now as a
straight line) is an eigenvector for all the linearisations of all vector fields in F .

Blow-up along a smooth submanifold

This construction can be extended considerably. For E → N , we denote by P(E) the complex manifold
obtained by taking the projective space of all the fibers of E. Also, we denote by NN/M the normal
bundle TM |N/TN of a submanifold N ⊂ M . Morally, P(NN/M ) stands for the projective space of
directions normal to N in M .

Proposition 1.4.26 (Definition). Let N be a complex submanifold of M . There exists a complex
manifold M̃ = BlN (M), called blow-up of M along N , and a holomorphic map σ : M̃ −→ M such
that restriction M̃ \ σ−1(N) −→M \N is an isomorphism and σ−1(N) ' P(NN/M ).

The hypersurface σ−1(N) ' P(NN/M ) ⊂ BlN (M) is called the exceptional divisor of the blow-up
σ : BlN (M) −→M .

6I.e, a leaf reduced to a point - equivalently a point where the tangent space of the foliation is zero.
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Example 1.4.27. Let L = Cm ⊂ Cd be the submanifold defined by the equations zm+1 = · · · = zd = 0.
The blow-up of Cd along Cm is the complex manifold

BlCm(Cd) := {(x, z) ∈ Pd−m−1 × Cd | zixj = zjxi, i, j = m+ 1, . . . , d},

together with the projection
σ : BlCm(Cd) −→ Cd.

It is easily checked that σ is a biholomorphism from Cd \Cm and σ−1(Cm) ' P(NCm/Cd), where NCm/Cd
is the normal bundle.

The next statement has in fact be first proven (in the smooth case) by Debord an Skandalis [Deb13a].

Proposition 1.4.28: Blow-up of a singular foliation, general case

Let F be a singular foliation on M and L ⊂M a leaf.
There exists an unique singular foliation F̃ on the blow-up BlL(M) of M along L such that σ is
an isomorphism from BlL(M)\σ−1(L) to M\L.
It is called the the blow-up of F along L.

Remark 1.4.29. In fact, we not need to take L to be a leaf: the construction would work for any
submanifold to which all vector fields in F are tangent?. The proof is based on a lemma: a vector field
X ∈ (M) reads X = σ(X̃) for X̃ a vector field in BlL(M) if and only if X is tangent to L.

Remark 1.4.30. The hypersurface σ−1(N) ' P(NN/M ) ⊂ BlN (M) is called the exceptional divisor of
the blow-up σ : BlN (M) −→M . If F is made of vector fields tangent to L, its blow-up is made of vector
fields tangent to the exceptional divisor.

1.4.6 Pull-back (version 2)
We have already defined pull-back through surjective submersions, but also restriction on some subman-
ifolds. Let us unify these constructions, following an idea of Androulidakis and Skandalis [[AS09]].

We restrict ourself to the case of smooth manifolds: the complex or real analytic cases are similar.
Let M,B be manifolds together with a smooth map p : M → B, and FB be a singular foliation on B.
Let p∗TB be the pull-back through p of the tangent bundle TB:

p∗TB := {(m,u) ∈M × TB | u ∈ Tp(m)B}.

There are natural maps:
X(M)

Tp

%%

X(B)
p∗

yy
Γ(p∗TB)

defined as follows:

1. Any vector field X on B gives a section p∗X of p∗TB defined by

m 7→ (m,Xp(m)).

called the pull-back of X.

2. There is a natural vector bundle morphism:

Tp : TM → p∗TB
u 7→ (m,Tp(u))

At the level of sections, it induces a map X(M)→ Γ(p∗B).
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We call p∗FB the C∞(M)-module generated by {p∗X|X ∈ FB}.
Exercice 1.4.31. 1. Show that the submodule of Γ(TM) defined by

p−1(FB) := {X ∈ X(M) | Tp(X) ∈ p∗FB} ⊂ X(M)

is involutive.

2. Assume the map, p∗(FB) ⊕ X(M) → Γ(p∗(TM)), (α, β) 7→ α + Tp(β) is surjective. (In this case
we say that p is transverse to FB .) Show that p−1(FB) is a singular foliation on M .

3. Show that p is transverse to FB if and only if, for all m ∈ M , we have Tp(m)FB + Tmp(TmM) =
Tp(m)B.

Definition 1.4.32: Pull-back w.r.t. a transverse map

Let (B,FB) be a foliated manifold, and p : M → B be a smooth map transverse to FB. We call
the singular foliation p−1(FB) the pull-back of FB through p.

Exercice 1.4.33. Explain why this notion ”unifies” (= i.e. admits as particular cases) pull-back with
respect to surjective submersions seen in Section 1.4.2 and restrictions to transverse submanifolds see in
Section 1.4.4.

Pull-back of surjective submersion: some more points

Most of the coming lines uses notions that will be defined much later in the text. Let us recall some
important facts and definitions on vector fields

Definition 1.4.34. A vector field X ∈ X(M) said to be p -related to a vector field X̃ on B if for all
m ∈M ,

(dp)m(Xm) = X̃p(m) (1.5)

Equivalenty, for any f ∈ C∞(M), X[f ◦ p] = X̃[f ] ◦ p, or, equivalently, s.t. the following diagram
commutes:

C∞(B) X̃ //

p∗

��

C∞(B)

p∗

��
C∞(M)

X
// C∞(M)

Definition 1.4.35. A vector field X ∈ X(M) said to be p-projetable on B if it p-related to a vector
field X̃ ∈ X(B).

Suppose that p : M → B is a surjective submersion.
A vector field on M is said to be a p-vertical vector field if it takes values in ker(dmp) ⊂ TmM for all

m ∈M . Equivalently, vertical vector fields are vector fields p-related to 0 ∈ X(B).
Exercice 1.4.36. Show that the p-vertical vector fields are contained in p∗FB .

The pull-back of a singular foliation through a surjective submersion is quite easy to describe.

Lemma 1.4.37. Let (B,FB) be a foliated manifold, and p : M → B be a surjective submersion. Then
p is transverse to FB.

Moreover, for every m ∈ M , and local generators X̃1, . . . , X̃r of FB, the pull-back singular foliation
p−1(FB), in a neighborhood of m, is generated by vector fields X1, . . . , Xr, Y1, . . . , Yk, where Y1, . . . , Yk
are vertical vector fields that form a local trivialization of ker(Tp), and X1, . . . , Xr are p-related to
X̃1, . . . , X̃r.

Exercice 1.4.38. Assume that the fibers of p are connected. Show that the leaves of p∗F are the inverse
images through p of the leaves of FB .
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Exercice 1.4.39. Show that the isotropy Lie algebra of p∗FB at a point m is canonically isomorphic to
the isotropy Lie algebra of FB at p(m).
Exercice 1.4.40. Show that the transverse singular foliation of p∗FB at a point m ∈ M is canonically
isomorphic to the transverse singular foliation of p∗FB at the point p(m) ∈ B.

Proposition 1.4.41. Let p : M → B be a surjective submersion with connected fibers. Let F be a
singular foliation on M . Then the following are equivalent:

(i) There exists a singular foliation FB on B such that F = p∗FB.

(ii) Each fiber of p is contained in a leaf of L.

(iii) For every m ∈M , we have ker(Tmp) ⊂ TmF .

Remark 1.4.42. This is not an obvious statement, for it will use the assumption ”locally finitely
generated”. It is wrong, for instance, for general involutive distributions. For instance, for the ”infinite
comb” of Example, the projection (x, y) 7→ y onto the horizontal axis satisfies (ii) and (iii) but does not
satisfy (i).

1.4.7 Push-forward
Let p : M → N be a smooth, complex or real analytic map, depending on the context. We will assume
that p is a surjevtive submersion.

The push-forward Tmp : TmM → Tp(m)N does not extend in general to vector fields: for X a vector
field on M and n = p(m) = p(m′) with m 6= m′ ∈ M , then Xm and Xm′ are both pushed forward to
tangent vectors at b ∈ B, but in general Tmp(Xm) 6= Tm′p(Xm′). When this happens, we denote this
vector field by p∗(X) and we call it the push-forward of X through p.

Let us introduce a notation: for p : M → B a surjective submersion, we denote by X(M)p the space
of vector fields X on p which are p-compatible to a vector field on B, that we denote by p∗(X).

Assume that we now given a singular foliation F on M . Then F ∩ X(M)p is both a C∞(B)-module
and stable under Lie bracket, and so is

p∗(F ∩ X(M)p) ⊂ X(B).

When the latter is finitely generated (which always happens in the complex case), it is a singular foliation
that we call push-forward singular foliation and denote by p∗(F).
Exercice 1.4.43. Here are examples where p∗(F ∩ X(M)p) is not finitely generated.

For Androulidakis-Zambon’s ”non-finitely-many” singular foliation of exercice 1.2.18, consider p : (x, y) 7→
y the projection onto the horizontal axis.

1. Show that for every p-projectable vector field X on R2 whose derivatives vanish at order n at the
point of coordinates (n, 0), its projection p∗(X) ∈ X(R) is a vector field that vanishes at order n
at 0.

2. Show that p∗(F ∩ X(M)p) coincides with the space of vector fields on R vanishing at 0 with all
their derivatives.

3. Conclude.

1.4.8 New constructions from old ones in algebraic geometry
In this section, we define singular foliations as in Definition 1.2.11, with O being the algebra of polynomial
functions on Kd. By purely algebraic methods, we can define new singular foliations out of old ones.
When O is the algebra of functions on an affine variety W , and I is the ideal of functions vanishing on
a sub-affine variety S ⊂W , these constructions have a geometric meaning that we detail.
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Restriction

Consider an algebraic singular foliation F over O. For every foliated ideal I ⊂ O, i.e. any ideal such
that

F [I] ⊂ I.

The quotient space F/IF inherits a natural algebraic singular foliation structure over O/I. We call the
latter algebraic singular foliation the restriction w.r.t the ideal I. In the context of affine varieties, when
I is the ideal of functions vanishing on an affine subvariety W , it is a foliated ideal if and only if all
vector fields in F are tangent to W , and the previous construction corresponds to the restriction of F
to W .

Algebra Extension

Let F ⊂ Der(O) be an algebraic singular foliation. Assume that the algebra O has no zero divisor,
and let O be its field of fractions. For any subalgebra Õ with O ⊂ Õ ⊂ O such that every derivation
X ∈ F valued in derivations of O preserves Õ, there is natural algebraic singular foliation over Õ given
as Õ ⊗O F .

It is not easy to give this construction a geometric meaning. The blow-up is a construction of that
type on any affine chart.

Localization

In algebra and in particular in algebraic geometry localization is a common construction that is usually
done. Let us recall the definition for the algebra O.

Definition 1.4.44. A subset S ⊂ O is called multiplicatively closed if 1 ∈ S, and if S is stable under
multiplication. For a multiplicative set S ⊂ O, the localization of O at S is the algebra

S−1O :=
{
f

s

∣∣∣∣f ∈ O, s ∈ S}� ∼ (1.6)

• under the equivalence relation on O × S defined by, (f, s) ∼ (g, t): there is an element u ∈ S such
that u(ft− gs) = 0.

• the set of all equivalence classes is an algebra together with the addition and multiplication given
by

f

s
+ g

t
:= ft+ gs

st
and f

s
.
g

t
:= fg

st
(1.7)

Remark 1.4.45. The algebra O is a subalgebra of S−1O via the homomorphism O ↪→ S−1O, f 7→ f
1 .

Definition 1.4.46. Let F ⊂ Der(O) be an algebraic singular foliation and S ⊂ O be a multiplicative
subset. The localization of F at S is the algebraic singular foliation S−1F ⊂ Der(S−1O) made of
derivations of type S−1X for some X ∈ Der(O). Where for every (f, s) ∈ O × S,

S−1X

(
f

s

)
: S−1O −→ S−1O

f

s
7−→

(
X[f ]s− fX[s]

s2

)
.

The Lie bracket of S−1F is given as follows:

∀ X,Y ∈ F , ∀ (s, t) ∈ S2,

[
1
s
X,

1
t
Y

]
= 1
st

[X,Y ] + Y [s]
s2t

X − X[t]
st2

Y. (1.8)

Geometrically, localisation corresponds to restriction to (Zariski) open subsets.
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Germification

Let W ⊆ CN be an affine variety and OW its coordinates ring. We recall that for U ⊆ W an open
subset, a function f : U −→ C is said to be regular at a point x0 ∈ U if there exists polynomial functions
g, h ∈ OW on W with h(x0) 6= 0 such that f = g

h in a neighborhood of x0, namely if there exists an open
set V ⊂ U that contains x0 such that f |V = g

h |V .

Definition 1.4.47. A function germ at a point x0 ∈ W is an equivalence class of pairs (U, f) with
x0 ∈ U ⊂ W an open subset containing x0, and f : U −→ C is regular at x0, under the relation
equivalence: (U, f) ∼ (V, g) if f |U = g|V on an open subset of U ∩ V . The germs of regular functions
at x0 is the algebra given on the set of equivalence classes of the above equivalence relation and it is
denoted by OW,x0 .

Remark 1.4.48. It is important to notice that OW,x0 is a local ring. Also, since OW,x0 ' (OW )mx0
where mx0 = {f ∈ OW | f(x0) = 0} and (OW )mx0

is the localization w.r.t the complement of mx0 .

Definition 1.4.49. Let F ⊂ Der(OW ) be an algebraic singular foliation. For a given point x0 ∈W , the
germs of F at x0 is the localization of the algebraic singular foliation F at the complementary of the
maximal ideal mx0 .

Remark 1.4.50. This construction can be applied in smooth or complex differential geometry as well.

1.5 Morphisms of singular foliations
Isomorphisms of singular foliations are easily defined; they are diffeomorphisms (and biholomorphisms in
the complex case) that intertwine their respective singular foliations. General morphisms are more tricky.
There is a case, however, for which the definition is easy and unambiguous: surjective submersions.

Definition 1.5.1: Morphisms of singular foliations: the submersion case

Let F ,G be singular foliations on P and M respectively. A submersion Φ: P → M is said to be
a morphism of singular foliation if G ⊂ ϕ−1(F).

However, it is embarrassing to define morphisms only for submersions. For instance, we would like
that a transverse sub-manifold, the inclusion map should be also a sort of morphism. A more general
notion has been introduced by Androulidakis and Skandalis [AS09], see Section 1.4.6. Recall from that
section that we say that a smooth map φ : P →M is transverse to F if for all p ∈ P

Tφ(p)F + Tpφ(TpP ) = Tφ(p)M.

This is enough to define the pull-back ϕ−1(F).

Definition 1.5.2: Morphisms of singular foliations: the transverse case

Let F ,G be singular foliations on P and M respectively. A maps ϕ : P → M is said to be a
morphism of singular foliation if

1. ϕ is a transverse to F ,

2. G ⊂ ϕ−1(F).

Exercice 1.5.3. Show that the inclusion of a transverse submanifold S in a foliated manifold (M,F) is a
morphism in the previous sense for every sub-singular foliation of the restriction i∗SF .
Exercice 1.5.4. (This exercice supposes the notion of leaves). Is it true that a morphism of singular
foliation maps two points in the same leaf to two points in the same leaf?
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Exercice 1.5.5. This exercise requires the notion of Lie algebroid morphism [Mac05]. Assume that the
base map of a Lie algebroid morphism is a submersion: is it a morphism of singular foliations?

Even more general definitions can be found in [GV21], where they are defined as sheaf morphisms
compatible with the Lie bracket.

1.6 Singular foliations do admit leaves (i.e. induce a partition-
ifold)

We show in this section that to any singular foliation on M is attached a smooth partitionifold.

1.6.1 What is a leaf ?
Let F ⊂ X(M) be an involutive sub-C∞(M)-module7 of compactly supported smooth vector fields on
M .

Question 1.6.1: What is a leaf?

What are the leaves of F? And do they exist?

There are two natural notions of leaves, two different notions that deserve to be called ”leaves”.

1. The first idea that leaves are ”reachable points”. That is, we will define an equivalence relation on
M by pairing two points in M such that one can be reached one to the other by following the flow
of vector fields in F .

2. One will use the tangent space of F . A leaf should be submanifold (by definition !) whose tangent
space at a point is the tangent distribution at that point.

Here is a formal definition.

Definition 1.6.2. Let F ⊂ Xc(M) be an involutive sub-C∞(M)-module. We say that a point y ∈M is
reachable from a point x ∈M if there exists:

1. a finite sequence x0, . . . , xN of points in M with x0 = x and xN = y

2. time-dependent vector fields (X(i)
t )t∈R ∈ F for i = 0, . . . , N − 1, with Xi being defined in a

neighborhood of xi and xi+1,

... such that for all indices i = 0, . . . , N − 1, the integral curve starting at xi at time t = 0 of X(i)
t

reaches xi+1 at time t = 1.

Proposition 1.6.3. The relation on M defined by x ∼ y if y is reachable from x is an equivalence
relation.

We call reachable leaves or R-leaves for short the equivalence classes of the previous relation.

Definition 1.6.4. A tangent-leaf, or T-leaf for short, is a connected submanifold L ⊂M such that for
every ` ∈ L,

T`L = T`F ,

and which is maximal among connected sub-submanifolds that satisfy the same property8.
7Not a singular foliation yet.

So not finitely generated yet !
8I.e. it cannot be strictly included in a submanifold that satisfy the same property.
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Exercice 1.6.5. ”The infinite comb (revisited)” Let M := R2 be the Cartesian plane with coordinates
(x, y). Let I− ⊂ C∞(R2) be the ideal of functions vanishing identically on R− × R.

Consider all vector fields of the form

Fcomb =
{
f(x, y) ∂

∂x
+ g(x, y) ∂

∂y

∣∣∣∣g ∈ C∞(R2), f ∈ I−
}

1. Show that Fcomb:

(a) is stable under multiplication by C∞(R2),
(b) is involutive, i.e. is closed under the Lie bracket of vector fields:

[Fcomb,Fcomb] ⊂ Fcomb.

2. Draw what vector fields in Fcomb look like.

3. Draw what Tx,yFcomb looks like, depending on the sign of x.

4. Show that any point in M = R2 is reachable from any point in M = R2. How many R-leaves
exists?

5. Does Fcomb admits T -leaves ?

6. If yes, does T -leaves and R-leaves match?

This example shows that, in order to have a good definition of leaves, i.e. to have leaves that satisfy both
(i) and (ii) in Definition, we need to assume F is finitely generated. Otherwise, we may end up with the
problem encountered with Fcomb: there are points where the tangent point of the set of reachable point
is bigger than the tangent space of the foliation at that point.

1. Prove that I− is not finitely generated C∞(R2)-module.

2. Can we find an ideal I ⊂ C∞(R) which satisfies the following two conditions.

(a) its zero locus is exactly R−,
(b) it is stable under ∂

∂x

(c) it is finitely generated over C∞(X).
Hint: Consider the singular foliation generated by ∂

∂x and f ∂
∂y with f ∈ I.

Definition 1.6.6: Definition of leaves

A leaf of an involutive distribution F ⊂ Xc(M) is a submanifold L ⊂M which:

(i) is a T-leaf,

(ii) but is also a R-leaf.

Here is the main result of this section, which is attributed to Hermann [Her62].

Theorem 1.6.7: Hermann: Singular foliations do admit leaves!

Every singular foliation on a smooth manifold M partitions M into leaves.

Said otherwise, every singular foliation F induces a smooth partitionifold L•, such that for avery
m ∈ M , Lm is the set of reachable points from m, and such that TmF = TmLm. Here is an even more
precise statement that we will indeed prove, and immediately implies the previous one.
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Theorem 1.6.8: Second version

Let F be a singular foliation on a smooth manifold M . Every R-leaf L is a (maybe immersed)
submanifold of M , whose tangent space T`L coincides with T`F at every ` ∈ R.

We rest of the present section is dedicated to the proof of this statement.

Let us summarize this discussion:
What is given: Let F ⊂ X(M) be a involutive sub-C∞(M)-module, cf Def. ??

Not a singular foliation yet.
So not finitely generated yet !

Let TF be its singular distribution, cf Def 3.1.1

Question : What is a leaf ?

Answer 1: Reachable points !
The R-leaf through x ∈ M is the set of points
one can reach starting from x
and following flows of vector fields in F
See Def.

Answer 2: be tangent to distribution !
The T-leaf through x ∈ M is a submanifold L

containing x whose tangent space
at any ` ∈ L coincides with T`F,

See Definition 3.1.1.

Good point: Reachable-leaves exists
and partitions M

Bad point: may not be a sub-manifold

Good point: Tangent leaves are submanifolds
(by definition)

Bad point: may not exist

Problem: T-leaf 6= R-leaf for involutive C∞(M)-modules, see Exercice xxx.

(Theorem 3.1.1.) T-leaf = R-leaf for singular foliations.

That is, if we assume also that
F is locally finitely generated.We can call them simply leaves (and forget R- and T-leaves ).

Cor. 3.1.1: Leaves partition M. Cor. 3.1.1: Leaves are submanifolds.

1.6.2 A singular foliation is a symmetry of itself
The first step to prove Theorems 1.6.7 and 1.6.8 is to prove that vector fields in a singular foliation
have flow which are infinitesimal symmetries of themselves. The arguments presented in this section are
elementary, but quite complicated. Much better conceptual arguments proving the same results will be
given using the notion of anchored bundle and almost Lie algebroids .

This is actually a particular instance of the following more general statement.

Proposition 1.6.9: The flow of an infinitesimal symmetry is a symmetry

Let Y ∈ X(M) be a vector field whose time t-flow ϕYt : M →M exists. Ifa [Y,F ] ⊂ F , then (ϕYt )∗
is a symmetry of F .

aThat is, if Y is an ”infinitesimal symmetry” of F
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In fact we are going to prove a more general result.

Proposition 1.6.10. Let Y be vector field such that [Y,F ] ⊂ F . For every open neighborhood U on
which F is generated by vector fields X1, . . . , Xr, and any V ⊂ U an open subset such that φYt (x) exists
and is in U for all x ∈ V and |t| ≤ ε, there exists a matrix A(t, x), whose coefficients are functions on V
depending on t such that for all i = 1, . . . , r:

(φYt )∗

 X1
...
Xr

 =

 A(t, x)


 X1

...
Xr


Moreover, we can assume that

A(s, φYt (x)) ◦A(t, x) = A(t+ s, x) (1.9)

for all s, t ∈ R, x ∈ V for which φYt (x) ∈ V, and |t|, |t+ s| ≤ ε.

Proof. Consider an open neighborhood U of a point m ∈ M on which F is generated by X1, ..., Xn.
Let us chose ε > 0 and a smaller neighborhood V ⊂ U such that if |t| ≤ ε, φYt (V) ⊂ U . By definition
of a symmetry of a singular foliation, there exists smooth function bji ∈ C∞(U), such that [Y,Xi] =∑r
j=1 b

j
i Xj . Let us write this expression as a matrix:

adY

 X1
...
Xr

 =

 adY(x)


 X1

...
Xr

 (1.10)

with adY being a shorthand for the matrix of functions on U whose i-th line and j-th column is bij . For
any diffeomorphism φ : V → φ(V), the push-forward map φ∗ : X(φ(V)) ' X(V) is defined by φ∗(X)|m =
Tφ(m)φ

−1(Xφ(m)). It satisfies for all F ∈ C∞(φ(V)) and X ∈ X(φ(V)) the relation:

φ∗(FX) = φ∗F φ∗(X) (1.11)

Also, if φ = φYt is the flow of Y at time t:

∂

∂t
(φYt )∗X = (φYt )∗[Y,X] = [Y, (φYt )∗X] (1.12)

We want to show that there exist time-dependant functions Aji (t, x) on V such that

(φYt )∗(Xi) =
r∑
j=1

Aji (t)Xj (1.13)

where (φYt )∗(Xi) is to be understood as the image through the push-forward map of the restriction of
Xi to φYt (V). We also want the matrix of functions (Aji (t, x)) to be invertible for all t, x.

Again, let us write the expression we wish to obtain in a matrix form. Below, both sides are column
vectors of vector fields on V:

(φYt )∗

 X1
...
Xr

 =

 A(t, x)


 X1

...
Xr

 (1.14)

with A(t, x) being a shorthand for the matrix of functions on V whose i-th line and j-th column is
Aij(t, x). Consider the initial value problem with parameters x ∈ V:

∂Aji (t, x)
∂t

=
r∑

k=1
bki (φXt (x))Ajk
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with initial conditions Aji (0, x) = δi,j . Or, equivalently, consider the initial value problem on the vector
space r × r matrices:

∂

∂t

 A(t, x)

 =

 adY
(
φYt (x)

)  A(t, x)

 (1.15)

with initial condition A(0, x) = id. The initial value problem have solutions for all x ∈ V and |t| ≤ ε,
upon changing V for a smaller neighborhood that we still call V if necessary. Those solutions depend
smoothly on the parameters x ∈ V. Also, the matrix A(t, x) is invertible for all |t| ≤ ε and x ∈ V. Last,
as any differential equation, it satisfies (1.9).

We claim that Equation (1.14) holds. To show it, let us introduce the column vector whose compo-
nents are vector fields on V:

R(t, x) =

 A(t, x)

−1

◦ (φYt )∗

 X1
...
Xr


An easy computation gives (we now abbreviate the matrix notations, also (X•) stands for the column
vector X1, . . . , Xr):

∂R(t, x)
∂t

= −A−1 ◦ ∂A
∂t
◦A−1 ◦ (φYt )∗(X•) + A−1 ◦ (φYt )∗ ◦ adY︸ ︷︷ ︸

by Eq. (1.12)

(X•)

= −A−1 ◦ ∂A
∂t
◦A−1 ◦ (φYt )∗(X•) + A−1 ◦ (φYt )∗ ◦ adY(x)︸ ︷︷ ︸

by Eq. (1.10)

(X•)

= −A−1 ◦ ∂A
∂t
◦A−1 ◦ (φYt )∗(X•) + A−1 ◦ adY(φYt (x)) ◦ (φYt )∗︸ ︷︷ ︸

by Eq. (1.11)

(X•)

= A−1 ◦
(
−∂A
∂t
◦A−1 + adY(φYt (x))

)
︸ ︷︷ ︸

= 0 by Eq. (1.15)

◦(φYt )∗(X•)

= 0
Since R(0, x) = (X•), we have R(t, x) = (X•) for all t ≤ ε and the (1.14) follows. This implies that
the push-forward of any vector field in F under the flow of Y is a vector field in F at least for t small
enough. Composing such push-forward maps, we obtain that it is still true for all t such that the flow of
Y is well-defined.

Let us restate Proposition 1.6.10 in a different manner. We call infinitesimal symmetry of F a vector
field Y such that [Y,F ] ⊂ F (in contrast with symmetry of F which are diffeomorphisms such that
φ∗(F) = F).

Proposition 1.6.11: Symmetries and infinitesimal symmetries

When the flow of an infinitesimal symmetry of F exists, it is a symmetry of F .

This proposition has an immediate and very important corollary. Again, a much better proof will be
given using the notion of anchored bundle and almost Lie algebroids.
Remark 1.6.12. The results of this section can be easily extended to the real analytic or complex
settings.
Proposition 1.6.13. Let X ∈ F be a vector field whose time t-flow ϕXt : M → M exists. Then (ϕXt )∗
is a symmetry of F .
Remark 1.6.14. It deserves to be noticed that the conclusion of the corollary is not true for the infinite
comb. Its proof indeed made an intense use of the assumptions ”locally finitely generated”.
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1.6.3 The local splitting theorem
The second step in the proof of Theorems 1.6.7 and 1.6.8 is an equivalent of Weinstein’s splitting theorem
in Poisson geometry. Let us state this theorem first.

The statements

The results of this section are valid in the smooth, complex (upon replacing R by C in the statements
below), or real analytic cases. They are not true in algebraic geometry.

Theorem 1.6.15: Local splitting, version 1

Consider F a singular foliation on a manifold M of dimension d.
Any m ∈M a point admits a neighborhood on which F is isomorphic to the direct product of

1. the singular foliation of all vector fields on an open ball in Rl,

2. a singular foliation T on an open ball in Rd−l, only made of vector fields vanishing at its
center, where the rank is r − l.

Above, d = dim(M), l = dim(TmF) and r = rkm(F).

Alternatively, it can be practical to state this result in local coordinates.

Theorem 1.6.16: Local spliting, version 2

Let F be a singular foliation on a smooth, complex or real analytic singular foliation M . Every
point m ∈ M admits a chart Um with local coordinates (x1, . . . , xl, y1, . . . , yn−l), centered at m,
on which the restriction of F admits the following generators:

a) the l vector fields ∂
∂x1

, . . . , ∂
∂xl

,

b) and r − l vector fields of the form

f1(y1, . . . , yn−l)
∂

∂y1
+ · · ·+ fn−l(y1, . . . , yn−l)

∂

∂yn−l

with f1(0, . . . , 0) = · · · = fn−l(0, . . . , 0) = 0.

Above, l = dim(TmF) and r = rkm(F).

Here is a third version of the local splitting theorem. Notice that there is no equivalent statement
for the Weinstein splitting theorem in Poisson geometry.

Theorem 1.6.17: Local spliting, version 3

Let F be a singular foliation on a smooth, complex or real analytic singular foliation M of di-
mension d. For every m ∈M , there exists

1. an open neighborhood U of m in M

2. a singular foliation T of rank rkm(F) − l on an open neighborhood V of 0 in Kd−l, with
l = dim(TmF), admitting {0} as a leaf,

3. a surjective submersion φ : U → V,
such that the restriction of F to U coincides with the pull-back singular foliation φ−1(T ).
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Recall the following lemma:

Lemma 1.6.18. If a vector field X is not zero at some point m ∈ M , then there exists a local chart U
with coordinates (x, y1, . . . , yd−1), centered at m, such that, on U , we have X = ∂

∂x .

Proof. It is obvious that all three versions of the local splitting theorem are equivalent. We will prove
the version 2. Our proof is by recursion: since the statement is local by nature, it suffices to consider
the following recursion assumption

Hl = ”The statement is proved at m = 0 for any singular foliation F on an open ball in a finite
dimensional vector space such that dim(T0F) ≤ l”.

For l = 0, H0 is automatically true and there is nothing to prove. Assume now Hl is valid, and let
us prove Hl+1.

Let X1, . . . , Xr be generators of a singular foliation F defined in open neighborhood of 0 ∈ Kd.
Without any loss of generality, one can assume Xr|m 6= 0. By the Hadamard lemma 1.6.18, there exists
local coordinates (x, y1, . . . , yd−1) centered at 0, such that, on U , in which Xr = ∂

∂x . In these coordinates,
the remaining generators read as:

Xj =
r−1∑
i=1

F ji (x, y1, . . . , yd−1) ∂

∂yi
+ gj(x, y1, . . . , yd−1) ∂

∂x
.

Since Xr = ∂
∂x belongs to F , there is a second family of generators of F giver by Xr together with the

r − 1 vector fields:

X̂j := Xj − gj(x, y1, . . . , yd−1) ∂
∂x

=
r−1∑
i=1

F ji (x, y1, . . . , yd−1) ∂

∂yi
.

Let G be the module generated by X̂1, . . . , X̂r−1. This module has the following description: G is the
intersection of F with vector fields on the fiber of the map

Π: (x, y1, . . . , yd−1) 7→ x.

In equation:
G = F ∩ {Π− vertical}

Since both F and Π-vertical vector fields are closed under Lie bracket, it defines, in particular, a singular
foliation of rank d− 1 on some neighborhood of 0.

Now, [Xr,G] ⊂ F , since Xr ∈ F and G ⊂ F . Also, G being vertical with respect to Π while Xr is
Π-compatible on the vector field ∂

∂x on R, the Lie bracket [Xr,G] is valued in Π-vertical vector fields, so
that

[Xr,G] ⊂ F ∩ {Π− vertical} = G.

Said otherwise, Xr is an infinitesimal symmetry of G. By Proposition , it implies that its flow is
a symmetry of G. Concretely, it means that for all (x, y1, . . . , yd−1) and all t ∈ R such that (x +
t, y1, . . . , yd−1) is still in the considered open subset,

(
φX

r

t

)
∗

 X̂1(x, y)
...

X̂r−1(x, y)

 =

 A(t, x, y)


 X̂1(x, y)

...
X̂r−1(x, y)

 ,

where A(t, x, y) is an invertible matrix that satisfies:

A
(
s, φX

r

t (x, y)
)
◦A(t, x, y) = A(t+ s, x, y)

Since the flow at time t of Xr reads

φX
r

t : (x, y1, . . . , yd−1) −→ (x+ t, y1, . . . , yd−1)
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it means that there exists an invertible matrix A(t, x, y) such that: Ŷ1(x+ t, y)
...

Ŷr−1(x+ t, y)

 =

 A(t, x, y)


 Ŷ1(x, y)

...
Ŷr−1(x, y)

 ,

where the invertible matrix A(t, x, y) satisfies:

A
(
s, φX

r

t (x, y)
)
◦A(t, x, y) = A(t+ s, x, y)

In particular, the vector fields Z1(x, y)
...

Zr−1(x, y)

 =

 A(x, 0, y)

−1
 Ŷ1(0, y)

...
Ŷr−1(0, y)

 .

are well-defined in a neighborhood of 0 and satisfy the following two properties:
1. they are local generators of G (since the matrix A(t, x, y) is invertible for t, x, y small enough),

2. they are invariant under the flow of Xr, since

In coordinates, it means that they are of the form:

Zi =
d−1∑
i=1

f ij(y1, . . . , yd−1) ∂

∂yj
.

They therefore define a singular foliation H of rank r − 1 on Kd−1. By construction, the dimension of
T0G is l − 1. We can then apply the recursion hypothesis, and we obtain the existence of coordinates
(x1, . . . , xl, y

′
1, . . . , y

′
d−l−1) on which H is of the form (). These variables, together with xl+1 := x form

a system of coordinates on which F is of the form ().

1.6.4 Leaves are manifolds
We will use the following property of immersed submanifolds:
Proposition 1.6.19. If a connected subset L ⊂ M satisfies that every m ∈ L has a neighborhood U
such that the connected component of m in L ∩ U is a submanifold of dimension k, then it is a (maybe
immersed) submanifold of dimension k.

Choose a R-leaf L. An immediate consequence of the local splitting theorem is that every point
m ∈ L admits a neighborhood U ⊂ M admitting the following property: For the restriction i∗UF
the set of reachable points LUm is the submanifold y1 = · · · = yd−` = 0 in some local coordinates
(x1, . . . , xd, y1, · · · = yd−`) on which m = (0, . . . , 0). Said otherwise, the connected component of m in
L ∩ U is a submanifold. It therefore satisfies the assumptions of Proposition 1.6.19 and is an immersed
submanifold. It is therefore also a T -leaf. This concludes the proof of Theorems 1.6.7 and 1.6.8.
Remark 1.6.20. Notice that the functions x1, . . . , xd−l that appear in the local splitting theorem
define a diffeomorphism ΦUm from the submanifold LUm to an open neighborhood of Kd−l. The families
(LUm,ΦUm)m∈M form an atlas for L.

1.6.5 The transverse singular foliation of a leaf
The next corollary is an immediate consequence of the two following facts:

1. leaves are R-leaves, i.e. two points in the same leaf

2. flow of vector fields in F are symmetries of F .
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Corollary 1.6.21: Along a leaf, landscape is always the same

Any two points in the same leaf of a singular foliation have open neighbourhoods on which the
singular foliations are isomorphic

This result has a natural consequence about transverse singular foliations. Recall that for we say that
a pointed sub-manifold S ⊂M , with a distinguished point m ∈ S is transverse to the leaf L through m
if

TmS ⊕ TmL = TmM,

Recall also that for any transverse submanifold (S,m) there exists a neighborhood of m in S on which
F is transverse to F so that a restricted singular foliation TS := iSF can be defined.

Theorem 1.6.22: Transverse of a leaf

Let L be a leaf of a smooth, real analytic or complex singular foliation. For any two subman-
ifolds transverse to L, the restricted singular foliation are isomorphic in neighborhoods of their
intersections with L.

In the smooth case, all these results can be proven using the notion of F-connection, introduced in
[LGR19] see also [LGR21].

Definition 1.6.23: F-connection

Let L be a leaf of a singular foliation F . We say that a triple (UL, p,H) where:

1. UL is n open neighborhood of L in M ,

2. p : UL −→ L is a submersion (whose restriction to L is the identity)

3. H is an Ehresmann distribution with respect to p, i.e. a distribution such that

Hm ⊕ ker(Tmp) = TmM

for all m ∈ UL,

is an F-connection if sections of H are included in F .

Remark 1.6.24. The fibers p−1(m) of p : UL −→ L are submanifolds transverse to L. In particular,
they admit an restricted singular foliation that we denote by Tm.

Remark 1.6.25. For any F-connection (UL, p,H), we have Hm ⊂ TmF for all m ∈M . This condition
is however not sufficient.

Remark 1.6.26. [LGR19, LGR21] In the smooth case, the existence of a flat F-connection is equivalent
to the existence, near L, a a regular foliation whose leaves admitting L as a leaf and included in F .

It has been proven in [LGR19, LGR21] that:

1. In the smooth setting, every leaf admits an F-connection.

2. That parallel transportation w.r.t an F-connection along a path on L from m to n induces, as long
as it is defined, an isomorphism of singular foliation from a neighborhood of m in (p−1(m), Tm) to
a neighborhood of n in (p−1(n), Tn), with Tm as in Remark 1.6.24.

3. This notion can be used to define the equivalent of the ”first return map”, or holonomy, or mon-
odromy of a singular leaf. We refer to [LGR19, LGR21] for more details.
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Chapter 2

The canonical Lie and groupoid
structures hidden behind a singular
foliation

Given F a finitely generated singular foliation

Construct an anchored bundle A
ρ
→ TM of F Construct a second one

Equip it with an almost Lie bracket or a second one here

They are equivalent

Restrict to a point Restrict to a leaf

isotropy Lie algebra Holonomy Lie algebroid

2.1 The almost Lie algebroids of a singular foliation
In this section M is a smooth or complex manifold, (or a Zarisky open subset of Cd). Also, O(M) stands
for the corresponding sheaf of functions.

2.1.1 Anchored bundles
As we will see, the smooth setting will be considerably simpler, and will have much better properties.
However, we will consider all settings, as much as we can.

Remark 2.1.1. The reader interested only in the smooth setting is invited to skip the next lines, where
we recall the meaning of ρ(Γ(A)) for ρ : A→ TM a vector bundle morphism: As we saw in Section 3.1.1,

U 7→ ρ(ΓU (A))
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is a pre-sheaf in the complex and real analytic cases, but it can be sheafified (in the smooth case, it
is a sheaf, so sheafification is useless). We denote by ρ(Γ(A)) this sheaf and call it the image of Γ(A)
through ρ.

do we need to say that it will be still a
subsheaf of vector fields?

Definition 2.1.2: Anchored bundle

An anchored vector bundle is a pair (A, ρ) made of a vector bundle A→M , and a vector bundle
morphism called its anchor map.

A

��

ρ // TM

��
M M

By construction, ρ(Γ(A)) ⊆ X(M) is a sub-sheaf of O(M)-module which is locally finitely generated.
Moreover, it is generated, locally, by less at most rk(A) generators.

Definition 2.1.3: Anchored bundle over F

Let F be a singular foliation on M . We say that an anchored bundle (A, ρ)

1. terminates inside F if ρ(Γ(A)) ⊂ F

2. and is over F if ρ(Γ(A)) = F .

Notice that anchored bundle over F could be defined for any locally finitely generated module over
functions. We have not used [F ,F ] ⊂ F at this point. This section is dedicated to answer the following
question:

Question 2.1.4: Behind a singular foliation?

Let F be a singular foliation on M .

1. Does there always exist an anchored bundle (A, ρ) over F?

2. If yes, how unique (= canonical) are they?

3. If yes, what properties and additional structures do they have?

Remark 2.1.5. For Debord foliations, an anchored bundle exists, by Serre-Swann theorem.

Does there always exist an anchored bundle (A, ρ) over F?

Here is an answer to the first part of question.

Proposition 2.1.6: Answer to the first part of Question ??

Let F be a singular foliation on M .

1. If F is finitely generated, then there exists an anchored bundle (A, ρ) over F , and A can be
chosen to be a trivial vector bundle. In particular, any singular foliation is of this type in a
neighborhood of any point.

2. In the smooth setting, the following points are equivalent.
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(i) F is finitely generated.
(ii) There exists a anchored bundle (A, ρ) over F .

Proof. Assume that F is finitely generated, and let X1, . . . , Xr be generators. Let A be the trivial vector
bundle of rank r, i.e.

A = Kr ×M =⇒M.

Denote the canonical trivialisation of E by e1 . . . , er and define the anchor map by ρ(ei) = Xi for all
i = 1, . . . , r. We have ρ(Γ(A)) = F by construction. This proves the first item of the statement. It also
proves the implication (i) =⇒ (ii). Let us show that (ii) =⇒ (i). Let (A, ρ) be as in (i). It is a classical
theorem in smooth differential geometry that there exists a vector bundle B →M such that A⊕B is a
trivial vector bundle E →M . Define an anchor map on that trivial vector bundle by

ρE : E
prA // A

ρ // TM

where prA is the projection onto A with respect to B. The pair (E, ρE) is a trivial vector bundle such
that ρE(Γ(E)) = F . In particular, F has rk(E) generators. This concludes the proof.

Are two anchored bundles over F really different?

Let us define morphisms of anchored bundles - and add an equivalence class of them.

Definition 2.1.7: Morphisms and Equivalences

Let (A1 →M1, ρ1) and (A2 →M2, ρ2) be two anchored bundles.

1. We call morphism of anchored bundles any vector bundle morphism Φ: A1 −→ A2 over a
map φ : M1 →M2 making the following diagram commutative:

A1
Φ //

""
ρ2

��

A2

ρ1

��

||
M1

φ // M2

TM1
Tφ //

<<

TM2

bb

(2.1)

We speak of an isomorphism of anchored bundle when Φ is an isomorphism of vector bun-
dles.

2. Two morphisms of anchored bundles Φ,Φ′ as in item 1 are said to be equivalent if ρ ◦ (Φ−
Φ′) = 0.

3. An equivalence of anchored bundles is a pair of anchored bundle morphismsa

A1
Φ // A2
Ψ
oo (2.2)

such that Ψ ◦ Φ and Φ ◦Ψ are equivalent to the identities of A1 and A2.

It is easily checked that both equivalences above are an equivalence relation on the class of
anchored bundles and their sets of morphisms.

aIn the complex or real analytic settings, an equivalence of vector bundle morphisms shall be a a covering
(Ui)i∈I of M and an equivalence (Φi,Ψi) on each one of the open sets Ui. We also assume Φi,Φj and Ψi,Ψj to
be equivalent on Ui ∩ Uj .
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For a good understanding of the next theorem, recall that an anchored bundle is said to terminate
inside a singular foliation F if ρ(Γ(A)) ⊂ F and to be over F if ρ(Γ(A)) = F .

Proposition 2.1.8: The unique up to equivalence anchored bundles

Any two anchored bundles over the same singular foliation are equivalent.

Proof. Let U ⊂ M be an open subset of M and fix a local trivialisation of A1. Since ρ1(Γ(A1)) =
ρ2(Γ(A2)), we can define a O(U)-linear map

ϕU : Γ(A1)U −→ Γ(A2)U

such that ρ1(a) = ρ2(ϕ(a)) for every a ∈ Γ(A1)U . Likewise, we have a map

ψU : Γ(A2)U −→ Γ(A1)U

In the smooth case, we use partition of unity to glue these local maps to a global one.

Leaves of anchored bundles

So far, we have simply used the fact that F is a locally finitely generated module over functions. Stability
under Lie bracket has not been used at this point. Here is, however, a first result that makes use of
leaves.

Theorem 2.1.9: Along a leaf, always the same landscape

Let (A, ρ, [·, ·]A) be an anchored bundle over a singular foliation F . Any two points in the same
leaf have neighborhoods on which the restrictions of (A, ρ) are isomorphic.

We delay the proof to after the introduction of almost Lie algebroid structures.

2.1.2 Almost Lie algebroids: definition and existence
Now that we have clarified the existence and the (relative) unicity of an anchored bundle, comes the
second point in Question 2.1.4, what structure does it have? Here is a candidate.

Definition 2.1.10: Almost Lie algebroids

Let (A, ρ) be an anchored vector bundle over M . We call almost-Lie algebroid bracket a skew-
symmetric bilinear (over K) map

[· , ·]A : Γ(A) ∧ Γ(A) −→ Γ(A)

that satisfies the Leibniz identity,

[x, fy]A = ρ(x)[f ]y + f [x, y]A, for all x, y ∈ Γ(A), f ∈ O(M) (2.3)

and the anchor condition:

ρ([x, y]A) = [ρ(x), ρ(y)], for all x, y ∈ Γ(A). (2.4)

Remark 2.1.11. In the definition of an almost Lie algebroid, we do not assume [· , ·]A to satisfy the
Jacobi identity. When it does, we have in fact a Lie algebroid whose image through the anchor map is
F . It however satisfies that for any sections x, y, z ∈ Γ(A):

ρ ([x, [y, z]A]A + [y, [z, x]A]A + [z, [x, y]A]A) = 0.
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The following Lemma makes almost Lie algebroids a good candidate to answer item 3 in Question
2.1.4.

Lemma 2.1.12. For every almost-Lie algebroid on (A → M,ρ, [·, ·]A), the image of the anchor map
ρ(Γ(A)) ⊆ X(M) is a singular foliation on M .

Proof. It is an immediate consequence of the anchor condition.

We can now answer the second point of Question 2.1.4. We learnt from Marco Zambon the following
result:

Proposition 2.1.13: Almost Lie algebroids

Every finitely generated foliation on M is the image under the anchor map of an almost-Lie
algebroid.
In the smooth case, moreover,

1. Every anchored vector bundle (A, ρ) over M such that ρ(Γ(A)) = F can be endowed with
an almost-Lie algebroid bracket.

2. A singular foliation is the image under the anchor map of an almost-Lie algebroid if and
only if it is finitely generated.

Proof. Let X1, . . . , Xr be generators of F . There exist functions ckij such that

[Xi, Xj ] =
n∑
k=1

ckijXk and ckji = −ckij .

Let A be the trivial vector bundle over M with fibers Kr, and let e1, . . . , er be the canonical trivialisation
of this bundle. We define the almost Lie algebroid anchors and brackets on generators by{

ρ(ei) = Xi

[x, y]A =
∑r
k=1 c

k
ijek

and extend them using linearity (for the anchor) or Leibniz identity (for the bracket). This is easily
checked to be an almost Lie algebroid.

The second part of the statement (i.e. the smooth case) comes from the observation that almost
Lie algebroid brackets on a given anchored bundle (A, ρ) can be glued using a partition of unity. More
precisely, given an anchored bundle (A → M,ρ), a partition of unity (χi)i∈I relative to an open cover
(Ui)i∈I , and almost Lie algebroid brackets [·, ·]i (relative to ρ) on Ui for all i ∈ I, the following expression:

[·, ·] =
∑
i∈I

χi [·, ·]i

is an almost Lie algebroid bracket on ∪i ∈IUi - relative to the anchor ρ.

Now that we have defined the object ”almost Lie algebroid that terminates in F”, let us make it a
category by defining morphisms. In fact, we will only deal with morphisms over the identity of M , which
are much simpler. The subtlety is that we do not assume morphisms of almost Lie algebroid strictures
to be compatible with the bracket, but only to be compatible with the anchor! This is absolutely
counter-intuitive, but makes perfect sense having Lie ∞-algebroids in mind.

Definition 2.1.14: Morphisms and Equivalences

Let M be a manifold.
1. We call morphism of almost Lie algebroids a morphisms of anchored bundles - forgetting

the almost Lie algebroid bracket.
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2. Two such morphisms are equivalent if and only if they are equivalent as anchored bundle
morphisms.

3. In particular, an equivalence between almost Lie ∞-algebroids is simply an equivalence of
their underlying anchored bundles.

This deserves justification: why did we not require that ”morphisms” respect the almost Lie algebroid
brackets? The answer comes from the following proposition:

Proposition 2.1.15. Let (A1, [· , ·]A1 , ρ1) and (A2, [· , ·]A2 , ρ2) be almost Lie algebroids that terminate
inside the same singular foliation F . For any morphism Φ from the first one to the second one:

[Φ(a),Φ(b)]A2 − Φ([a, b]) ∈ ker(ρ2)

Proof. By definition of an almost Lie algebroid:

ρ2([Φ(a),Φ(b)]A2 − Φ([a, b])) = [ρ2 ◦ Φ(a), ρ2 ◦ Φ(b)]A2 − ρ2 ◦ Φ([a, b]))
= [ρ1(a), ρ1(b)]A2 − ρ1([a, b]))

= 0

This proves the claim.

Let us conclude this section by a theorem that follows from Proposition 2.1.13, and Theorem 2.1.16.
Theorem 2.1.16: The class of almost Lie algebroids over F .

Any two almost Lie algebroids over a finitely generated singular foliation are equivalent.

2.1.3 An alternative proof of Proposition 1.6.10
We use the notion of almost Lie algebroid to give a much simpler proof of a result that was crucial to
establish the existence of leaves: Proposition 1.6.10. This statement asserts that the flows of vector fields
in F are symmetries of F . It follows in fact from the following proposition, that we shall now prove,
using two important tools: linear vector fields and, as we said, almost Lie algebroids.

Proposition 2.1.17. Let F be a singular foliation on M . Choose X ∈ F whose time 1-flow φX1 of X
is a well-defined diffeomorphism from U to V. Then the restrictions of any anchored bundle (A, ρ) over
M to U and V are isomorphic.

These isomorphisms can be seen, when U = V = M and A is a trivial bundle, as families of invertible
matrices as in Proposition 1.6.10. They form therefore an alternative proof to those results.

The proof is based on the notion of linear vector field. A vector field Y on a vector bundle E p→ M
is said to be linear if one of the following equivalent conditions holds:

(i) For any function f on E whose restriction to any fiber of p : E →M is a polynomial of degree ≤ k,
Y [f ] is a polynomial of degree ≤ k. Y [p∗O] ⊂ p∗O and Y [Γ(A∗)] ⊂ Γ(A∗), with the understanding
that Γ(A∗) must be considered as a function on A.

(iii) In any local coordinates (x1, . . . , xn, y1, . . . , ym), with xi the coordinates on the base, and yj linear
coordinates on the fibers, the vector field Y is of the form:

Y =
n∑
i=1

Ai(x1, . . . , xn) ∂

∂xi
+

n∑
i,j=1

Bij(x1, . . . , xn)yi
∂

∂yj
.

Here is a lemma that describes a practical manner to define a linear vector field:
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Lemma 2.1.18. Let E p→M be a vector bundle and X ∈ X(M) be a vector field. For any linear map:

δX : Γ(E∗) −→ Γ(E∗)

such that for every function f ∈ OM and every ε ∈ Γ(E∗):

δX(fε) = fδX(ε) +X[f ] ε (2.5)

there exists a unique linear vector field on E that projects on X and whose restriction to fiberwise linear
functions on E is δX .

Here is a lemma about flow of linear vector fields.

Lemma 2.1.19. Let Y be a linear vector field on a vector bundle E p→ M . There exists a vector field
p∗(Y ) on M to which Y is p-related. The flow φYt at time t of a linear vector field is defined if and only
the flow at time t of its projection p∗(Y ) on M is defined. In that case, it is vector bundle isomorphism

E

��

φYt // E

��
M

φ
p∗(Y )
t // M

Now we can prove Proposition. Choose a vector field X̃ on 2.1.17.

Proof. Let us choose X ∈ F and a ∈ Γ(A) such that ρ(a) = X. The following two items construct a
linear vector field on TM and a linear vector field on A that project on X.

1. The map:
δTMX : Γ(T ∗M) → Γ(T ∗M)

α 7→ LXα

satisfies Condition (2.5) and therefore defines a linear vector field X̂ on TM
p→ M which is p-

compatible to X.

2. Let a ∈ Γ(A) be any section such that ρ(a) = X. Choose an almost Lie algebroid bracket [·, ·]A on
(A, ρ). We define the Lie derivative La of a section α ∈ Γ(A∗) by

〈Laα, b〉 = ρ(a) [〈α, b〉]− 〈α, [a, b]A〉.

The Leibniz condition implies that the right hand side of the previous expression is linear over
functions, and is therefore a well-defined section of Γ(A∗). Moreover

α 7→ Laα

satisfies condition (2.5) and defines therefore a linear vector field â on A which is p-related to
ρ(a) = X.

Since the vector fields â and X̂ on A
p→ M and TM

p→ M are p-related to X, the pair (â, X̂) ∈
(A × TM) is tangent to the fibered product A ×p,M,p TM and its restriction is a linear vector field on
A⊕ TM p→M which is again p-related to X. We denote it by â, X

Now, the graph of ρ:
{(b, ρ(b))|b ∈ A} ⊂ A⊕ TM

is a submanifold of A⊕ TM that we denote by Gr(ρ).
We claim that â, X is tangent to that submanifold. Let us check it: the submanifold Gr(ρ) is the

zero locus of the functions1

fα : A⊕ TM → R
(b, u) 7→ α(ρ(b)− u)

with α ∈ Γ(T ∗M). This comes from the easily checked identity:

â, X [fα] (b, u) 7→ LXα (ρ(b)− u). (2.6)
1The proof could be repeated almost word by word to the holomorphic setting.
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Remark 2.1.20. Equation 2.6 is precisely the point where we use the anchor condition of the almost
Lie algebroid is used - so far, only the Leibniz identity was used.

Assume now that the flow at time t of X ∈ F exists on U . By Lemma 2.1.19, the flow of â is a vector
bundle morphism Φat : A→ A over φXt : M →M . The flow of â, X is also a linear vector field, given by

(A⊕ TM)|U → (A⊕ TM)|V
(b, u) 7→ (Φat (b), TφXt (u)).

Now, since â, X is tangent to Gr(ρ), its flow must preserve it, which precisely means that Diagram
(2.1) commutes, and therefore means that Φat is an isomorphism of anchored bundles. This proves the
claim.

2.2 Isotropy Lie algebra and holonomy Lie algebroids
Let us use the almost Lie algebroids associated to a singular foliation in the previous section to associate
a Lie algebra to any point of a singular foliation.

2.2.1 Kernel and Strong-kernel of a vector bundle morphism
Consider a vector bundle morphism over the identity of M :

B

��

Φ // C

��
M M

Choose a point m ∈M . There are two subspaces in Bm that deserve to be called ”kernels”.

1. the usual kernel ker(Φm), i.e.
{u ∈ Bm |Φ|m(u) = 0},

2. and there is the Strong Kernel, i.e. the subspace Sker(Φ,m) ⊂ Bm of all elements through which
there is a neighborhood U of m in M and a local section in the kernel of Φ: ΓU (B) → ΓU (C). In
equation:

Sker(Φ,m) := {u ∈ Bm s.t. ∃U ∈ Γ(B) with Φ(U) = 0 and U|m = u}.

Of course, there is an inclusion:
Sker(Φ,m) ⊂ ker(Φ|m).

Moreover, the dimensions of the distributions have opposite behaviour:

1. the map m 7→ dim(ker(Φ|m)) is upper semi-continuous, i.e. if a sequence (xn) in M has limit x,
then

dim(ker(Φ|x)) ≥ upper limit of dim(ker(Φ|xn
))

2. the map m 7→ dim(Sker(Φ|m)) is lower semi-continuous, i.e. if a sequence (xn) in M has limit x,
then

dim(Sker(Φ, x)) ≤ lower limit of dim(Sker(Φ, xn)).

Proposition 2.2.1. Let Φ: B → A be a vector bundle morphism over the identity of M . For any
m ∈M , the following two assertions are equivalent:

1. the kernel and the strong kernel coincide at m.

2. There is a neighborhood U of m in M on which the kernel and the strong kernel coincide at all
points.

In this case moreover, these coinciding kernels form a sub-vector bundle of the restriction to U of B.
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2.2.2 The isotropy Lie algebra I: the space
Let F be a singular foliation on a manifold M . Let U be an open neighborhood of m on which F is
finitely generated. In view of Proposition 2.1.13, there exists an anchored bundle (A → U , ρ) over F .
We call isotropy vector space at m the quotient space:

gm(F) = ker(ρm)
Sker(ρ,m) .

Notice that the notation gm(F) makes no reference to the chosen anchored bundle. This is justified by
the following proposition:

Proposition 2.2.2: The holonomy vector space at m makes sense

Let F be a singular foliation. The isotropy vector spaces associated to any two anchored bundles
are canonically isomorphic.

Proof. This is an immediate consequence of Theorem 2.1.8.

Here is an important theorem, due to [AS09].

Theorem 2.2.3: Ranks and dimensions

Let (M,F) be a singular foliation. For every m ∈M ,

1. the rank rkm(F) of F at m (i.e. the minimal number of local generators),

2. the dimension dim(Lm) of the leaf through m,

3. and the dimension dim (gm(F)) of the holonomy vector spacea at m,

are related by the relation
rkm(F) = dim (gm(F)) + dim(Lm).

athat will be soon equipped with a Lie bracket making it Androulidakis-Skandalis isotropy Lie algebra.

Proof. Using the local splitting theorem, locally, we obtain that F is the product of X(Ra) (with a the
dimension of TmF) and a foliation vanishing at the origin, called the transverse foliation. The rank
of foliation X(Rr) is r. So we are left with the task of proving that the transverse foliation T (which
is made of vector fields vanishing of the origin) has a rank equal to the dimension of gm(T ). We can
pick a minimal system of generators Y1, . . . , Yr. It is clear that the class [Yi]’s of these vectors in g0(T ),
so the dimension of gm(T ) is less or equal the rank r of T . Thus, it only remains to show that these
classes [Yi] ∈ gm(T ) are linearly independent. Assume that they are not, i.e. (without loss of generality):
[Y1] =

∑r
i=2 αi[Yi] for some αi ∈ R. This means that Y1 =

∑r
i=2 αiYi + Y with Y in I0F . We can write

Y =
∑
giYi with gi vanishing at the origin and obtain

(1− g1)Y1 =
r∑
i=2

(αi + gi)Yi

Near the origin, we can invert (1 − gk) and get an expression for Y1 in term of the other Y ’s which
contradicts the minimality of Y1, ..., Yr. This cncludes the proof.

2.2.3 The isotropy Lie algebra II: the bracket
Again, F is a singular foliation, m is a point, U open and (A→ U , ρ) an anchored bundle of F .

63



According to Proposition ??, (A→ U , ρ) can be equipped with an almost Lie algebroid bracket2 that
we denote by

[·, ·]A : Γ(A)× Γ(A) −→ Γ(A).

Choose two sections a, b of A → U . In view of the Leibniz identity, the value at m of the Lie bracket
[a, b] depends on the 1-jet at m of the sections of A. However, if ρ(a) = 0, then

[a, fb]|m = f(m)[a, b]|m + ρ(a|m)[f ]b|m
= f(m)[a, b]|m

for any function f , this implies that [a, b]|m depends only on the value of the section b at m. More
generally, if ρ(a) = ρ(b) = 0, then [a, b]|m depends only on the value of a and b at m, and the bracket
[·, ·]A therefore induces a bilinear map

[·, ·]A,m : ∧2 ker(ρm) −→ Am

by
[a, b]A,m = [ã, b̃]A(m)

for any sections ã, b̃ through a and b. However,[a, b]A,m is in fact valued in ker(ρm): this follows easily
from the anchor condition, since

[a, b]A,m = [ã, b̃]A(m)

Lastly, we claim that the strong kernel at m is an ”ideal” of that bracket, i.e. [Sker(ρ,m), ker(ρm)] ⊂
Sker(ρ,m) so that the skew-symmetric bilinear map [·, ·]A,m goes to the quotient to a bilinar map

[·, ·]m : ∧2 gm(F) −→ gm(F) (2.7)

Proposition 2.2.4

The bilinear map (2.7):

1. is a Lie bracket on the holonomy vector space gm(F),

2. is canonically defined, i.e. does not depend on the choice of an anchored bundle and of an
almost Lie algebroid bracket.

It is called the isotropy Lie algebra of F at m ∈M .

Proof. The Jacobi identity follows from (3.1.1): Now, for any two almost Lie algebroid brackets on A,
we have, for any two sections ã, b̃

ρ
(
[ã, b̃]′A − [ã, b̃]A

)
= 0

so that ã, b̃ is valued in the Strong kernel of ρ. This implies that the induced bracket (2.7) does not
depend on the choice of an almost Lie algebroid bracket on given anchored bundle (A, ρ). More generally,
given two anchored bundles (A, ρ) and (A′, ρ′), Theorem 3.1.1 implies the existence of anchored bundle
morphisms Φ : (A, ρ) −→ (A′, ρ′). For any two almost Lie algebroid structures on A and A′, we have

ρ
(
Φ([ã, b̃]A)− [Φ(ã),Φ(b̃)]A

)
= 0

so that (Φ([ã, b̃]A)−[Φ(ã),Φ(b̃)]A is valued in the Strong kernel, so that Φ induces a Lie algebra morphism

Φ|m : ker(ρm)
Sker(ρ,m) '

ker(ρ′m)
Sker(ρ′,m) .

The same construction, applied to Ψ, gives an inverse map to that Lie morphism. The result follows
2At least in the smooth setting. In complex or real analytic setting, one may have to restrict to a smaller open

neighborhood.
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2.2.4 Androulidakis-Skandalis construction of the isotropy Lie algebra
Let us now present the original definition of the isotropy Lie algebra of a singular foliation by Androuli-
dakis and Skandalis.

Let F be a singular foliation. For every m ∈M , we denote by Fm ⊂ F the sub-Lie algebra of vector
fields in F . Let Im be the ideal of functions vanishing at m. There is an inclusion ImF ⊂ Fm, where ImF
stands for teh space of vector fields on the form

∑s
i=1 fiXi with f1, . . . , fs ∈ Im and X1, . . . , Xs ∈ F .

Moreover, ImF is a Lie ideal of Fm, since for all X ∈ F , Y ∈ Fm and F ∈ Im:

[FX, Y ] = F︸︷︷︸
∈Im

[X,Y ]︸ ︷︷ ︸
∈F

−Y [F ]︸ ︷︷ ︸
∈Im

X︸︷︷︸
∈F

.

Proposition 2.2.5: The isotropy Lie algebra: original construction

Let (M,F) be a singular foliation. For every m ∈M , the isotropy Lie algebra at m is canonically
isomorphic to the quotient Lie algebra:

gm(F) ' // Fm
ImF .

Proof. Let (A, ρ) be an achored bundle over F . For any a ∈ Ker(ρ|m), let ρ(ã) where ã is any section of
A through a. By construction, ρ(ã) is in Fm. Since any two sections ã1, ã2 through a differ by a section
of the form

ã1 − ã2 =
s∑
i=1

Fibi

with Fi ∈ Im. As a consequence:

ρ (ã1)− ρ (ã2) =
s∑
i=1

Fi ρ(bi)

so that ρ (ã1)− ρ (ã2) ∈ ImF . The map

Ker(ρm) // Fm
ImF

is therefore well-defined. It is also surjective by construction. It clearly has the strong kernel in its kernel,
and therefore goes down to a morphism:

Ker(ρm)
SKer(ρ,m)

// Fm
ImF .

The anchor condition implies that it is a Lie algebra morphism from gm(F) onto Fm
ImF . The kernel of

this map is zero: we leave it to the reader.

2.2.5 The linear isotropy Lie algebra
The linear part of a vector field vanishing at a point

Let m be a point in a manifold M , and Im be the ideal of functions vanishing at m ∈ M . Denote by
Xm(M) the Lie algebra of vector fields vanishing at m. The purpose of this preliminary section is to
show that there exists a natural Lie algebra morphism:

Xm(M) −→ gl(TmM).

There are several equivalent manners to see this Lie algebra homomorphism, that we now detail.
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1. One manner is simply to take local coordinates (x1, . . . , xn) in which m has coordinates (0, . . . , 0).
The vector fields

∂

∂x1
, . . . ,

∂

∂x1
,

restricted to TmM form a basis of that vector space that we shall denote by δ1, . . . , δn. We then
map a vector field:

n∑
i=1

Xi(x1, . . . , xn) ∂

∂xi

to the linear endomorphism of TmM whose matrix in the basis δ1, . . . , δn is ∂Xi
∂xj

(0, . . . , 0)


We leave it to the reader to check that this is indeed a Lie algebra morphism.

Although very explicit, this method has a drawback: we have to check it does not depend on the
choice of local coordinates. It is therefore better to use the coming two descriptions then to show
that, in local coordinates, they take the previous form.

2. The second manner is to use the flow φXt of a vector field X ∈ Xm(M). Since X vanishes at m, for
every η > 0, there is an neighborhood Um of m on which φXt is well-defined for all t ∈ −]η, η[. Also,
φXt (m) = m, so that the differential of φXt at m is a family depending on t ∈ −]η, η[ of invertible
linear endomorphisms

Tmφ
X
t : TmM ←→ TmM

We then define a linear endomorphism of TmM by

X 7→ ∂

∂t

∣∣∣∣
t=0

Tmφ
X
t

It is obvious that the previous map is well-defined, but it is not clear that it is a Lie algebra
morphism. Also, defining it required the notion of flow, which does not make sense in algebraic
geometry.

3. The third manner is to look, for any vector field X vanishing at m, at the adjoint action:

Y 7→ [X,Y ]

and to check that [X,Y ]|m only depends on Y|m , so that the adjoint action induces a linear endo-
morphism of TmM . The Jacobi identity implies that this map is a Lie algebra morphism.

4. The fourth manner is to use the canonical identification

T ∗mM '
Im
I2
m

with Im the3 ideal of functions vanishing on M (which, in the algebraic geometry setting, is in fact
a definition of the cotangent space). Consider vector fields as derivations of the sheaf of functions:
a vector field X vanishes at m if and only if X[Im] ⊂ Im. By derivation properties, this implies
X[I2

m] ⊂ I2
m, so that X induces a linear endomorphism of of T ∗mM ' Im

I2
m

. Since the bracket of
vector fields is their commutator, when seen as a derivation, it is obvious that the map above is a
Lie algebra morphism:

Xm(M) −→ gl(T ∗mM).

The desired Lie algebra morphism is obtained by composing the latter morphism with the canonical
dualization Lie algebra isomorphism gl(T ∗mM) ' gl(TmM).

3In real analytic or complex geometry setting, ”ideal” must be understood as ”sheaf of ideals”
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Notation 2.2.6: Linear Part of a vector field

We denote by Lin the Lie algebra morphism

{Vector fields vanishing at m} −→ gl(TmM).

described in the lines above.

The linear isotropy Lie algebra of a foliation vanishing at a point

Let us consider a foliation F on a manifold M made of vector fields vanishing at a point m (equivalently,
such that {m} is a leaf).

To our knowledge, Dominique Cerveau is the first one to have understood the importance and studied
the following Lie algebra.

Definition 2.2.7: Linear isotropy Lie algebra

Let F be a singular foliation vanishing at point m. We call linear isotropy Lie algebra of F the
image of F through the linear part morphism: Lin.
We denote it by glinm (F).

Remark 2.2.8. In equation
glinm (F) := Lin(F)

Remark 2.2.9. Upon choosing local coordinates, and therefore a basis of TmM , the linear isotropy Lie
algebra of F at m at the origin is the sub-Lie-algebra of all matrices (aij) such that there exists X ∈ F
whose Taylor expansion at the origin reads:

X =
∑
i,j

aijxi
∂

∂xj
+ higher order terms

Example 2.2.10. Let F be the singular foliation induced by a Lie algebra action of g ⊂ gl(Rd) on Rd.
Then the linear holonomy of F at 0 is g itself.

Example 2.2.11. Let F ⊂ I2
0X(Rd), i.e. a foliation made of vector fields vanishing quadratically in the

origin. Then the linear isotropy Lie algebra of F at 0 is {0}.

By construction,
Lin : F −→ glinm (F) (2.8)

is a surjective morphism of Lie algebras. Here is therefore a natural question, that one could ask for any
Lie algebra morphism: Does (2.8) admit a section which is a Lie algebra morphism? If yes, it means,
geometrically, that F contains a sub-singular foliation associated to the Lie algebra action of glinm (F) on
M .

Question 2.2.12: Natural question.

Does Lin admits sections? I.e, does F contains, in a neighborhood U of m, a sub-singular foliation
given by a Lie algebra action of glinm (F) on U?

In general, the answer of this kind of question tends to be ”no, unless the image is semi-simple”. And
in the infinite dimensional case, the answer tends to be ”no, unless the image is compact and semi-simple.
If the image is semi-simple, then there are only formal sections”. There are several results in that vein,
by Conn for Poisson structures and Zung for Lie algebroids.

To our knowledge, the compact case is widely open. Here is an important result by Dominique
Cerveau for the semi-simple case. A more recent proof can also be found in [LGR21].
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Theorem 2.2.13: A linearisation theorem by Dominique Cerveau

If the linear isotropy Lie algebra of F at m is a semi-simple Lie algebra, then the map:

Lin : F −→ glinm (F)

admits a formal section which is a formal Lie algebra morphism.

We will not prove this theorem, but let us say a word about its meaning. Formal functions4 at a
point m ∈ M form an algebra that we should denote by Ôm. Formal functions Ôm are a module over
over germs of smooth, complex, polynomials, or real analytic functions (that we should denote by O).
As a consequence, the tensor product

Ôm ⊗O F

is a finitely generated Ôm module stable under Lie bracket5, and the linear map extends easily to a Lie
algebra morphism:

Lin : Ôm ⊗O F −→ glinm (F)

The result of Dominique Cerveau states that this Lie algebra morphism admits a section which is a Lie
algebra morphism.
Exercice 2.2.14. Let (M,F) be a singular foliation vanishing at m ∈M . Show that the quotient space6

F
F ∩ I2

mX(M) ,

is a Lie algebra isomorphic to glinm (F).
We would like to define the linear holonomy at an arbitrary point in a way that does not require the

choice of local coordinates. This can be done algebraically as follows:

Definition 2.2.15. Let (M,F) be a foliated manifold and m ∈ M . The linear isotropy Lie algebra of
F at m is the following space

glinm (F) = F ∩ ImX(M)
F ∩ I2

mX(M) ,

where Im ⊂ C∞(M) is the ideal of all functions vanishing in m. Its Lie bracket is induced by the Lie
bracket of vector fields.

Roughly speaking, we take all vector fields in F vanishing in m and consider two such vector fields
equivalent, if they differ by a vector field vanishing quadratically. The fact that this is a finite-dimensional
Lie algebra can be verified by hand or using the local splitting theorem and the above discussion.

Also, the linear holonomy at m is canonically isomorphic to the one of its transverse singular foliation.

2.2.6 The isotropy Lie algebra and its linear part
The linear isotropy Lie algebra captures the “linear approximation” of the foliation at a given point. As
a consequence, for foliations vanishing quadratically at a point, this Lie algebra is trivial.
Exercice 2.2.16. Show that m ∈M is a regular point if and only if gm(F) = {0}.

Example 2.2.17. Let F = In0 Rd. Then g0(F) will have dimension d ×
(
n+d−1
n

)
, while the linear one

will be trivial for n ≥ 2.

The isotropy Lie algebra is a well-behaved object:
Exercice 2.2.18. Let (M,F) be a foliated manifold and m ∈M a point. Show the following points:

1. Let U be an open subset of M containing m, then gm(F) = gm(F|U ).
4In the smooth setting, it is the quotient of C∞(M) by the ideal of functions vanishing with all their derivatives. In the

other settings, it is a formal completion, i.e. the ring of formal power series in d variables near m.
5It is in fact an algebraic singular foliation in the sense of Definition xxx for the ring Ôm
6where Im ⊂ C∞(M) is the ideal of all functions vanishing in m
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2. Let (M̃, F̃ ) be another foliated manifold and m̃ ∈ M ′. Then g(m,m̃)(F × F̃) = gm(F) ⊕ g(m̃)(F̃).
(The direct sum should be understood as a Lie algebra direct sum).

3. For ϕ : N 7→M a surjective submersion, gn(ϕ−1F) = gm(F) for every n ∈ ϕ−1(m).
Proof. This is a easy consequence of the local splitting theorem.

When F admits real analytic generators, one can prove that the linear holonomy contains all the
semi-simplicity of gm(F), i.e.:

Proposition 2.2.19: The semi-simple part is linear

For a real analytic foliation F , the kernel of the linearization map gm(F)→ glinm (F) is a nilpotent
Lie algebra.

Proof. We refer to [LGR21] for the complete proof. The main ingredient of the proof is the Artin-Rees
Lemma, which is valid for Noetherian rings (i.e. the ring of analytic functions but not the ring of smooth
functions).

Whether the theorem holds also in the smooth category is still an open problem:
Question 2.2.20: Smooth Case

Is it possible to omit the assumption ”locally real analytic” in Proposition 2.2.6?

While the algebra of smooth functions is not Noetherian, its infinite jets (formal Taylor power series)
form a Noetherian ring. In particular by a reasoning analogous to Proposition 2.2.6, we can obtain the
following series of Lie algebras7

F(m)→ j∞m (F)→ ...→ jNm(F)→ jN−1
m (F)→ ...→ j1m(F) = glinm (F),

where for each finite N , the kernel of jNm(F)→ glinm (F) is nilpotent. Here jNm(F) = F(m)
IN+1
m X(M) are N -jets

of vector fields on F(m) and j∞m (F) their projective limit, i.e. the space of Taylor expansions of elements
in F(m).

The Lie algebra glinm (F) might still contain a solvable ideal. By dividing out the maximal solvable
ideal r, we obtain a semisimple Lie algebra glinm (F)ss = glinm (F)

r , which could be appended on the right in
the above diagram to obtain a series of surjections:

F(m)→ j∞m (F)→ ...→ jNm(F)→ jN−1
m (F)→ ...→ glinm (F)→ glinm (F)ss.

It turns out that on a formal level foliations satisfies a sort of Levi-Malcev-theorem:
Proposition 2.2.21 (Cerveau, 1977). There is a formal Lie algebra section of j∞m (F)→ glinm (F)ss., i.e.
a Lie algebra homomorphism from the semi-simple part of the linear isotropy Lie algebra at m to the Lie
algebra j∞m (F).

quote proof, e.g. cervau, or prove our-
selves?Here, the question gets much harder, when considering convergence:

Question 2.2.22. Does a Lie algebra section of F(m)→ glinm (F)ss exist?
The above question is an open problem, even for foliations admitting real analytic generators. say that cerveau claimed that, but the

proof is missing or flawed?

2.3 The holonomy Lie algebroid of a leaf
In the above, we have introduced Lie algebras that measure the singular dynamics of the foliation near a
point. As a consequence of Theorem , the Lie algebras of two points in the same leaf will be isomorphic. add number

Moreover, they all fit together into an object that also captures the dynamics along a leaf, namely
the holonomy Lie algebroid. Similarly to the isotropy Lie algebra, the simplest way to define it, is
algebraically as a quotient.

Let m ∈M be a point and L the leaf through m. We denote by IL ⊂ C∞(M) the ideal of all functions
vanishing on L. definition like that?´

7F(m) stands here for vector fields on M that vanish at m.
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Definition 2.3.1: Holonomy Lie algebroid

Let L be a leaf of a singular foliation F . We call holonomy Lie algebroid of F along L a Lie
algebroid (AL, ρ, [·, ·]) such that there exists an isomorphism I : Γ(AL)→ F

ILF such that

1. I is a Lie algebra isomorphism. (The bracket on F
ILF is induced from the numerator).

2. The ρ∗ : Γ(AL)→ X(L) corresponds to the map F
ILF → X(L) induced by the restriction.

The validity of the above definition is far from obvious a priori. In order for such a vector bundle to
exist, by the Serre-Swan-theorem, we need F

ILF to be a projective C∞(L)-module, which heavily relies on
the validity of the splitting theorem. Indeed, we get the following short exact seuqence of Lie algebroids
over L:

gL(F)→ AL → TL

where gL(F) =
⊔
m′∈L gm(F) is a bundle of Lie algebras. Hence, as a vector bundle AL is isomorphic to

gL(F)× TL, however, the Lie bracket might intertwine the factors in a non-trivial way.

2.3.1 Definition through the almost Lie algebroid of a leaf
this looks like an articaft, we already
have almosts? In the present section, we will use the notion presented in the next chapter ”almost Lie algebroid”,

to give an alternative description of the holonomy Lie algebroid of a leaf. Of course, the next section is
independent from the present one, so there is no contradiction.

2.4 Bi-submersions over a singular foliation

2.4.1 Definition
The most crucial and intriguing object, in order to understand singular foliations, is certainly Androulidakis-
Skandalis holonomy groupoid. This is constructed out of bisubmersions, which plays in some sense the
role of representatives of the differential stack for Lie groupoids. It was also introduced by Androulidakis
and Skandalis in [AS09]. We first recall the definition.

Definition 2.4.1: Androulidakis-Skandalis Bi-submersions

Let M be a manifold equipped with a singular foliation F . A bi-submersion over a (M,F) is a
triple (M, s, t) where:

1. X is a manifold,

2. s, t : X →M are submersions, respectively called source and target,

such that

1. The pull-back singular foliations s−1F and t−1F are equal,

2. and s−1F = t−1F coincides with the sheaf of sections of the form X+Y with X ∈ Γ(ker(Ts))
and Y ∈ Γ(ker(Tt)).

Bi-submersions over (M,F) shall be denoted by M s← X
t→M .

Definition 2.4.2: Some important notions: units and bisections

bisection of a bisubmersion M
s← X

t→ M is a submanifold Σ ⊂ X to which the restrictions of
s, t are diffeomorphism onto open M (or at least open subsetsa of M)
A map ε : M −→ X is said to be a unit map if it is a section of both s and t.
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aWe then should speak of local bisubmersions, but most of the time we will just say ”bisubmersions”

Remark 2.4.3. The image of the unit map is a bisection.

Of course, any bisection Σ induces a diffeomorphism:

Σ: s(Σ) −→ t(Σ),

that makes the following diagram commutative:

Σ
s

}}

t

!!
s(Σ)

Σ // t(Σ)

Examples

Exercice 2.4.4. Any source-connected Lie groupoid is a bi-submersion over its basic singular foliation.
Warning: it is not easy!

Exercice 2.4.5. Here are non-examples of bisubmersions. Let F be a singular foliation on M which is
different from 0.

1. Show that X := M ×M equipped with the projections onto the first and second components is
not a bisubmersion for F , unless F = X(M).

2. Show that X := M equipped with the the identity maps as source and target is not a bisubmersion
for F , unless F = 0.

3. Give an example of a manifold X, equipped with two surjective submersions s, t : X →M , that do
satisfy s∗F = t∗F , and is still not a bi-submersion for F .

Exercice 2.4.6. Assume a unit map ε : M → X exists, then:

1. The normal bundle N of ε(M) into X is canonically isomorphic to ker(Ts) ⊂ TX|ε(M) and to
ker(Ts) ⊂ TX|ε(M)

2. The map Ts−Tt : TX|ε(M) → TM goes to the quotient to a vector bundle morphism ρX : N → TM
over the identity of M .

Theses exercices mean that F is hidden inside the data of (X,M, s, t, ε). That it to say, assume that
you are given a bi-submersion for F with unit, but you forgot what F is: then you can reconstruct it.
The next exercise shows that ε is even not needed.

Exercice 2.4.7. Consider a bisubmersion M
s← X

t→M over F .

1. There exists a local bisection through every point x ∈ X.

2. Let Σ be a local bisubmersion.The restriction to Σ of the singular foliation ker(Ts) + ker(Tt)

(a) is a a singular foliation on Σ,

(b) the restriction to Σ of the target t (resp. the source s) is a diffeomorphism of singular foliations
from (Σ,FΣ) to (t(Σ),FΣ) (resp. (Σ,FΣ) to (s(Σ),FΣ)).

71



2.4.2 The fundamental example

A bisubmersion for every finitely generated singular foliations

There is a very natural bisubmersion over any finitely generated singular foliation F on M . Let
X1, . . . , Xr be generators of F . For the sake of simplicity we assume them to be complete. Consider the
following triple:

1. The manifold Rr ×M

2. The map s : Rr ×M →M given by the projection on the second factor.

s : Rr ×M → M
((t1 . . . , tr),m) → m

3. The map t : Rr ×M →M given by:

t : Rr ×M → M

((t1 . . . , tr),m) 7→ φ

∑r

i=1
tiXi

1 (m)

When the vector fields X1, . . . , Xr are not complete, the previous map t still makes sense, but the
initial manifold has to be replaced by a neighborhood of (0, . . . , 0)×M (= the zero section of the trivial
bundle Rr ×M →M).

The map s is always a submersion, and so is the map t, at least in a neighborhood of the zero section.
The following proposition is non-trivial:

Proposition 2.4.8: A Crucial Example

Let F be a finitely generated singular foliation. There is a neighborhood V of the zero section in
Rr ×M →M on which s, t make M s← V t→M a bi-submersion for F .

Remark 2.4.9. We could replace the target map by

((t1 . . . , tr),m) 7→ φX1
t1 ◦ · · · ◦ φ

Xr
tr (m)

and the same statement would still hold. This is numerically interesting, for it means that if F is
generated, as a module, by vector fields integrable by quadrature (' such that the flow can be described
”by hand”), then there is a bisubmersion which can be found explicitly.

The same example made more abstract: using anchored bundles

This can extended by using an anchored bundle such that8 ρ(Γ(A)) = F .
Let us choose a connection9

∇ : X(M)× Γ(A) → Γ(A)
(X, a) 7→ ∇Xa

on A→M .

8We refer to Section xxx for results are the existence of those objects. In short: it the smooth case, it exists if and only
if F is finitely generated, and it always exist locally.

9They always exist in the smooth setting, and always exist locally on every setting

72



Definition 2.4.10: Anchored paths

Let A π→M be an anchored bundle. We say that a path a : I → A is anchored if

dγ(t)
dt

= ργ(t)(a(t))

where γ = π ◦ a : I → M is the projection of a(t) onto M . We say that it is ∇-parallel if, in
addition of being anchored, it satisfies:

∇γ̇(t)a(t) = 0.

Here is a result which is purely a differential geometry result and that we will therefore not prove.

Lemma 2.4.11. Every element a ∈ A is the starting point of a parallel anchored anchored path Φ∇,ρt (a).

The path t 7→ Φ∇,ρt (a) may not be defined for all t, but there is a neighborhood UA of the zero section
where it is defined for t = 1.

We consider the triple made of

1. the neighborhood UA of the zero section in A

2. the projection A
π→M that we now call s

3. the composition t of a 7→ Φ∇,ρ1 (a) with the projection A
π→M

Proposition 2.4.12: The same as Prop 3.1.1 but more abstract

Let (A, ρ) be any anchored bundle such that F = ρ(Γ(A)). There is a neighborhood VA of the zero
section in A on which M s← UA

t→M , with s, t as above, is a bisubmersion of F .
We call it a fundamental bisubmersion associated the anchored bundle (A, ρ).

Discussion on the notion of a bisubmersion

A word of caution: the word ”bisubmersion” alone does not make sense : only the expression ”bi-
submersion over the singular foliation F” makes sense.

We do not claim that the following notion is interesting by itself, but it is practical to introduce it
for pedagogical purposes.

Definition 2.4.13. We call twin-submersions the data of

1. two manifolds X,M ,

2. two surjective submersions s, t : X →M .

A unit map for twin-submersions is a smooth map ε : M → X which is a section of both s and t.

The next exercises answer to the natural question:

Question 2.4.14. Given a twin-submersion (X,M, s, t), when is it a bi-submersion for some singular
foliation F ?

Exercice 2.4.15. Show that a twin-submersion can not be a bi-submersion for two different singular
foliations on M .
Exercice 2.4.16. Does there exist twin-submersions which are NOT bisubmersions for any singular foli-
ation F?
Exercice 2.4.17. Let (X,M, s, t) be a twin-submersion with connected fibers. There exists a singular
foliation F with respect to which (X,M, s, t) is a bi-submersion if and only if one of the equivalent
conditions below hold.
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1. ker(Ts) + ker(Tt) is stable under Lie bracket.

2. ker(Tt) is generated by s-projectable vector fields and ker(Ts) is generated by t-projectable vector
fields

3. If for every bisections Σ1,Σ2, the induced distributions by ker(Ts) + ker(Tt) maps to the same
singular foliations on s(Σ1) ∩ s(Σ2), t(Σ1) ∩ s(Σ2), s(Σ1) ∩ t(Σ2), and t(Σ1) ∩ t(Σ2).

Here is a first operation on bisubmersion.

Definition 2.4.18: Composing bisubmersions with symmetries

Let M ←s X →t M be a bisubmersion of F , and φ : M →M a symmetry of M . Then

M
φ◦s← X

t→M and M s← X
φ−1◦t→ M

are bisubmersions of F again. We call them, respectively, the right and left composition by the
symmetry φ.

Exercice 2.4.19. For Σ a bisection of a bisubmersion M ←s X →t M of F . Let NΣ be the normal bundle
of Σ in X, and AΣ be its push forward through t to a vector bundle on the open subset t(Σ) ⊂M .

1. Show that for any σ ∈ Σ, the following diagram is commutative:

TσX

Ts

zz

Tt

$$
Ts(σ)M

TΣ // Tt(σ)M

2. Deduce that for any σ ∈ Σ, the tangent space TσΣ is in the kernel of

Ts− TΣ ◦ Tt : TσX → Tt(σ)M

3. Show the induced vector bundle morphism

AΣ := TM |Σ
TΣ

ρ //

��

TM

��
Σ t // M

,

is an anchored bundle such that ρ(Γ(AΣ)) = F .

Show that there is a neighborhood of any bisubmersion Σ in X isomorphic, as a bisubmersion, to the
left composition by Σ of a coordinate neighborhood (see Proposition 2.4.12) for (AΣ, ρ).

2.4.3 Bisubmersion, left and right invariant vector fields, and almost Lie
algebroids

Let F be a singular foliation on M . So far, we have seen two classes of objects ”over F”.

1. bisubmersions M ←s X →t M of F .

2. anchored bundles (A, ρ) of F

Let us assume that we are given both. What is the relation between them? If X is a Lie groupoid
with algebroid A, then the kernels of s and t at x ∈ X are canonically isomorphic to At(x) and As(x)
respectively: the isomorphism being defined by left and right actions respectively.

There is a very similar phenomena for bi-submersions. There are two mapsin the context of any anchored bun-
dle and any bisubmersion, or are we
now Lie? Probably we want ”Let A be
the anchored bundle assicuated to a
bisubmersion X” 74



Γ(A) → X(X)
a 7→ −→a
a 7→ ←−a

satisfying the following conditions:

1. the vector field −→a (resp. ←−a ) is s-compatible (resp. t-compatible) with ρ(a) ∈ X(M)

2. the vector field −→a (resp. ←−a ) is tangent to the fibers of t (resp. s).

It could be stated as being the existence of vector bundle morphisms:

s!A
L // TX t!A

Roo

such that L takes values in ker(Tt), R takes values in ker(Ts) and such that the following diagrams
commute

s!A

ρ

��

L // TX

Ts{{ Ts{{
Tt

##

t!A
Roo

ρ

��
s!TM t!TM

It is interesting to notice that for every choice of an almost Lie algebroid bracket on (A, ρ), the vector
fields that measures the default of the left and right actions to preserve the brackets, i.e. the vector fields

←−−−
[a, b]A − [←−a ,←−b ] and

−−−→
[a, b]A − [−→a ,−→b ] with a, b ∈ Γ(A),

are valued in both the s-fiber and the t-fiber. They are therefore valued on Ker(Ts)∩Ker(Tt), which is
an involutive family, which is a singular folaition provided it is finitely generated, and is interesting by
itself, see Ruben Louis’s [Lou22].

2.4.4 Products and inverse of bisubmersions
As we said, bisubmersions for a given singular foliation are like differentiable stacks, i.e. like Lie groupoids.
But this analogy may seem strange: we defined an unit map, but there is still no inverse and no product.
The following statement presents an analogy of those:

Definition 2.4.20: Product and Inverse

Let F be a singular foliation on a manifold M .

1. The inverse of a bisubmersion M
s← X

t→M for F is simply the bisubmersion M
t← X

s→
M .

2. The composition of two bisubmersions M s← X
t→ M and M

s′← X ′
t′→ M for F is the

fibered product
X ×s,M,t′ X

′ = {(x, x′) ∈ X ×X ′ s.t. t(x) = s′(x′)}

equipped with the source (x, x′) 7→ s(x) and target (x, x′) 7→ t′(x′).

Exercice 2.4.21. We leave it as an exercise to check that the product of bisubmersions for F , defined as
above, is a bisubmersion for F again.

A bisection of a bisubmersion of F is a submanifold Σ ⊂ X on which both s and t restrict to
diffeomorphisms onto their image. Any bisection Σ induces a diffeomorphism:

Σ : s(Σ)→ t(Σ)
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mapping m ∈ s(Σ) to the the target of the only point in Σ that s maps to m. Said otherwise, Σ is the
diffeomorphism making this diagram commutative:

s(Σ)

Σ

��

Σ

t
''

s

77

t(Σ)

We already stated the next result as an exercise, now we prove it:

Lemma 2.4.22. Through every x ∈ X, there exists a least one bisubmersion (in fact, infinitely many)

Proof. There exists vector subspaces S ⊂ TxX that intersect neither Kr(Txs) nor Kr(Txt), so that both
Txs and TxX are invertible onto their images. Any submanifold through x admitting such a sub-space
as its tangent space is a bisubmersion in a neighborhood of x.

Proposition 2.4.23: Bisubmersions induce Symmetries

Consider a bisubmersion M
s← X

t→ M of a singular foliation F . For any bisection Σ, the
induced diffomorphism

Σ: s(Σ) −→ t(Σ)

in an isomorphism of the singular foliation F .

For any two points in a foliated manifold (M,π) Let us denote by IsoF (m,m′) the set of isomorphisms
of F , defined from a neighborhood of m to a neighborhood of m′. And let us define by GermsF (m,m′)
the set of germs of isomorphisms of F , defined from a neighborhood of m to a neighborhood of m′.

As a consequence, to any bisubmersion M s← X
t→M of a singular foliation F , and any x ∈ X one can

associate a subset of IsoF (s(x), t(x)), by considering, all diffeomorphisms arising from a bisubmersion
through x:

X → IsoXF (s(x), t(x))
x → {Σ, Σ a bisubmersion through x }

Taking the germs of of the previously defined local isomorphisms for all one defines a subset GermF (X)
of ∪m,m′∈MGermF (m,m′): that we call the symmetry-germ of the bi-submersion M

s← X
t→M .

2.4.5 Equivalence of bisubmersions (and their compositions)
There is a ”Morita equivalence-like” equivalence relation on the set of all bisubmersions for F .

Its definition is very natural.

Definition 2.4.24: Equivalence of bisubmersions

Consider two bisubmersions M s← X
t→M and M s′← X ′

t′→M for F .
1. A morphism from the first one to the second one is a map X → X ′ making the following

diagram commutative:
M X

��

s
oo t // M

M X ′
s′
oo t′ // M

2. An equivalence is a third bisubmersion M
s′′← X ′′

t′′→ M of F equipped with two surjective
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submersions X ′′ → X and X ′′ → X ′ making the following diagram commutative:

X

s}}

t

!!
M X ′′

OOOO

����

s′′
oo t′′ // M

X ′
s′

aa
t′

==

Exercice 2.4.25. Show that the equivalence defined above is an equivalence relation on bisubmersions for
F .

Here is an important theorem that entirely explains the notion of equivalence of bisubmersions:

Theorem 2.4.26: Equivalence of bisubmersions

Consider two bisubmersions M s← X
t→ M and M

s′← X ′
t′→ M for F . The following statement

are equivalent:

(i) Both bisubmersions are equivalent.

(ii) The following two conditions hold:

(a) any x ∈ X admits a neighborhood U on which a morphism U → X ′ exists,
(b) and any x′ ∈ X ′ admits a neighborhood U ′ on which a morphism U ′ → X exists,

(iii) Both bisubmersions induce the same symmetry-germs, i.e.

GermsF (X) = GermsF (X ′)

This theorem is proved through a proposition, which is interesting by itself:

Proposition 2.4.27. Consider two bisubmersions M s← X
t→ M and M

s′← X ′
t′→ M for F . Fro any

two points x ∈ X and x′ ∈ X ′, the following statements10 are equivalent:

(i) A neighborhood U of x is X is equipped with a morphism of bisubmersion φ : U → X ′ mapping x
to x′.

(ii) A neighborhood U ′ of x′ is X ′ is equipped with a morphism of bisubmersion φ′ : U ′ → X mapping
x′ to x.

(iii) There exist bisections through x and x′ that induce the same germ of isomorphisms of F .

(iv) IsoXF (x) and IsoX′F (x′) coincide at the level of germs.

2.5 Holonomy groupoid
Let us give the most important steps in the construction of the holonomy groupoid made by its inventors
Androulidakis and Skandalis in [AS09]. We shall use a presentation which is quite different from the
original one in its form, but quite similar in its structure.

2.5.1 Atlas
Let (M,F) be a smooth singular foliation.

10Notice that all these statements imply s(x) = s(x′) and t(x) = t(x′).
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Definition 2.5.1: Groupoid-like bisubmersion

We say that a bisubmersion M
s← X

t→M of F is an atlas of F when

1. X is equivalent to its inverse,

2. the composition X ×M X is equivalent to X.

3. X admits local unitsa

aI.e. every point n m admits a neighborhood on which a unit exists.

In fact, the third assumption in the above definition is a consequence of the two first ones.

Example 2.5.2. We call fundamental atlas the atlas obtained by taking:

1. An anchored bundle (A, ρ) over F (we assume for the sake of simplicity that F is globally finitely
generated, so that (A, ρ) exists on the whole manifold M).

2. a neighborhood A of the zero section on which is is a bi-submersion over F (see Proposition ??)

3. Then by considering the disjoint union over n of all direct products

A? ×M · · · ×M A? (n times)

where ? means that we consider A or its inverse A−1. It is an atlas by construction.

It deserves to be noticed that every connected component of this atlas is finitely dimensional, although
it is not globally finitely dimensional.

2.5.2 Holonomy groupoid
The next proposition is easy to prove. But we invite the reader to remember that ”groupoid” does not
mean ”Lie groupoid”.

Proposition 2.5.3: From atlases to groupoids

Let M s← X
t→M of F be an atlas of F . Consider the equivalence relation on X given by x ∼ x′

if and only if x and x′ have neighborhoods which are equivalent as bisubmersions of F .
The equivalence classes of this relation form a groupoid over M .

Proof. The inverse of an equivalence represented by x ∈ X is represented by any point in X−1 which
equivalent to x. The same applies to product. Given two compatible x1, x2, there exists x3 ∈ X such
that x3 and (x1, x2) are equivalent. This construction goes to the quotient w.r.t. the equivalence relation
on X and defines the groupoid product.

Remark 2.5.4. It is easily checked that equivalent atlases induce canonically isomorphic groupoids.

Definition 2.5.5: Holonomy groupoid

We call holonomy groupoid of F the groupoid associated to a fundamental atlas.

Proposition 2.5.6: Holonomy groupoid is well-defined

The holonomy groupoid does not depend on the choice of an anchored bundle.
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2.5.3 About smoothness of the holonomy groupoid: two theorems by Claire
Debord

Recall that a Lie groupoid is a groupoid Γ ⇒M such that Γ and M are manifolds, the source and targets
are smooth surjective submersions, and all structural maps (unit, product, inverse) are smooth11.

The holonomy groupoid is certainly not a smooth groupoid in general. It is a topological groupoid,
and the topology may be quite horrible -very far away from a manifold topology.

However, the following theorem was proven by Claire Debord [Deb13b].
Theorem 2.5.7: Along a leaf

[Deb13b] The orbits of the holonomy groupoid Hol(F) of a singular foliation F are the leaves of
F . Moreover, its restriction to any leaf L:

1. is a Lie groupoid (separated),

2. whose Lie algebroid is the holonomy Lie algebroid of the L.

Proof. The proof relies on a theorem that bounds below the periods of a periodic orbit of a vector field
in a neighborhood of a point. This lower bound forbids a bisbmersion to have ”too many quotients”, it
makes the quotient discrete-like. We refer to [Deb13b]

Smoothness of the holonomy groupoid happens in a second situation. This theorem is also due to
Claire Debord [Deb01].

Theorem 2.5.8: Projective case

The holonomy groupoid of a Debord foliation is a Lie groupoid (separated).

2.6 Geometric resolutions of a singular foliation
Introduction

We saw in Section ?? that for every finitely generated singular foliation F (and more generally for any
finitely generated module over the algebra of functions), there exists a anchored vector bundle

A
ρ //

��

TM

��
M M

such that ρ(Γ(A)) = F . Now, consider the kernel ker(ρ) of

ρ : Γ(A) −→ X(M).

Obviously ker(ρ) is again a C∞(M)-module. If it is finitely generated, then there exists a second vector
bundle B →M and a vector bundle d: B −→ A such that

d (Γ(B)) = ker(ρ)

In particular, we have ρ ◦ d = 0, and

B
d(1)

//

��

A
ρ //

��

TM

��
M M M

11or real analytic, or holomorphic, depending on the setting
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Again, the kernel of
d: (Γ(B)) −→ (Γ(A))

is a complex of vector bundles which is exact at the level of section, i.e that the sequence

Γ(B) d // Γ(A) ρ // // F//

is exact. Again, when the kernel of
d(1) : Γ(B) −→ Γ(A)

is finitely generated, there exists a vector bundle C →M and a vector bundle morphism d: C → B such
that d(2)(Γ(C)) = Ker(d(1)). By construction,

C
d(2)

//

��

B
d(1)

//

��

A
ρ //

��

TM

��
M M M M

Again, the kernel of
d(1) : Γ(B) −→ (Γ(A))

is a complex of vector bundles and

Γ(C) d(2)
// Γ(B) d(1)

// Γ(A) ρ // // F//

is an exact complex.

Question 2.6.1: Resolutions of singular foliations

When can the construction of the complex of vector bundles described above be continued ”up to
infinity” (i.e.: can one be certain that the kernels are finitely generated?).
Does it stop at some point? (i.e. can we manage that the kernel of d is trivial for k large enough?
Assume it can be constructed, what kind of geometric information is encoded in that complex?

Let us start with by precise definition and a precise vocabulary.

Definition 2.6.2: Anchored complex of vector bundles

An anchored complex of vector bundles consists of a triple (E•,d•, ρ), where

1. E• = (E−i)i≥1 is a family of vector bundles over M , indexed by negative integers.

2. d(i+1) ∈ Hom(E−i−1, E−i) is a vector bundle morphism over the identity of M called the
differential map

3. ρ : E−1 −→ TM is a vector bundle morphism over the identity of M called the anchor map.

i.e. (E•,d•, ρ) :=

// E−i−1
d(i+1)

//

��

E−i
d(i)
//

��

Ei−1 //

��

d(2)
// E−1

ρ //

��

TM

��
M M M M M

which form a complex, i.e. such that

d(i) ◦ d(i+1) = 0 and ρ ◦ d(2) = 0
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Let us fix some vocabulary about such complexes:

1. The integer −i is called the degree of the vector bundle E−i. The choice of negative numbers may
seem surprising: it will be justified when introducing Lie ∞-algebroid structures.

2. The anchored bundle (E•,d•, ρ) is said to be of (finite) length n ∈ N if E−i = 0 except to finitely
many indices.

3. We shall speak of anchored complex of trivial bundles when all the vector bundles (E−i)i≥1 are
trivial vector bundles. We do not assume TM to be a trivial bundle.

There are two main cohomologies that one can associate to an anchored bundle.

1. Cohomology at the level of sections. The complex of vector bundles (xxx) induces a complex
of sheaves of modules over functions. More explicitly, for every open subset U ⊂ M , there is a
complex:

· · · −→ΓU (E−i−1) d(i+1)
−→ ΓU (E−i)

d(i)
−→ ΓU (E−i+1)−→· · ·−→ΓU (E−1) ρ−→ FU ⊂ X(U).

In particular, Im(d(i+1)) ⊆ ker d(i)
|m for every i ∈ N, so that the quotient spaces:

H−i(E•,U) =
{ ker ρ

Im(d(2)) for i = 1
ker d(i)

Im(d(i+1)) if i ≥ 2

is a module over functions on U that we call i-th cohomology of (E•,d•, ρ) at the level of sections.

2. Cohomology at an arbitrary point m ∈ M . The complex of vector bundles (xxx), at an
arbitrary point m ∈M , restricts to a complex of vector spaces

· · · −→E−i−1|m

d(i+1)
|m−→ E−i|m

d(i)
|m−→ E−i+1|m−→· · ·−→E−1

ρm−→ TmM.

In particular, Im(d(i+1)) ⊆ ker d(i)
|m for every i ∈ N, ans we call the quotient vector spaces:

H−i(E•,m) =


ker ρm

Im(d(2)
|m

)
for i = 1

ker d(i)
|m

Im(d(i+1)
|m

)
if i ≥ 2

the i-th cohomology of (E•,d•, ρ) at the point m.

It is important to notice that H−i(E•,m) may be non-zero at a point m even if H−i(E•,U) is zero
in every neighborhood U of m. The converse, however, is not possible.

Proposition 2.6.3. Let i ∈ N. Every m ∈ M such that H−i(E•,m) = 0 has an open neighborhood U
for which H−i(E•,U) = 0.

Definition 2.6.4. Let (E,d) and (E′,d) be complexes of vector bundles.

1. A chain map or complex of vector bundle morphisms between the complexes of vector bundles
(E,d) and (E′,d) is collection of vector bundle morphisms of degree zero, ϕ• : E−• −→ E′−•, such
that the following diagram commutes

· · · // E−i

ϕ−i

��

d(i)
// E−i+1

ϕ−i+1

��

// · · ·

· · · // E′−i
d′(i) // E′−i+1

// · · ·

(2.9)

i.e., d′(i) ◦ ϕ−i = ϕ−i+1 ◦ d(i) for every i ∈ N.
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2. A homotopy between two complexes of vector bundle morphisms ϕ•, ψ• : E−• −→ E′−• is the datum
{hi : E−i −→ E′−i−1}i≥1 of vector bundles morphisms that satisfies ψ1 − ϕ1 = d′(2) ◦ h1 and for
each i ≥ 2, ψi − ϕi = d′(i+1) ◦ hi + hi−1 ◦ d(i)

· · · // E−i−1

ψ−i−1−ϕ−i−1

��

d(i−1)
// E−i

hi

{{
ψi−ϕi

��

d(i)
// E−i+1

ψ−i+1−ϕ−i+1

��

h−i+1

{{

// · · ·

· · · // E′−i−1
d′(i−1)

// E′−i
d′(i) // E′−i+1

// · · ·

(2.10)

(a) When there is a homotopy between two complexes of vector bundle morphisms ϕ•, ψ• : E−• −→
E′−• we write ϕ ∼ ψ.

(b) Two complexes of vector bundles (E,d) and (E′,d′) are said to be homotopy equivalent, if
there exist chain maps ϕ• : E−• −→ E′−• and ψ• : E′−• −→ E−• such that ϕ ◦ ψ ∼ idE′• and
ψ ◦ ϕ ∼ idE• .

Check that ∼ is an equivalence relation on the class of complexes of vector bundle morphisms.

Lemma 2.6.5. Let (E,d) and (E′,d) two homotopy equivalent complexes of vector bundles of finite
length n and n′ respectively. The alternating sum of the ranks of the vector bundles (E−i)i∈N and
(E′−i)i∈N respectively, are equal, i.e.

n∑
i=0

(−1)irk(E−i) =
n′∑
i=0

(−1)irk(E′−i).

Here rk stands for the rank of a vector bundle.

Proof. Note first that the restriction of both complexes to a point m ∈M give two finite length complexes
of vector spaces of finite dimension. The result is an immediate consequence of the fact that in every
degree the cohomology group of two equivalent complexes of vector spaces are isomorphic. It follows by
taking the alternating sum of their dimensions and using the Rank–nullity theorem.

Definition 2.6.6: Geometric resolution of a singular foliation

Let F ⊆ X(M) be a singular foliation on a manifold M . A complex of vector bundles (E•,d•, ρ) :=

// E−i−1
d(i+1)

//

��

E−i
d(i)
//

��

Ei−1 //

��

d(2)
// E−1

ρ //

��

TM

��
M M M M M

is said

1. to terminate in F if ρΓ(E−1) ⊂ F

2. to be over F if ρΓ(E−1) = F

3. to be a geometric resolution of F if the following complex of sheaves is exact:

· · · −→Γ(E−i−1) d(i+1)
−→ Γ(E−i)

d(i)
−→ Γ(E−i+1)−→· · ·−→Γ(E−1) ρ−→ F .

A geometric resolution (E•,d•, ρ) is said to be minimal at a point m ∈ M if for each i ≥ 2 the
linear map d(i)

|m : E−i −→ E−i+1|m vanishes.
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Let us recall what we mean precisely by the sheaf condition above, and explain how this condition
simplifies in the smooth case. ”Exact as sheaves” means that for any i ∈ N and any m ∈ M , there is a
neighborhood V of m such that for any U in V the short complex:

· · · −→ΓU (E−i−1) d(i+1)
−→ ΓU (E−i)

d(i)
−→ ΓU (E−i+1)−→· · · .

is exact.

Remark 2.6.7. When a geometric resolution (E•,d•, ρ) is minimal at a point m ∈ M then one has,
H−i(E•,m) = E−i|m for all i ≥ 2.

In the smooth setting, it is equivalent to require that condition or to requite that it is exact at the
level of global sections.

In the smooth setting therefore, the notion of geometric resolution is much easier.

Definition 2.6.8: Geometric resolution of a singular foliation (smooth case)

Let F ⊆ Xc(M) be a singular foliation on a smooth manifold M . A geometric resolution of the
singular foliation F is a complex of vector bundles (E•,d•, ρ) :=

// E−i−1
d(i+1)

//

��

E−i
d(i)
//

��

Ei−1 //

��

d(2)
// E−1

ρ //

��

TM

��
M M M M M

such that the following complex is exact:

· · · −→Γc(E−i−1) d(i+1)
−→ Γc(E−i)

d(i)
−→ Γc(E−i+1)−→· · ·−→Γc(E−1) ρ−→ F .

Remark 2.6.9. A smooth singular foliation F is projective if and only if there exists a geometric
resolution of length 1.

Remark 2.6.10. The same simplification occurs for singular foliations on affine varieties, if the geometric
resolution is by trivial vector bundles.

Theorem 2.6.11

Let F ⊆ X(M) be a singular foliation on a smooth manifold M that admits a geometric resolution
(E•,d•, ρ).

1. For any anchored complex of vector bundles (E′•, (d•)′, ρ′) that terminates inside F , there
exists a chain map of anchored vector bundles

(E′•,d•, ρ′) −→ (E•,d•, ρ)

and any two such chain maps are homotopy equivalent.

2. In particular, two geometric resolutions of the same singular foliations are homotopy equiv-
alent.

The same results hold in the complex and real analytic setting, but in a neighborhood of a point
and for anchored bundles of finite length. The same result also holds for foliations over algebraic
varieties, and trivial anchored bundles.

Proof. These are reinterpretations of classical results of algebraic topology, see [LGLS20].
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The fact that two geometric resolutions of F , when they exist, are homotopy equivalent, has many
consequences around the topic ”whatever is canonically invariant under homotopy equivalence is canon-
ically attached to the singular foliation - provided it admits geometric resolutions.” It is the case, for
instance, of the alternating sums of the ranks. We can give a precise meaning to the later:

Corollary 2.6.12. [LGLS20] Let F ⊆ X(M) be a singular foliation on a smooth manifold M that admits
a geometric resolution (E•,d•, ρ) of finite length. Then:

1. the regular leaves all have the same dimension `,

2. the alternating sum of the ranks of E• is equal to the dimension of the regular leaves, i.e.

` =
∑
i≥1

(−1)i+1rk(E−i).

If two geometric resolutions are homotopy equivalent, their restrictions to a point m ∈ M are also
homotopy equivalent. In consequence, the complexes have the same cohomologies. This proves the first
part of the following corollary:

Corollary 2.6.13. Let F ⊆ X(M) be a singular foliation on a smooth manifold M that admits a geo-
metric resolution. Then for every m ∈ M , the cohomologies H−i(E•,m) ' H−i(E′•,m) are canonically
isomorphic. In particular, the dimensions d1, . . . , di, . . . of these spaces are canonically attached to F .
Also, the following items are equivalent:

1. m is a regular point,

2. H1(F ,m) = 0

3. Hi(F , n) = 0 for every i ≥ 1 and every n in a neighborhood of m.

Remark 2.6.14. The integers d1, . . . , di, . . . were constructed without making any use of the Lie bracket
of vector fields, so that they are, as a matter of fact, attached to F seen as a module over functions, and
not to F seen as a singular foliation. We suggest to interpret them as follows:

1. d1 is the minimal number of generators of F near m minus the dimension of the leaf through m.

2. d2 is the minimal number of generators of relations between the previous generators.

3. d3 is the minimal number of generators of relations between relations between generators.

4. ... and so on

Existence of geometric resolutions: Noether, Malgrange and Syzygies

Here are some cases where geometric resolutions of a singular foliation always exist at least locally, and
are of finite length.

Proposition 2.6.15: A particular case of Syzygy theorem

Any algebraic singular foliation on Kd admits geometric resolutions by trivial vector bundles and
of length ≤ d+ 1.
The same holds for a real analytic of holomorphic singular foliation but only in a neighborhood of
a point.

Proof. See [LGLS20]

Smooth functions are a flat ring over polynomial functions on Rn.
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Proposition 2.6.16: Malgrange flatness theorems

A geometric resolution of finite length by trivial bundles of an algebraic singular foliation on Rn
is also a real analytic geometric resolution.
A geometric resolution of a real analytic singular foliation is also a smooth geometric resolution.
A geometric resolution of finite length by trivial bundles of an algebraic singular foliation on Cn
is also a real holomorphic geometric resolution.

Proposition 2.6.17: Glueing of resolutions in the smooth setting [LGLS20]

In the smooth setting, there is a natural manner to glue two finite length geometric resolutions
defined on two open sets into a geometric resolution on their unions.

Altogether, these results imply:

Theorem 2.6.18: Existence of geometric resolutions [LGLS20]

A locally real analytic singular foliation on a manifold of dimension d admits a geometric resolu-
tions of length ≤ d+ 1 on any relatively compact open subset of M .

Here we have some examples of geometric resolutions of singular foliations.

Example 2.6.19. Let F0 = {X ∈ X(V ) | X(0) = 0} be the singular foliation made of all vector fields
vanishing at the origin of a vector space V (e.g think of CN or RN ). The contraction by the Euler vector

field −→E =
N∑
i=1

xi
∂

∂xi
gives rise to a complex of trivial vector bundles

· · · −→ ∧3 T ∗V
ι−→
E−→ ∧2T ∗V

ι−→
E−→ T ∗V

ι−→
E−→ C× V =: C, (2.11)

whose complex on the sections level is (Ω•(V ), ι−→
E

). Here (x1, . . . , xN ) are the canonical coordinates on
V . The latter is the Kozul complex associated to the coordinate functions x1, . . . , xN of V . Since the
xi’s form a regular sequence, it is well known that (Ω•(V ), ι−→

E
) is exact .

The following complex of vector bundles over V

· · · −→ ∧3 T ∗V ⊗ TV
ι−→
E
⊗id
−→ ∧2T ∗V ⊗ TV

ι−→
E
⊗id
−→ T ∗V ⊗ TV

ι−→
E
⊗id
−→ C⊗ TV. (2.12)

is a geometric resolution of F0 since
(
Ω•(V )⊗ X(V ), ι−→

E
⊗ id

)
is also exact (here Ωi(V ) := Γ(∧iT ∗V )

stands for the sheaf of i-forms on V ).

More generally, the construction we have made in (2.12) is still possible by contracting with any

vector field X =
N∑
i=1

Xi ∂

∂xi
∈ X(V ). The latter will yield a complex of vector bundles that covers the

singular foliation FX generated by the Xi ∂
∂xj

’s. For instance, if X is a polynomial vector field and
(X1, . . . , XN ) form a regular sequence, we will get a geometric resolution of FX .

Example 2.6.20. Let F2 = I2
0X(K2) ⊂ F0 be the sub-singular singular foliation made of vector fields

vanishing at order 2 at the origin of K2, where I2
0 ⊂ O(K2) is the ideal generated by the monomials

x2, xy, y2. Note that the ideal I2
0 admits a free resolution of the form

0 −→ O(K2)⊕O(K2) δ1−→ O(K2)⊕O(K2)⊕O(K2) δ0−→ I2
0 −→ 0, (2.13)

where for all f, g, h ∈ O(K2),

δ0(f, g, h) = x2f + xyg + y2h and δ1(f, g) = (xf, xf − yg, xg).
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The free resolution (2.13) has to take the form

0 −→ Γ(I−2) δ1−→ Γ(I−1) δ0−→ I2
0 −→ 0, (2.14)

for sum trivial vector bundles I−1, I−2 on K2. Thus, the following complex

0 −→ I−2 ⊗ TK2 δ1⊗id−→ I−1 ⊗ TK2 δ0⊗id−→ I2
0 ⊗ TK2 −→ 0 (2.15)

is a geometric resolution of F2. Note that I−1 can be identified with the tivial vector bundle S2((K2)∗).

More generally, let Fk be the singular foliation made of vector fields vanishing at order k at the origin
of a vector space V of dimension N over R or C. The Hilbert’s syzygy theorem assures the existence
of a free resolution of length N + 1 of the ideal Ik0 made of functions on V vanishing to order k at the
origin. This resolution is of the form

· · · −→ Γ(I−2) δ1−→ Γ(I−1) δ0−→ I2
0 −→ 0, (2.16)

for some family of trivial vector bundles (I−i)i≥1 over V . We obtain a geometric resolution of Fk of the
form

· · · −→ Γ(I−2 ⊗ TV ) δ1⊗id−→ Γ(I−1 ⊗ TV ) δ0⊗id−→ I2
0 ⊗ X(V ) = Fk (2.17)

Example 2.6.21. Let ϕ be a polynomial function on V := CN . Consider the singular foliation

Fϕ := {X ∈ X(V ) | X[ϕ] = 0}.

The contraction by dϕ gives a complex of vector bundles

· · · ιdϕ−→ ∧3TV
ιdϕ−→ ∧2TV

ιdϕ−→ TV
ιdϕ−→ C× V. (2.18)

The induced complex on the section level

. . .
ιdϕ−−→ X3(V ) ιdϕ−−→ X2(V ) ιdϕ−−→ X(V ) ιdϕ−−→ O(V ) (2.19)

(where Xi(V ) := Γ(∧iTV ) stands for the sheaf of i-multivector fields on V ) is exact in all degree, except
in degree 0 if

(
∂ϕ
∂x1

, · · · , ∂ϕ
∂xN

)
is a regular sequence. For instance, if ϕ is weight-homogeneous and admits

an isolated singularity at the origin. In this case,

· · · ιdϕ−−→ X3(V ) ιdϕ−−→ X2(V ) ιdϕ−−→ ker(ιdϕ) = Fϕ (2.20)

is a resolution of Fϕ.

2.6.1 Geometric resolutions of length ≤ 2 and singular foliations
In this section we discuss the case when a singular foliation F admits a geometric resolution of length 1
and 2. In those cases, we claim that there are Lie algebra-like structures on them.

For any geometric resolution (E•,d•, ρ), the pair (E−1 → M,ρ) is an anchored bundle such that
ρ(Γ((E−1)) = F . Therefore, by Proposition 2.1.2(1), (E−1 →M,ρ) can be endowed with an almost Lie
algebroid structure (E−1, [· , ·]E−1 , ρ).

In general, the Jacobiator of [·, ·]E−1 is non-zero, but is valued kernel of ρ, see Remark 2.1.11.

Geometric resolutions of length 1

As we saw in Proposition 2.6.12, a singular foliation F admits a geometric resolution of length 1 if and
only if it is projective. It that case, the almost Lie algebroid bracket [·, ·]E−1 is a Lie algebroid bracket.
In conclusion: geometric resolutions of length 1 admit a Lie algebroid structure.
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Geometric resolutions of length 2

Let (M,F) be a singular foliation that admits a geometric resolution of length 2, namely

(E•,d•, ρ) : 0−→E−2
d(2)
−→ E−1

ρ−→ TM. (2.21)

Since Equation (2.21) is a geometric resolution of F , (E−1 →M,ρ) is an anchored bundle such that
Γ(E−1) = F . It is quite judicious to ask whether we can extend this bracket to sections of degree −2. If
yes, what structures will we have?

Since the complex (2.21) is a geometric resolution of F , the complex

0−→Γ(E−2)U
d(2)
−→ Γ(E−1)U

ρ−→ FU −→ 0

is exact for all open subsets U ⊂M.

Let U ⊂ M be a an open subset in M . Let (e′1, . . . , e′r2) and (e1, . . . , er1) be local trivializations of
the vector bundles E−2 and E−1 on U , respectively. For all i, j, k ∈ {1, . . . , r1, r1 + 1, . . . , r2} we have

1.
ρ([d(2)e′i, ej ]E−1) = [ρ ◦ d(2)e′i, ρ(ej)] = 0, (by Equation (2.4) and since ρ ◦ d(2) ≡ 0).

In other words, [d(2)e′i, ej ]E−1 ∈ ker ρ. By exactness of the complex (2.6.1) there exists a local
section denoted by ∇e′

i
ej ∈ Γ(E−2)U such that

d(2)∇e′
i
ej = [d(2)e′i, ej ]E−1 . (2.22)

Equation (2.22) allows to define a bilinear map:

Γ(E−1)U ⊗ Γ(E−2)U → Γ(E−2)U
(x, y) 7→ ∇xy

by extending the ∇e′
i
ej ’s by linearity and Leibniz identity with the understanding that the anchor

map ρ vanishes on sections of E−2 in order to have

(a) d(2)∇xy = [d(2)x, y]E−1 , ∀x Γ(E−2)U , y ∈ Γ(E−1)U ,
(b) for all function f ∈ O(U): ∇xfy = f∇xy + ρ(x)[f ] y and ∇fxy = f∇xy, for all x ∈

Γ(E−1), y ∈ Γ(E−2),

2. Remember that

Jac(ei, ej , ek) := [ei, [ej , ek]2]2 + [ej , [ek, ei]2]2 + [ek, [ei, ej ]2]2 ∈ ker ρ.

By using again exactness of the complex (2.6.1) there is a local section that denote by [ei, ej , ek]E−1 ∈
Γ(E−2)U that satisfiies

d(2)[ei, ej , ek]E−1 = Jac(ei, ej , ek). (2.23)
Thus, we can define a skew-symmetric trilinear map:

[· , · , ·]E−1 : Γ(E−1)U ∧ Γ(E−1)U ∧ Γ(E−1)U −→ Γ(E−2)U

such that

d(2)[x, y, z]E−1 = [x, [y, z]2]2 + [y, [z, x]2]2 + [z, [x, y]2]2, ∀x, y, z ∈ Γ(E−1)U .

In the smooth case these operators can be glued to global ones by taking a partition of unity.

The following Proposition recapitulates the discussion above.

Proposition 2.6.22. Let (M,F) be a singular foliation that admits a geometric resolution of length 2
as in (2.21), and (E−1, [· , ·]E−1 , ρ) an almost Lie algebroid.

87



1. There is a bilinear map:
Γ(E−1)⊗ Γ(E−2) → Γ(E−2)

(x, y) 7→ ∇xy

and a skew-symmetric trilinear map:

[· , · , ·]E−1 : Γ(E−1) ∧ Γ(E−1) ∧ Γ(E−1) −→ Γ(E−2)

2. such that for all function f :

(a) ∇xfy = f∇xy + ρ(x)[f ] y and ∇fxy = f∇xy, for all x ∈ Γ(E−1), y ∈ Γ(E−2),
(b) [fx, y, z]E−1 = f [x, y, z]E−1 for all x, y, z ∈ Γ(E−1),

such that the 2-ary bracket on Γ(E−1 ⊕ E−2) defined by:

[x, y]2 =


[x, y]E−1 for x, y ∈ Γ(E−1)
∇xy for x ∈ Γ(E−1), y ∈ Γ(E−2)
−∇yx for x ∈ Γ(E−1), y ∈ Γ(E−2)
0 for x, y ∈ Γ(E−2)

together with the 3-ary bracket on Γ(E−1⊕E−2) defined by [x, y, z]3 = [x, y, z]E−1 if x, y, z ∈ Γ(E−1)
and zero otherwise, satisfies

(a) for all x ∈ Γ(E−2), y ∈ Γ(E−1),

d(2)[x, y]2 + [d(2)x, y]2 = 0, (2.24)

(b) for all x, y, z ∈ Γ(E−1)

d(2)[x, y, z]3 + [x, [y, z]2]2 + [y, [z, x]2]2 + [z, [x, y]2]2 = 0

(c) for all x, y ∈ Γ(E−1) and z ∈ Γ(E−2)

[x, y,d(2)z]3 + [x, [y, z]2]2 + [y, [z, x]2]2 + [z, [x, y]2]2 = 0.

Definition 2.6.23. The structure (E•,d•, ρ, [· , ·]2, [· , ·, ·]3) described in Proposition 2.6.22 is called 2-Lie
algebroid.

A generalization will be discussed later.

2.7 Universal Q-manifold
Beyond the world of manifolds is the universe of ”manifolds up to homotopy”, which are known under
names: some or more or less equivalent, and some are mostly dual notions:

♣ Lie ∞-algebroids.

♦ Q-manifolds, also called dg-manifolds (dg= differential graded).

The two notions are in fact ”equivalent” in the sense that they are dual one to the other.

2.7.1 Two dual point of views on Lie algebras
To explain where the notion of dg-manifold comes from, let us look at the case of Lie algebras:

Definition 2.7.1: A weird definition of Lie algebra

A co-Lie algebra is a vector space V equipped with a degree +1 derivation

δ : ∧• V −→ ∧•+1V
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such that δ2 = 0

Before explaining this definition, let us start with a few comments:
1. we write δ : ∧• V 7→ ∧•+1V to mean that for every k ≥ 0, δ maps ∧kV to ∧k+1V

2. By a degree +1 derivation, we mean that

δ(α ∧ β) = δ(α) ∧ β + (−1)kα ∧ δ(β)

for all α ∈ ∧kV and β ∈ ∧•V . The signs are exactly those of the de Rham differential (which is
also a degree +1 derivation).

3. For any degree +1 derivation, δ2 is easily seen to be a degree +2 derivation12.

4. A derivation of ∧•V is entirely determined by its restriction to V , which is a map µ : V −→ ∧2V
that we call the co-Lie-bracket. This comes from the very derivation property:

δ(v1 ∧ · · · ∧ vk) =
k∑
i=1

(−1)i+1v1 ∧ · · · ∧ vi−1 ∧ µ(vi) ∧ vi+1 ∧ · · · ∧ vk (2.25)

5. Conversely, any linear map µ : V −→ ∧2V extends to a degree +1 derivation by using (2.25).

Proposition 2.7.2: Lie algebras are dual to co-Lie algebra

There is a one-to-one correspondence between finite dimensional Lie algebras and finite dimen-
sional Lie coalgebras.

The correspondence goes as follows.
1. The dual of the Lie algebra bracket [·, ·] : ∧2 g→ g is a map µ : g∗ → (∧2g)∗. Since the dimensions

are finite, there is a canonical isomorphism (∧2g)∗ ' ∧2g∗, and we still denote by µ the map
µ : g∗ → ∧2g∗. Using (2.25), one extends µ to a degree +1 derivation δ of ∧•g∗. It is routine to
check that the Jacobi identity holds for [·, ·] implies δ2 = 0.

2. Conversely, given a co-Lie algebra, the dual of the co-Lie bracket µ : V → ∧2V is a linear map
∧2V ∗ → V ∗. It is routine to check that δ2 = 0 implies the Jacobi identity for [·, ·].

Remark 2.7.3. The degree +1 derivation corresponding to a finite-dimensional Lie algebra is its
Chevalley-Eilenberg differential computing the Lie algebra cohomology in trivial coefficients.

To put it all in a nutshell:

What is a finite dimensional Lie algebra?
Two dual answers

Direct notion: Dual notion:

A vector space g A vector space V
+ linear map: [·, ·] : ∧2 g −→ g + degree +1 derivation δ : ∧• V −→ ∧•+1V

such that

The Jacobi identity holds δ2 = 0

12Of course, this is not true for degree 0 derivation, otherwise the formula (fg)′′ = f ′′g + fg′′ would not be classical
confusion of undergraduate students.
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2.7.2 Graded symmetric algebras
Throughout of this section we are working on a field K ∈ {R,C}.

Co-Lie algebras have been described in the previous sections. They are nothing else than dual of Lie
algebras, but it is conceptually important to understand how Lie ∞-algebras are defined.

Consider now a positively Z-graded vector space:

V• := ⊕i∈ZVi

Definition 2.7.4: Graded Symmetric algebras

We call graded symmetric algebra of V• and denote by S(V•) the quotient of the tensor algebra

⊕i≥0V
⊗n

by the ideal generated by
x⊗ y − (−1)ijy ⊗ x

for all x ∈ Vi, y ∈ Vj. We denote by � the induced product on S(V•).

Let us state a few basic facts about this quotient space. To start with, the tensor algebra comes with
two different ”degrees” that we have to distinguish, and that go to the quotient: Elements of

Vi1 ⊗ · · · ⊗ Vin

shall be said of

1. polynomial degree n,

2. degree i1 + · · ·+ in.

With both the polynomial degree and the degree, the quotient S(V•) is ”graded” in the sense that the
degree of the product is the sum of the degrees. But with respect to the degree, it is also graded
commutative, i.e.

P �Q = (−1)ijQ� P

For homogenous elements x1, . . . , xn ∈ V , the Koszul sign denoted by, ε(σ, x1, . . . , xn) or simply by
ε(σ) when there no ambiguity, is the sign induced by the permutation of the xi’s which is defined by:

xσ(1) � · · · � xσ(n) = ε(σ, x1, . . . , xn)x1 � · · · � xn. (2.26)

For V = ⊕∞i=1V−i a graded vector space we denote by S(V ∗) the graded commutative symmetric
algebra generated by V ∗ = ⊕∞i=1V

∗
−i, with the understanding that elements in E∗−i are of degree +i.

Elements in V ∗−i � · · · � V ∗−ik are therefore of polynomial degree k and degree i1 + · · · + ik. We shall
define elements of arity zero to be elements in K.

In the present section, we will be interested in two kinds of symmetric algebras:

♣ those of the form S(⊕i≥1V−i) whose non-trivial components are of negative degrees.

♦ those of the form S(⊕i≥1Vi) whose non-trivial components are of positive degrees.

By our convention, both symmetric algebras are in duality, i.e. if all spaces are of finite dimension, and
if E−i is the dual of Vi for all i ≥ 1, then there is a duality between:

♣ elements of polynomial degree k and degree −i in S(⊕i≥1E−i)

♦ elements of polynomial degree k and degree +i in S(⊕i≥1Vi)
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Question 2.7.5: Towards Lie ∞-algebras

Let V• = ⊕i≥1Vi be a positively graded vector space. Assume S(V•) comes equiped with a degree
+1 derivation δ such that δ2 = 0. What kind of structures do me obtain on the dual spaces
⊕i≥1E−i?

Here is an answer. The derivation δ is entirely determined by its restriction to V . Decomposing
according to polynomial degree, we see that δ =

∑
k≥1 δ

(k), with δ(k) : V 7→ SkV a degree +1 map.
By duality, there is a one-to-one correspondence between:

♣ the datum (V, (`k)k≥1) made of a collection of vector spaces V = (V−i)i≥1 together with a family
of degree +1 linear maps (`k : S•(V ) −→ V )k≥1 called k-ary brackets,

♦ a sequence δ(k) of linear maps V −→ Sk(V ).

for all k ∈ N, denote by `k : SkE• → E• the dual of the differential δ(k) : .
It is then a complicated by direct computation to check that δ2 = 0 holds if and only if the `k equip

E• with a Lie ∞-algebra structure, the latter being defined as follows:

Definition 2.7.6: Lie ∞-algebras

A negatively graded Lie∞-algebra is the datum (V, (`k)k≥1) made of a collection of vector spaces
V = (V−i)i≥1 together with a family of degree +1 linear maps (`k : S•(V ) −→ V )k≥1 called k-ary
brackets, which fulfill the compatibility conditions the so-called higher Jacobi identities: for all
homogeneous elements v1, . . . , vn ∈ V

n∑
i=1

∑
σ∈Si,n−i+1

ε(σ)`n−i+1
(
`i(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)

)
= 0. (2.27)

Here ε(σ) is the Kozsul sign associated to v1, . . . , vn.

In conclusion:

Proposition 2.7.7

Let E• = ⊕i≥1E−i and V• = ⊕i≥1V+i be finite dimensional graded vector spaces in duality. There
is a one-to-one correspondence between

♣ Lie ∞-algebras brackets (`k)k≥1 on E•,

♦ degree +1 derivations squaring to zero of S(V•).

2.7.3 NQ-manifolds

We will now extend the previous discussion from Lie ∞-algebras to Lie ∞-algebroids. And from S(V )
equipped with a degree +1 differential to the so-called dg-manifolds.

Graded manifolds

Let us first define N-graded manifolds.
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Definition 2.7.8: Graded manifolds: the objects

Let M be a smooth, real analytic or complex manifold. A (positively) graded manifold over a
manifolda M is a sheaf

E : U 7→ E(U)

of graded commutative algebras over K such that every m ∈ M admits an open neighborhood
U ⊂M on which the sheaf structure takes the form

E(U) = OU ⊗K S(V•)

for some some graded vector space V = ⊕∞i=1V+i. If E• = ⊕i≥1E−i and V• = ⊕i≥1V+i are in
duality, sections of the sheaf E are called functions on E. It is convenient to denote a graded
manifold as a pair (M, E).

acalled the base of the sheaf

Remark 2.7.9. In the smooth setting, it can be proven that there exists a globally and canonically
defined graded vector bundle V• → M such that E is isomorphic to the graded commutative algebra
bundle S(V•)→M . Although V• is canonical, the isomorphism of sheaves

E oo ' // Γ(S(V ))

is not canonical. For a statement adapted to the present situation, see [?]. Upon choosing such an
isomorphism, a function ξ ∈ Ej is a formal sum

ξ =
∑
i≥0

ξ(i) (2.28)

with ξ(i) ∈ E an element of polynomial degree i and degree j. For degree reasons, the sum must be finite.

Local coordinates of a graded manifold

Recall that for U ⊂ M an open set, one has (Vi)U
∼−→ U × Krk(Vi) for every i ≥ 1. Hence, the graded

coordinates on the graded manifold (M, E) is the data made of:

In degree 0: a system of coordinates (x1, . . . , xn) of M on U

In degree i ≥ 1: a local trivialization (ξ1
i , . . . , ξ

rk(Vi)
i ) of Vi on U .

That is, a system of graded coordinates of (M, E) on U is

(x1, . . . , xn, ξ
1
1 , . . . , ξ

rk(V1)
1 , . . . , ξ1

i , . . . , ξ
rk(Vi)
i , . . . ).

Therefore, the elements of E(U) are ”polynomials” in {(ξji )j=1,...,rk(V−i), i ≥ 1} with coefficients in O(U).

Example 2.7.10. The sheaf of differential forms (M, E = Ω(M)) on a manifold M is a graded manifold
since for every point m ∈M , it takes the form OU ⊗K ∧•T ∗mM where U is an open neighborhood of m.
Exterior forms can be seen as sections on the graded vector bundle E−1 = TM .

Example 2.7.11. Let k be a positive integer. A finite dimensional vector space E and its dual V can
be seen as graded vector bundles of respective degree −k and k over a point. E is a graded manifold
over M = {pt}, with functions isomorphic to ∧V for k odd and S(V ) for k even.
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Definition 2.7.12: Graded manifolds: the Morphisms

A morphism of graded manifolds between the two graded manifolds (M, E) and (M ′, E ′) with
respective base manifolds M and M ′ is a pair made of a smooth or real analytic or holomorphic
map φ : M −→ M ′ called the base map and a sheaf morphism over it, i.e. a family of graded
algebra morphisms:

E ′(U ′)→ E(φ−1(U ′)),

compatible with the restriction maps, such that

Φ(fα) = φ∗(f)Φ(α). (2.29)

for all f ∈ O′U ′ and α ∈ E ′(U ′).
A homotopy between two morphisms of graded manifolds Φ,Ψ: (M, E) −→ (N, E ′) is a morphism
of graded manifold

(M, E)× ([0, 1],Ω([0, 1])) −→ (M ′, E ′)

whose restrictions to the extremities of the interval [0, 1] coincide with Φ and Ψ respectively.

Vector fields on graded manifolds

Vector fields on manifolds are derivations of its algebra of functions. For a graded manifold, the equivalent
of functions are the sections of the sheaf E . Since it is not commutative but graded commutative, one
has to consider graded derivations. A graded derivation of degree k of E is the data, for every U ⊂M of
a linear map

Q : E•(U) −→ E•+k(U),
compatible with all restriction maps, that increases the degree by +k and satisfies:

Q[FG] = Q[F ]G+ F (−1)kiQ[G]

for every F ∈ Ei(U), G ∈ E(U). Since we think geometrically, we will simply say ”vector fields of degree
k” instead of graded derivations.

Definition 2.7.13. Let (M, E) be a graded manifold. For U ⊂M and k ∈ Z let

Xk(E)(U) := Derk(E(U))

be the E(U)-module of derivation of degree k on E(U). The correspondence U 7−→ X•(E)(U) is a sheaf
of E-modules. Its sections are called vector fields on E.

Let us list some important facts on vector fields on E:

1. the E-module X•(E) := ⊕kZXk(E) of vector fields on E is naturally graded. The E-module X•(E)
of vector fields on E is a graded Lie sub-algebra of the graded Lie algebra HomK(E , E) whose graded
Lie bracket is the graded commutator. Precisely, the graded Lie bracket

[P,Q] = P ◦Q− (−1)klQ ◦ P (2.30)

of two vector fields P,Q of degree k, l respectively is a vector field of degree k + l. It is easily
checked that the bracket (2.30) fulfills

(a) [P,Q] = −(−1)jk[Q,P ] (graded skew-symmetry)
(b) (−1)jl[P, [Q,R]] + (−1)jk[Q, [R,P ]] + (−1)kl[R, [P,Q]] = 0, (graded Jacobi identity)

for vector fields P,Q,R of degree j, k and l respectively.

2. Their description in local coordinates: note that any homogeneous element e ∈ E−k corresponds
to a vertical vector field ιe ∈ X−k(E) ( i.e it is O-linear ) of degree −i defined by contraction with
e

ιe(ξ) := 〈ξ, e〉, ξ ∈ Γ(V ) (2.31)
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and we extend by O-linear derivation, where 〈· , ·〉 is the dual pairing between V and E. Let
(U , x1, . . . , xn) a coordinate chart of M and (ξji )j=1,...,rk(Vi) with i ≥ 1 be a homogeneous local
trivialization of V , it should be understood that ξji is the j-th elements of the local frame in
Γ(E∗−i). If (eji )j=1,...,rk(E−i), i ≥ 1 is the dual basis of (ξji )j=1,...,rk(Vi), i ≥ 1, then for every pair i, j,
ιej
i

= ∂

∂ξj
i

is the partial derivative with respect to ξji ∈ Γ(Vi). By choosing a TM -connection on E,
it is easy to check that for any k ∈ Z the family(

ξj1i1 � · · · � ξ
jl
il

∂

∂xj

)
l ≥ 0

i1 · · · il = k
j1, . . . , jl
j = 1, . . . , n

∪

(
ξj1i1 � · · · � ξ

jl
il

∂

∂ξji

)
l ≥ 0

i1 · · · il − i = k
j1, . . . , jl

i ≥ 1, j = 1, . . . , rk(E−i)

form a basis for Xk(E)(U) up to permutations of the ξj1i1 �· · ·�ξ
jl
il

’s. Here we adopt the convention
i0 = j0 = 0 and ξ0 = 1 ∈ Γ(S0(V )) ' O. Whence, any vector field Q ∈ Xk(E)(U) admits
coordinates decomposition as follow

Q =
∑
l ≥ 0

i1 · · · il = k
j1, . . . , jl
j = 1, . . . , n

1
l!
jQj1···jli1···il ξ

j1
i1
� · · · � ξjlil

∂

∂xj
+

∑
i ≥ 1, l ≥ 0

i1 · · · il − i = k
j1, . . . , jl

j = 1, . . . , rk(E−i)

1
l!
ijQj1···jli1···il ξ

j1
i1
� · · · � ξjlil

∂

∂ξji
.

for some functions Qj1···jli1···il ∈ O. These functions can be chosen in a unique manner to satisfy e.g
ijQ

jσ(1)···jσ(l)
iσ(1)···iσ(l)

= ε(σ)Qj1···jli1···il for any permutation σ of {1, . . . , l}.

For example, if Q is of degree +1 it can be written in these notations as

Q =
∑

1 ≤ u ≤ rk(E−1)
j = 1, . . . , n

jQu1 ξ
u
1

∂

∂xj
+

∑
i ≥ 1, = l ≥ 0
i1 · · · il − i = 1
j1, . . . , jl
j = 1, . . . , n

1
l!
ijQj1···jli1···il ξ

j1
i1
� · · · � ξjlil

∂

∂ξji
.

Definition 2.7.14: dg-manifolds = Q-manifolds

A dg-manifold or NQ-manifold is a positively graded manifold (M, E) endowed with a degree +1
homological vector field Q on E, i.e., Q ∈ X1(E) is such that Q2 = 0.

They shall be denoted as a triple (M, E , Q).

Example 2.7.15. Given a finite dimension Lie algebra (g, [· , · ]) of dimension d. We assume that g is
concentrated in degree −1. It is clear that (M = {pt}, E = ∧•g∗) is a graded manifold over M = {pt}.
This graded manifold carries a dg-manifold structure. Precisely, we define the corresponding homological
vector field as follow: fix a basis (ei)i=1,...,n of g and let these global coordinate functions (ξi)i=1,...,n on
g be its dual. Write

[ei, ej ] =
n∑
l=1

λlijel

for some scalars λlij ∈ K. One can check that the degree +1 vector field

Q = 1
2

n∑
i,j,l=1

λlijξ
i ∧ ξj ∂

∂ξl

corresponds to the Chevalley-Eilenberg differential (dCE,∧•g∗). Therefore, Q2 = 0 and is equivalent to
Jacobi identity.
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Example 2.7.16. Given a differential graded vector bundle ((E−i)i≥1,d) over M . There is a natural dg
manifold given by its sheaf of sections (M, E = Γ(S(E∗)). In particular, the deferential map d: E −→ E
is dualized as a degree +1 map S1(E∗) −→ S1(E∗) that we extend to a C∞(M)-linear derivation on E
squared to zero.

Example 2.7.17. Let E = T [1]M be the shifted bundle of M . It induces a graded manifold structure
(M, E = Ω(M)) over M . This graded manifold carries a dg-manifold structure Q that corresponds to
the de Rham differential on Ω(M). In term of coordinates, the homological vector field Q reads

n∑
i=1

dxi
∂

∂xi
.

Let us introduce some vocabulary that will need to use.

Definition 2.7.18. Let (M, E ′, Q′) and (M, E , Q) be two NQ-manifolds.

1. A linear map Φ: E −→ E ′ is said to be of polynomial degree/degree j ∈ Z provided that for all
functions α ∈ E of polynomial degree/degree i, Φ(α) is of polynomial degree/degree i + j. Any
map Φ: E −→ E ′ of degree i decomposes w.r.t the polynomial degree as follows:

Φ =
∑
r∈Z

Φ(r)

with Φ(r) : E −→ E ′ a map of arity r.

Remark 2.7.19. When Φ: E −→ E ′ is a graded morphism of algebras necessarily one has Φ(r) = 0 for
all r < 0. Furthermore, for all n, r ∈ N and all ξ1, . . . , ξk ∈ Γ(V ) one has:

Φ(r)(ξ1 � · · · � ξn) =
∑

i1+···+in=r
Φ(i1)(ξ1)� · · · � Φ(in)(ξn). (2.32)

Obviously, in this case Φ is determined uniquely by the image of Γ(V ).

Definition 2.7.20: Morphisms

Let (M, E , Q) and (M, E ′, Q′) be two NQ-manifolds over M with sheaves of functions E and E ′
respectively. A morphism of NQ-manifold over M from (M, E ′, Q′) to (M, E , Q) is a morphism
of graded manifolds Φ: E −→ E ′ (of degree 0) over the identity map which intertwines Q and Q′,
i.e.,

Φ ◦Q = Q′ ◦ Φ. (2.33)

Remark 2.7.21. Note that morphisms of NQ-manifolds over M are by definition O-linear since they
are defined over the identity map. The component Φ(r) of arity r ≥ 0 of any O-linear map Φ: E −→ E ′
maps Γ(V ) to Γ(Sr+1(V ′)). By O-linearity, it gives rise to a section φr ∈ Γ(Sr+1(V ′) ⊗ E). Therefore
one has,

Φ(r)(ξ) = 〈φr, ξ〉 (2.34)
for all ξ ∈ Γ(V ). It follows that Φ is entirely determined by the collection

(
φr ∈ Γ(Sk+1(V ′)⊗ E)

)
r≥0

when Φ is a algebra morphism or a Ξ-derivation for some map Ξ: E −→ E ′. In such case, for r ≥ 0,
φr ∈ Γ(Sr+1(V ′) ⊗ E) is then called the r-th Taylor coefficient of Φ. We also call the 0-th Taylor
coefficient φ0 : E′ → E the linear part of Φ. The latter is a chain map

· · · // E′−3

φ0

��

d′(3)
// E′−2

φ0

��

d′(2)
// E′−1

φ0

��

ρ′ // TM

id
��

· · · // E−3
d(3)
// E−2

d(2)
// E−1

ρ // TM

(2.35)
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2.7.4 Negatively graded Lie ∞-algebroids and their morphisms

Definition 2.7.22

A negatively graded Lie∞-algebroid (E, (`k)k≥1, ρ) is a collection of vector bundles E = (E−i)i≥1
over M endowed with a sheaf of Lie ∞-algebra structures (`k)k≥1 over the sheaf of sections of E
together with a vector bundle morphism ρ : E−1 −→ TM , called the anchor, such that the k-ary-
brackets are all O-multilinear except when k = 2 and at least one of the arguments is of degree
−1. The 2-ary bracket satisfies the Leibniz identity

`2(x, fy) = ρ(x)[f ]y + f`2(x, y), x ∈ Γ(E−1), y ∈ Γ(E). (2.36)

Remark 2.7.23. Definition 2.7.4 implies the following facts

1. ρ(`2(x, y)) = [ρ(x), ρ(y)] for all x, y ∈ Γ(E−1) and that ρ ◦ `1 = 0.

2. The sequence of morphisms of vector bundles

· · · `1 // E−2
`1 // E−1

ρ // TM

is a complex of vector bundles that we call the linear part. A Lie ∞-algebroid is said to be acyclic
if its linear part has no cohomology in degree ≤ −1.

3. The 2-ary bracket restricts to an almost-Lie algebroid structure on E−1. Hence, by Lemma 2.1.12,
F := ρ(Γ(E−1)), a singular foliation called the basic singular foliation of (E, (`k)k≥1, ρ). We say
then, that the Lie ∞-algebroid (E, (`k)k≥1, ρ) is over F .

Theorem 2.7.24

There is a one-to-one correspondence between

1. negatively graded Lie ∞-algebroids (E, (`k)k≥1, ρ),

2. NQ-manifolds (E,Q).

Moreover, both structures correspond one to the other through the following relations:

1. for all f ∈ O, x ∈ Γ(E−1)
〈Q(f), x〉 = ρ(x)[f ], (2.37)

2. for all ξ ∈ Γ(E∗) and x ∈ Γ(E):

〈Q(0)(ξ), x〉 = (−1)|ξ|〈ξ, `1(x)〉 (2.38)

.

3. for all homogeneous elements x, y ∈ Γ(E) and α ∈ Γ(E∗)

〈Q(1)(ξ), x� y〉 = ρ(x)[〈ξ, y〉]− ρ(y)[〈ξ, x〉]− 〈ξ, `2(x, y)〉, (2.39)

with the understanding that the anchor ρ vanishes on E−i when i ≥ 1.

4. for every n ≥ 3, the k-ary brackets `n : Γ(SkK(E)) −→ Γ(E) and the arity k − 1 component
Q(n−1) : Γ(E∗) −→ Γ(SkK(E∗)) of Q are dual to each other.

Where 〈· , ·〉 stands for the duality pairing between sections of a vector bundle and sections of its
dual.
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Example 2.7.25. Let (A, [· , · ]A, ρ) be Lie algebroid concentrated in degree −1. The graded manifold
(M, E = Γ(∧A∗)) carries a dg-manifold structure Q which is given by

〈Q[f ], a〉 = ρ(a)[f ]
〈Q[ξ], a ∧ b〉 = ρ(a)[〈ξ, b〉]− ρ(b)[〈ξ, a〉]− 〈ξ, [a, b]A〉

for f ∈ O, ξ ∈ Γ(A∗) and a, b ∈ Γ(A). This is sufficient to extend Q by derivation on E . One can check
that Q2 = 0 because of Jacobi identity.

Definition 2.7.26

Let (E′, (`′k)k≥1, ρ
′) resp. (E, (`k)k≥1, ρ) be negatively graded Lie ∞-algebroids and (E′, Q′) resp.

(E,Q) their corresponding NQ-manifolds. A Lie ∞-algebroids morphism or Lie ∞-morphism
between (E′, (`′k)k≥1, ρ

′) and (E, (`k)k≥1, ρ) is a morphism of NQ-manifolds between (E,Q) and
(E′, Q′).

From now on, we will denote by (E,Q) a Lie ∞-algebroid (E, (`k)k≥1, ρ). This notation is justified
by Theorem 2.7.4.

Homotopic Lie ∞-algebroids

Definition 2.7.27. Let (E′, Q′) and (E,Q) be Lie ∞-algebroids over M . A path t 7→ Φt in the
space made of Lie∞-morphisms from E′ to E is said to be piecewise-smooth if for every k ∈ N0 the map
t 7→ φk(t) which is induced by the Taylor coefficients of arity k is a piecewise-C∞ path in Γ(Sk+1(E′∗)⊗E)
(which is also continuous even at the junction points).

Definition 2.7.28: Homotopies

Let (E,Q) and (E′, Q′) be Lie ∞-algebroids over M with sheaf of functions E and E ′.

1. Two Lie ∞-morphisms Φ,Ψ: (E,Q) −→ (E′, Q′) are said to be homotopic and denoted
Φ ∼ Ψ if there is a morphism of graded differential algebras:

(E , Q) −→ (E ′ ⊗ Ω•([0, 1]), Q′ ⊗ id + id⊗ ddR) (2.40)

which coincides with Φ and Ψ at {0} and {1}, respectively.

Equivalently, say Φ ∼ Ψ, consists of:

(a) a (continuous) piecewise-smooth path t 7→ Φt valued in Lie ∞-algebroid morphisms
between E and E′ such that:

Φ0 = Φ and Φ1 = Ψ,

(b) a piecewise-smooth path t 7→ Ht valued in Φt-derivations of degree −1, such that the
following equation:

dΦt
dt

= Q′ ◦Ht +Ht ◦Q (2.41)

holds for every t ∈ [0, 1] where it is defined.

Therefore, we say that the pair (Φt, Ht) is a homotopy between Φ and Ψ.

2. (E,Q) and (E′, Q′) are said to be homotopic if there is a pair of Lie ∞-morphisms

(E,Q)
Φ // (E′, Q′)
Ψ

oo

whose compositions Φ ◦ Ψ: E −→ E and Ψ ◦ Φ: E ′ −→ E ′ are homotopy equivalent to the
identity map idE and idE′ , respectively.
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Exercice 2.7.29. Let (E,Q) and (E′, Q′) be Lie∞-algebroids over M . Show that Definition 2.7.4 implies
that for every pair of homotopic Lie ∞-morphisms Φ,Ψ: (E′, Q′) −→ (E,Q), there exists an O-linear
map H : E −→ E ′ of degree −1 such that:

Ψ− Φ = Q′ ◦H +H ◦Q. (2.42)

Exercice 2.7.30. Check that the two formulations of homotopies between Lie ∞-morphisms given in
Definition 2.7.4 are indeed equivalent.
Exercice 2.7.31. Show that homotopy of Lie ∞-algebroid morphisms is an equivalence relation and also
this equivalence relation is compatible with composition.
Exercice 2.7.32. Let (E,Q) and (E,Q) be Lie ∞-algebroids over M and let w ∈ Γ(Sr+1(E′∗) ⊗ E) be
a section of degree −1 for some r ≥ 0. For a Lie Φ-algebroid morphism Φ: E −→ E ′ from (E′, Q) to
(E,Q), let HΦ : E −→ E ′ be the O-linear Φ-derivation where the only non zero Taylor coefficient is w.

1. Check that the following differential equation:{
dΦt
dt = Q′ ◦HΦt +HΦt ◦Q

Φ0 = Φ.
(2.43)

has a unique solution for all t ∈ R.

2. Show that (Φt, HΦt)t∈[0,1] is a homotopy between the Lie ∞-algebroid morphism Φ and the Lie
∞-algebroid morphism Φ1.

2.7.5 NQ-manifolds and singular foliations
We have seen in the previous section that any Lie ∞-algebroid over M has an induced singular foliation
which is its basic foliation. Now we will analyse the opposite direction, i.e., given a singular foliation
F ⊆ X(M), can we find a Lie ∞-algebroid over M whose basic foliation is F? in case where it exists do
we have uniqueness?

All results below also hold for free resolutions by O-modules and the following statements and their
proofs can be deduced from general results on Lie-Rinehart algebras [?].

Lemma 2.7.33. Let (E,d, ρ) a geometric resolution of F . Every almost Lie algebroid structure (E−1, [· , ·]E−1 , ρ)
on E−1 ⊂ E can be extended to an almost Lie algebroid structure on E.

The next theorem is obtained by proving that every graded almost Lie algebroid over a geometric
resolution can be extended to a (unique up to homotopy) Lie ∞-algebroid structure. It appeared first in
an explicit form in the PhD of Sylvain Lavau [?], followed by a referred version by CLG, S. Lavau and T.
Strobl in [LGLS20], but the authors acknowledge it was discussed several year earlier by Ralph Mayer
and Chenchang Zhu - and also Teodor Voronov and his collaborators in a slightly different context. This
result is generalized later for arbitrary Lie-Rinehart algebras over a commutative unital algebra in ??.

Theorem 2.7.34: Beyond almost Lie algebroids

Let F be a singular foliation on a manifold M .

1. Any resolution of F by free O-modules (which is not necessarily a geometric resolution)

· · · d−→ P−3
d−→ P−2

d−→ P−1
ρ−→ F −→ 0 (2.44)

carries a Lie ∞-algebroid structure over F whose unary bracket is `1 := d.

2. In particular, when F admits a geometric resolution (E,d, ρ), there exists a Lie∞-algebroid
(E,Q) over F whose linear part is (E,d, ρ).

Proof. Apply Theorem 2.1 in [?] to F seen as a Lie-Rinehart algebra over O.
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Definition 2.7.35: Universal dg-manifolds: definition

We call universal Lie ∞-algebroid of a singular foliation any Lie ∞-algebroid whose linear part
is a geometric resolution of F .

The name ”universal” is justified: it is indeed a universal object in the category of Lie ∞-algebroids
whose anchor is valued inside F . Arrows of that category are defined to be homotopy classes of mor-
phisms.

Theorem 2.7.36: Universal dg-manifold deserve the name ”universal”

Let F be a singular foliation over M . Given,

a) a Lie ∞-algebroid (M, E ′, Q′) that terminates in F , i.e, ρ′(Γ(E−1)) ⊆ F ,

b) a universal Lie ∞-algebroid (M, E , Q) of F ,

then

1. there exists a Lie ∞-morphism from (M, E ′, Q′) to (M, E , Q).

2. and any two such morphisms are homotopic.

Here is an immediate corollary of this result, which is valid for any universal object in any category.

Corollary 2.7.37: The universal Lie ∞-algebroid is as unique as can be

Two universal Lie ∞-algebroid of a singular foliation are homotopy equivalent.
Moreover, the homotopy equivalence between them is unique up to homotopy.

Here are some examples of universal Lie ∞-algebroids of singular foliations

Example 2.7.38. For a regular foliation F on a manifold M , the Lie algebroid TF ⊂ TM , whose
sections form F , is a universal Lie ∞-algebroid of F .

Exercice 2.7.39. We go back to example 2.6.21. Check that a universal Lie∞-algebroid of Fϕ ⊂ X(V ) is
given on the free resolution

(
E−• = ∧•+1V,d = ιdϕ, ρ = −ιdϕ

)
by defining the following n-ary brackets:

{∂I1 , · · · , ∂In}n :=
∑

i1∈I1,...,in∈In

ε(i1, . . . , in)ϕi1···in∂Ii11 •···•I
in
n

; (2.45)

and the anchor map given for all i, j ∈ {1, . . . , n} by

ρ

(
∂

∂xi
∧ ∂

∂xj

)
:= ∂ϕ

∂xj

∂

∂xi
− ∂ϕ

∂xi

∂

∂xj
. (2.46)

Above, for every multi-index J = {j1, . . . , jn} ⊆ {1, . . . , d} of length n, ∂J stands for the n-vector field
∂

∂xj1
∧· · ·∧ ∂

∂xjn
and ϕj1···jn := ∂nϕ

∂xj1 ···∂xjn
. Also, I1•· · ·•In is a multi-index obtained by concatenation of

n multi-indices I1, . . . , In. For every i1 ∈ I1, . . . , in ∈ In, ε(i1, . . . , in) is the signature of the permutation
which brings i1, . . . , in to the first n slots of I1 • · · · • In. Last, for is ∈ Is, we define Iiss := Is\is.

2.7.6 The isotropy Lie ∞-algebra of a singular foliation at a point
So far, to any singular foliation we have associated a homotopy equivalence class of Lie ∞-algebroids.
Now, given a point m, there is a functor:

Istropym : { Lie ∞-algebroids } −→ { Lie ∞-algebras }
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that we describe in the next lines. Then, we apply this functor to the universal Lie ∞-algebroids at an
arbitrary point m, and explain why the henceforth obtained Lie∞-algebras deserve to be called isotropy
Lie ∞-algebras by relating then to AS-isotropy Lie algebras.

Specialization of a Lie ∞-algebroid at a point

• Let (M, E , Q) = ((E•, `•, ρ)) be a Lie ∞-algebroid with anchor ρ. For every point m ∈ M , the
k-ary brackets restrict to the graded vector space

ev(E,m) :=

⊕
i≥2

E−i|m

⊕ ker(ρm)

and equipped the latter with a Lie ∞-algebra structure that we denote by Istropym(E , Q) .For
every k ≥ 1, the restriction goes as follows:

{x1, . . . , xk}k := `k(s1, . . . , sk)|m (2.47)

for all x1, . . . , xk ∈ ev(E,m) and s1, . . . , sk ∈ Γ(E) sections of E such that si(m) = xi with
i = 1, . . . , k. These brackets are well-defined. It is clear that for k 6= 2, since `k is linear over
functions. But it is not immediate that the 2-ary bracket is well-defined as well. Let us check that.
On one hand, the new brackets {· · · }k have values in ev(E,m) for degree reasons, except maybe
for the 2-ary bracket when applied to elements of degree −1 (i.e. elements of the kernel of ρm) but
in that case it is in the kernel of ρm since

ρm({x1, x2}2) = ρm(`2(s1, s2)|m)
= ρ(`2(s1, s2))|m
= [ρ(s1), ρ(s2)]|m = 0

In the last line we have used the fact that the Lie bracket of two vector fields that vanish at m is
a vector field that vahishes again at m.

On the other hand, the 2-ary bracket {· , · }2 is also well-defined when applied to elements of degree
less or equal to −2, we need to verify when we take the bracket with at least an element of degree
−1. Let (ei1, . . . eirk(E−i)) be a local trivialization of E−i on a neighbourhood U of the point m ∈M .
For x1 ∈ ker(ρm) and x2 ∈ E−i|m write

x1 =
rk(E−1)∑
k=1

λke
1
k(m), x2 =

rk(E−i)∑
k=1

µke
i
k(m)

for some scalars (λi) in K. The scalars (λk), (µk) extend to functions (fk), (gk) on U . Therefore,
we have

{x1, x2}2 = `2(s1, s2)|m
with

s1 =
rk(E−1)∑
k=1

fke
1
k, s2 =

rk(E−i)∑
k=1

gke
i
k.

If s̃2 is another extension of x2, then (s2 − s̃2)(m) = 0 and this is equivalent to (gk − g̃k)(m) = 0
for k = 1, . . . , rk(E−i). It follows that

`2(s1, s2 − s̃2)|m =
rk(E−i)∑
k=1

`2
(
s1, (fk − g̃k)eik

)
|m

=
rk(E−i)∑
k=1

(((((((fk − g̃k)(m)`2
(
s1, e

i
k

)
|m

+ ((((((((
ρ(s1)|m [fk − g̃k]eik

= 0.
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• Any Lie ∞-morphism of algebroids Φ: (M, E ′, Q′)→ (M, E , Q) induces a graded Lie algebra mor-
phism Φ|m : S•(V ′|m)→ S•(V|m) since it is O-linear. The 0-th Taylor coefficient φ0 : E• → E′• of Φ
restrits to Lie ∞-morphism of algebras

Istropym(Φ): S•(ev(E′,m)∗)→ S•(ev(E,m)∗).

• Let F be the basic singular foliation associated to (M, E , Q) i.e. F = ρ(E−1). We define the graded
vector space

H(F ,m) :=
⊕
i≥1

H−i(E•,m) (2.48)

which is actually the cohomology group of the complex

· · ·
`1|m // E−3|m

`1|m // E−2|m

`1|m // ker(ρm) // 0.

One can check when (M, E , Q) is universal for F , the graded space (2.48) does not depend on the
underlying geometric resolution of F .

The isotropy Lie ∞-algebra of a singular foliation at a point

We assume that (M, E , Q) is universal for F . Note that the Lie ∞-algberoid obtained by specialising at
some point m ∈ M does not induce directly a Lie ∞-algberoid on the graded space H(F ,m) but the
2-ary bracket {· , · }2 goes to quotient directly on elements of degree −1 i.e. to H−1(F ,m), because

{d(2)
m (x1), x2}2 = d(2)

m ({x1, x2}2)

for all x1 ∈ E−2|m and x2 ∈ ker(ρm). That endows H−1(F ,m) with Lie algebra structure.

Proposition 2.7.40. The Androulidakis and Skandalis isotropy Lie algebra gm = F(m)
ImF of the singular

foliation F at a point m ∈M , is isomorphic to H−1(F ,m) w.r.t the induced Lie algebra structure.

Proof. For m ∈ M , we construct a Lie algebra is isomorphism ζ : ker(ρm)
im(d(2)

m )
→ gm as follows: For an

element u ∈ ker(ρm), let ũ be an extension of u to a local section on E−1. By construction one has
ρ(ũ) ∈ F(m). Let ρ̃m be the surjective linear map defined by

ρ̃m : ker(ρm) −→ gm, u 7−→ [ρ(ũ)].

Since any other extension ũ for u differs from the first one by a section in ImΓ(E−1), the map ρ̃m is
well-defined. Surjectivity is due to the fact that every vector field of F vanishing at m ∈ M is of the
form ρ(e) with e a (local) section of E−1 whose value at m belongs to ker(ρm). In addition, it is not
hard to see that ρ̃m is a morphism of brackets.

It remains to show that ker(ρ̃m) = im(d(2)
m ): let u ∈ ker(ρ̃m) ⊂ ker(ρm) and ũ be a local section of E−1

that extends u. By definition of u, the class of ρ(ũ) is zero in gm, therefore, there exists some functions

fi ∈ Im and Xi ∈ F , i = 1, . . . , k, local generators such that ρ(ũ) =
k∑
i=1

fiXi. This implies that

ρ(ũ−
k∑
i=1

fiei) = 0.

where for i = 1, . . . , k, ei is a (local) section of E−1 whose image through ρ is Xi. Since (E•,d•, ρ) is a
geometric resolution, there exists a (local) section q ∈ Γ(E−2) such that

ũ =
k∑
i=1

fiei + d(2)q (2.49)

By evaluating Equation (2.49) at m, we find out that u ∈ im(d(2)
m ). Conversely, for v ∈ E−2|m , choose

a (local) section q of E−2 through v. Therefore, d(2)q ∈ ker ρ, is a (local) extension of d(2)
m v ∈ im(d(2)

m ).
The image of d(2)

m v through ρ̃m is obviously zero. This proves that ker(ρ̃m) = im(d(2)
m ).
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However, if the underlying complex of (M, E , Q) is minimal at m then, for every i ≥ 2, the vector
space H−i(F ,m) is canonically isomorphic to E−i|m . Also, H−1(F ,m) is canonically isomorphic to
ker(ρm).

Definition 2.7.41. Let (M, E , Q) be a universal Lie∞-algebroid of a singular foliation F whose underly-
ing complex is minimal at m. Then, H(F ,m) carries a Lie∞-algebra structure given by Istropym(E , Q)
called the isotropy Lie ∞-algebra of the singular foliation F at m.

One can show that this definition is independent of any choices made in the construction.

Remark 2.7.42. By Proposition 2.7.40, the isotropy Lie algebra of the singular foliation F at a point
m ∈ M in the sense of Androulidakis and Skandalis, is isomorphic to the degree minus one component
H−1(F ,m) ' ker(ρm) of the isotropy Lie ∞-algebra of F at m.
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Chapter 3

State of the Art and open questions

3.1 Open questions
3.1.1 Existence of Lie algebroids generating a singular foliations
Let us start with the most intriguing open question about singular foliations.

Let us start by making the vocabulary precise. So far, it was part of the definition of a ”Lie algebroid
(A → M,ρ, [·, ·])” that A → M had to be a finite rank vector bundle over M , i.e. that A → M is a
vector bundle modeled over a finite dimensional vector space. In this section however, let us distinguish:

1. finite rank Lie algebroids, i.e. Lie algebroids as defined so far, with A → M a finite rank vector
bundle,

2. infinite rank Lie algebroids, which have precisely the same definition, except that A → M is now
a vector bundle of infinite rank.

As we saw in Section 1.3.2, for any finite rank Lie algebroid (A→M,ρ, [·, ·]), the image of the anchor
map F = ρ (Γ(A)) is a singular foliation on M .
Exercice 3.1.1. Let (A→ U , [·, ·], ρ) be an infinite rank Lie algebroid. Check that F = ρ (Γ(A)) is

1. a C∞(M)-module,

2. involutive, i.e. [F ,F ] ⊂ F .

Example 3.1.2. Here is an example for which F is not locally finitely generated as a C∞(M)-module
but still comes from an infinite dimensional Lie algebroid:

a) M = R,

b) A is the trivial vector bundles with generators indexed (ei)i ∈N indexed by N,

c) the anchor map is ρ(ei) = 1
xi e
− 1
x2 ∂

∂x ,

d) the Lie bracket is defined by [ei, ej ] = (j − i)e−
1
x2 ei+j+1.

Here is simple open question, that - as far as we know - first appeared in Androulidakis and Zambon’s
[AZ13b].

Question 3.1.3: [AZ13b]Lie algebroid?

Let F be a singular foliation on a manifold M . Does every point m admit a neighborhood U on
which there exists a Lie algebroid structure (A→ U , [·, ·], ρ) such that F = ρ (Γ(A))?

Here is a slightly more general formulation of the question:
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Question 3.1.4: [?] Lie algebroid (version II)?

Is any finitely generated singular foliation the image through the anchor of a finite rank Lie
algebroid?

In addition to the local problem, there is also a global ”gluing” problem.

Question 3.1.5: Lie algebroid?

Is a smooth singular foliation is the image of the Lie algebroid on open subsets U1,U2, is it the
image of a Lie algebroid on U1 ∪ U2?

Even if we assume both Lie algebroid structures to be defined on the restrictions to U1 and U2 of the
same vector bundle, Question ?? remains non-trivial.
Example 3.1.6. Singular foliations whose number of generators are not globally bounded can clearly not
be, globally, the image through the anchor map of a finite rank Lie algebroid. Hence the singular foliation
of Example is not the image through the anchor map of a finite rank Lie algebroid on the whole R2.
Exercice 3.1.7. The purpose of this exercise is to show that any finitely generated singular foliation is
the image through the anchor map of a infinite rank Lie algebroid.

1. Let X1, . . . , Xd be vector fields on a manifold M , and let gdfree be the free Lie algebra with d-
generators e1, . . . , ed. Show that exists a unique Lie algebra morphism ρ : gdfree → X(M) such that
ρ(ei) = Xi.

2. Assume now that X1, . . . , Xd are generators of a singular foliation F . Use the previous Lie algebra
morphism to construct a Lie algebroid structure on the trivial bundle gdfree ×M → M such that
the image of its anchor map is F.

Quite a few singular foliations are the image through the anchor map of a Lie algebroid: symplectic
foliations of Poisson structures for instance, or orbits of a Lie algebra action. Here is an example of a
singular foliation of rank 6 for which no Lie algebroid is known.

Question 3.1.8: A frustrating example

Is the singular foliation of vector fields on R2 vanishing quadraticallya at the origin 0 the image
through the anchor map of a finite rank Lie algebroid ?

aSee section 1.3.4

Here are other examples of singular foliations for which no finite rank Lie algebroid is known, except
in some particular cases:

1. vector fields on Cn tangent to a given affine variety W ⊂ Cn,

2. vector fields on Cn vanishing at every point an affine variety W ⊂ Cn,

3. vector fields X ∈ X(Cn) such that X[ϕ] = 0 for some polynomial function ϕ ∈ C[X1, . . . , Xn] (see
Example ).

Exercice 3.1.9. Let ϕ ∈ C[x, y, z] be a polynomial function on C3. Check that the following bivector
field :

{x, y} = ∂ϕ

∂z
, {y, z} = ∂ϕ

∂x
, {z, x} = ∂ϕ

∂y

is a Poisson bivector field, and that ϕ is a Casimir. Consider the corresponding Lie algebroid on A =
T ∗C3. Show that the image of its anchor map is a sub-singular foliation of the singular foliation Fϕ of
all vector fields X ∈ X(Cn) such that X[ϕ] = 0. Show that if ϕ is weight homogeneous with an isolated
singularity at zero, then ρ(Γ(A)) = Fϕ.
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Exercice 3.1.10. Show that any singular foliation F of rank k = 1, 2 comes from a Lie algebroid. (Hint:
construct an almost Lie algebroid of rank k over F and show that its Jacobiator is trivial).

Discussion Question ?? may be misleading, in the sense that that ”behind” a singular foliation is a
Lie ∞-algebroid1. The Lie algebroid, even if there is one, is certainly not unique (one could take the
direct product with any Lie algebra for instance). But the universal Lie ∞-algebroid is unique (up to
homotopy, see Corollary ??), so that any homotopy invariant information obtained out of a universal
Lie ∞-algebroid is canonically attached to the singular foliation.

Moreover, the universal Lie ∞-algebroid itself gives some hints about a possible Lie algebroid that
whose image through the anchor map would be the singular foliation.
Not of rank r It is shown in [LGLS20] that some singular foliations of rank r are not the image through
the anchor map of a Lie algebroid of rank r. In fact, the following result is shown in [LGLS20]:

Proposition 3.1.11: No minimal rank Lie algebroid

The singular foliations of all vector fields X on C4 such that X[φ] = 0 with φ(z1, z2, z3, z4) =
z3

1 + z3
2 + z3

3 + z3
4 :

1. has rank 6,

2. is not the image through the anchor map of a Lie algebroid of rank 6.

This relatively elementary result uses the universal Lie ∞-algebroid. In fact, what is shown in
[LGLS20] is that if a Lie algebroid of rank r exists in a neighborhood of a leaf reduced to a point, say
m, then the holonomy Lie ∞-algebra at m admits a minimal model whose 3-ary bracket vanishes. Now,
there are cohomological obstructions to such a cancellation. Here is the exact statement:

Proposition 3.1.12. [?] A singular foliation, defined in a neighborhood of 0 ∈ Rn and of rank r at this
point, which admits a geometric resolution, and for which the 3-ary bracket of any minimal model of the
Lie ∞-isotropy Lie algebra at 0 is not exact as a Chevalley-Eilenberg cocycle for the isotropy Lie algebra
at 0 can not be the image through the anchor map of a Lie algebroid of rank r.

Let us state a striking corollary of this statement. Let X1, . . . , Xr be generators of a singular foliation
F . There exists Christoffel coefficients, i.e. functions ckij (with i, j, k = 1, . . . , r satisfying

[Xi, Xj ] =
r∑

k=1
ckijXk

but those are not unique, since there are relations between the generators. Without any loss of generality,
we can assume

ckij = −ckij , (3.1)

and, since the Jacobi identity holds, we have:

0 = [Xi, [Xj , Xk]] + c.p.

=
r∑
a=1

(
Xi[cajk] +

r∑
b=1

cbijc
a
bk + c.p.

)
Xa

If for every a ∈ {1, . . . , r},

Xi[cajk] +
r∑
b=1

cbijc
a
bk + c.p. = 0 (3.2)

1(= Q-manifold = dg-manifold)
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then there exists a Lie algebroid of rank r whose image through the anchor map is F : the Lie algebroid
on a trivial bundle of rank r whose bracket is given by

[ei, ej ] =
r∑

k=1
ckijek

and whose anchor is ρ(ek) = Xk for all k. Proposition 3.1.1 explains that, if the isotropy Lie∞-algebra at
a point satisfies cohomological condition linked to its 3-ary bracket, then there is no way that coefficients
ckij could be found that satisfy (3.1) and (3.2).

An other relation between the universal Lie ∞-alegbroid and a Lie algebroid over F . In
[?], the following result is proven:

Proposition 3.1.13. [?] If a Lie algebroid A over F exists, then there exists a universal Lie∞-algebroid
(E•, Q) (with E−1 = A) for which the restriction to E−1 all the n-ary brackets are 0 for n ≥ 3.

This proposition makes the next question a natural one:

Question 3.1.14: Univ. Lie ∞-algebroids of SF coming from Lie algebroids

If a singular foliation (i) admits a geometric resolution and (ii) is the image through the anchor
map of a Lie algebroid, does it admit a universal Lie ∞-algebroids for which all n-ary brackets
are zero for n ≥ 3?

So, true or false? Now, is the answer to Question ?? yes or no? Our guess is that the answer is
”no”, but it seems very hard to prove. For instance, we have the following conjecture, which rather goes
in the direction ”the Lie algebroid seem to exist” but certainly does not prove it, and leaves room to
counter-examples:

Conjecture 3.1.15: Finding counter-examples is tricky.

At every point, the isotropy Lie ∞-algebra of a locally real analytic singular foliation is homotopy
equivalent to a finite dimensional differential graded Lie algebra.

The conjecture implies, for instance, that it is not possible to have a homotopy Lie ∞-algebra of the
form

g = g−2 ⊕ g−1

with g−1 a semi-simple Lie algebra, g−2 = R, and the 3-ary bracket:

∧3g−1 → g−2

to be given by the Cartan 3-form, since the latter is not homotopy equivalent to a finite dimensional
differential graded Lie algebra.

3.1.2 Neighborhood of non-simply connected leaves
Let us consider a leaf L of a smooth singular foliation. For simplicity, let us assume L admits a tubular
neighborhood ([L,M ], p) on which there exists an F-connection which is complete, i.e. such that the
horizontal curves stay inside [L,M ]. It is not absolutely necessary to make this last assumption, upon
replacing diffeomorphisms or symmetries by germs of diffeomorphisms.

It is not very hard to check that if L is a circle with parameter θ, then

1. parallel lift along the fundamental vector field ∂
∂θ of the circle the F-connection defines a symmetry

ψ of the transverse foliation T on p−1(pt), with pt ∈ S1 a point.

2. the suspension of ψ is isomorphic to the restriction of F to [L,M ].
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Question 3.1.16: Neighborhoods

What happens when L is a torus? An arbitrary surface? And, of course, what happens for an
arbitrary leaf?

For regular foliations, it is known that a there is a neighborhood of any saturated leaf L is entirely
given by a group morphism from π1(L) to diffeomorphisms of an open ball. For singular foliation, the
problem is much more involved, as shown in [?, LGR21].

3.1.3 Molino-Atiyah classes
To start the discussion, let us recall the construction of the Molino class of a regular foliation F .

As its name indicates, the Molino class is a class in some cohomology: we first describe the cohomology
to which it belongs.

Let F be a regular foliation on M , with tangent bundle TF ⊂ TM . Notice that F = Γ(TF).

1. The tangent bundle TF is a Lie sub-algebroid of the tangent Lie algebroid TM , whose anchor map
is the inclusion TF ↪→ TM .

2. Consider the normal bundle NF := TM/TF . Denote by u 7→ u the natural projection TM −→
NF = TM/TF . The normal bundle comes equipped with a TF-connection, called the Bott con-
nection, and defined by:

∇BottX u = [X,u]
for all X ∈ F and u ∈ Γ(TM).

3. It follows from the Jacobi identity for vector fields on M that the Bott connection is a flat connec-
tion. As a consequence X 7→ ∇BottX turns NF into a Lie algebroid representation of TF .

4. The dual of a Lie algebroid representation of TF , and the tensor or symmetric products of two
Lie algebroid representations of TF being Lie algebroid representations of TF again, the vector
bundle S2N∗F ⊗NF (i.e. the vector bundle of symmetric bilinear maps from the normal bundle to
itself is a Lie algebroid representation of TF .

The Molino class is a cohomology class of degree 1 for the Chevalley-Eilenberg cohomology of TF valued
in the module S2N∗F ⊗NF . By construction, it is therefore represented by a vector morphism:

α : TF ⊗ S2NF −→ NF ,

which has to satisfy (in-order to be a closed-cocycle):

α([X,Y ], u, v) = ∇BottX α(Y, u, v)− α(Y,∇BottX u, v)− α(Y, u,∇BottX v)−
(
X oo // Y

)
.

Let us now construct the Molino class for a regular foliation.

1. Consider a TM -connection2 ∇ on NF :

(X,u) 7→ ∇Xu

whose restriction to F × Γ(NF ) is the Bott connection, i.e. such that for all X ∈ F :

∇Xu = ∇BottX u.

(a) Such connections always exists.
(b) Without any loss of generality, we can assume that its torsion is zero. The torsion is the

vector bundle morphism defined by

T∇ : ∧2TM → TM

(X,Y ) 7→ ∇XY −∇YX − [X,Y ]
.

2i.e. a linear connection is teh usual sense
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From now on, we shall on, we will assume the torsion to be zero.

2. Consider the curvature κ∇ of such a connection∇. By construction, κ∇ is a vector bundle morphism

κ∇ : TM ∧ TM ⊗NF −→ NF .

3. Since the Bott connection is flat, for any X ∈ F , iXκ
∇ : Y −→ κ∇(X,Y ) vanishes as soon as

Y ∈ F . It therefore can be seen as a vector bundle morphism iXκ∇ : NF ⊗NF −→ NF .

4. The map X 7→ iXκ∇ is therefore a vector bundle morphism from F to TF ⊗NF ⊗NF −→ NF .

5. We leave it to the reader to check that the vanishing of the torsion implies that X 7→ iXκ∇ is
symmetric in the two last variables, and is indeed a vector bundle morphism

α∇ : TF ⊗ S2NF −→ NF .

The Bianchi identity implies that α satisfies (3.1.1) above, and is therefore a cocycle of the Chevalley-
Eilberg cohomology of TF is the module S2N∗F ⊗ NF , called the Molino cocycle of the torsion-free
connection ∇. It can be shown that different choices of connections ∇ would give the same class in
cohomology.

Proposition 3.1.17. The Molino class is the obstruction to the existence of an extension of the Bott
connection whose curvature 2-form is zero as soon as one element tangent to the foliation is applied to
it.

Question 3.1.18: Molino class and meaning?

What is the equivalent of the Molino (or Atiyah) class for a singular foliation? And what is its
geometrical meaning?

Let us state a few points.

1. The Bott connection has a natural extension to the singular case:

(a) The formula (X,u) 7→ [X,u] defines a flat Lie-Rinehart connection of F on the C∞(M)-module
X(M)/F .

(b) The adjoint representation ”up to homotopy” of any any universal Lie ∞-algebroid of F is
a flat Lie ∞-algebroid connection on a geometric resolution of the C∞(M)-module X(M)/F
that can also be understood as a generalization of the Bott connection, see [?, ?].

(c) The Molino class is an instance of Atiyah classes of Lie algebroid pairs.

2. Geometrically, the vanishing of the Molino class of a regular foliation has several consequences.

(a) For any leaf L, and any x ∈ L, the holonomy:

HolF,L,l : π1(x, L) −→ Diff0(NF |x)

valued in germs at 0 of diffeomorphisms of the normal bundle. If the Molino class vanishes,
the holonomy is linearizable, i.e. the group morphism HolF,L,l can be assumed to be valued
in linear invertible endomorphisms of NF |x. See, e.g., Theorem 8.5 in [?].

(b) We say that two paths γ1, γ2 : [0, 1]→M,γ2 are F-related if there exists F : [0, 1]2 →M such
that F (t, 0) = γ0(t), F (t, 1) = γ1(t) and such that for every t ∈ [0, 1], the map s 7→ F (t, s) is in
a fixed leaf. Notice that parallel transportation for ∇ along curves of the form s 7→ F (t, s) is
simply parallel transportation with respect to the Bott-connection. If ∇ is a connection such
that the Molino cocycle vanishes, the curvature of ∇ vanishes as soon as a vector tangent to
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F is applied to it, and in particular on the image of F . As the consequence, the following
diagram is commutative:

NF |γ0(0)
Φbott(F ) //

��

NF |γ1(0)

��
NF |γ0(1)

Φbott(F )
// NF |γ1(1)

where horizontal lines are parallel transportation for the Bott connection, and vertical lines
are parallel transportation with respect to ∇ along γ0 and γ1.

Question 3.1.19. Assuming is has been defined, what is the geometrical meaning of the vanishing
of the (to be constructed) Molino class for a singular foliation?

3.1.4 Miscellaneous
Here is a ”pot pourri” of several questions, mostly anecdotal at first sight, but to which we have no
immediate answer.

Yahya Turki [Tur15] suggested the following notion: we say that a bivector field π ∈ Γ(∧2TM) is
foliated if π](Ω1(M)) is closed under the Lie bracket, i.e. if is a singular foliation.

Example 3.1.20. Poisson bivector fields, but also twisted-Poisson bi-vector fields, are examples. Yahya
Turki [?] gave examples of foliated bivector fields that are not of this type, but proved that they are
twisted Poisson near any one of their regular points (= points in a neighborhood which π# has constant
rank).

Question 3.1.21. Foliated bivector fields Let π be a foliated bivector field. Can a Lie algebroid structure
with anchor map π# be constructed on T ∗M?

It is known that T ∗M comes equipped with a Lie algebroid structure with anchor π] : T ∗M −→ TM
when π is twisted Poisson [], so the question makes sense.

Sébastien Michéa asked if for any smooth Poisson structure π on Rn, there is an other structure
π′ on Rn which coincides with π in a neighborhood of 0 and vanishes outside a compact subset. The
corresponding question for singular foliations is much easier:
Exercice 3.1.22. Given a smooth singular foliation F on Rn, show that there exist an other singular
foliation F ′ on Rn which coincides with F in a neighborhood of 0 and vanishes outside a compact subset.

Here is however, a more delicate question:
Question 3.1.23: Blocked by spheres?

Given a smooth singular foliation F on Rn such that all regular point have rank r, does there
exist an other singular foliation F ′ on Rn such that all regular point have rank r, which coincides
with F on the open ball

∑n
i=1 x

2
i < 1, but which is made of vector fields all tangent to the sphere∑n

i=1 x
2
i = 1?

Existence of such ”deformations” would make simpler to deal with neighborhoods of leaves.

3.1.5 Linearisation
Can we enlarge the classical theorems (by Conn [] or Zung []) about linearizations of Lie algebroid actions
or Lie groupoid actions to the context of singular foliations or its holonomy groupoid?

These linearization theorems have the same logic. There are first relatively easy results whose patterns
are:

Fixed point + Semi-simple =⇒ Formally Linearizable

For instance, it is not so complicated to show that if a Lie algebroid (A, ρ, [·, ·]) admits a point m where
ρm = 0 and the isotropy Lie algebra gm = Am is semi-simple, then the Lie algebroid is formally equivalent
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to the transformation Lie algebroid gm×TmM → TmM for some action of gm by linear endomorphisms
TmM . The theorem by Dominique Cerveau 3.1.1 is a result of this type for singular foliations.

Beyond these relatively easy results, there are then much more difficult results whose patterns are:

Fixed point + Compact =⇒ Locally Linear

For instance, Conn’s linearization theorem for Lie algebrois Here is natural question in that direction:

Question 3.1.24: Extend Conn’s linearization for Lie algebroids

Let F be a singular foliation on a smooth manifold M made of vector fields that all vanish at a
point m. If the isotropy Lie algebra g of F at m is semi-simple of compact type, is there a neigh-
borhood of m on which F is isomorphic to the singular foliation associated to some representation
of the isotropy Lie algebra gm(F) on TmM?

It suffices to prove that the short exact sequence

ImF �
� // F // // gm(F)

splits with a section σ:

ImF �
� // F // // gm(F)

σ

yy

which is a Lie algebra morphism, at least in a neighborhood of m. Since any action of a semi-simple Lie
algebra of compact type is linearizable near a fixed point, this section σ may be seen as being an action
of gm(F) on a neighborhood of TmM .

We could of course enlarge these questions to neighborhood of leaves. Again, the formal case is
relatively easy: for instance it has been proven that [?]:

xxxxxxx
For Lie algebroids or Poisson structures, several authors [?, ?, ?] have proven recently several lin-

earizations theorems in neighborhood of leaves of Lie algebroids or singular foliations: Pretty much any
one of these theorems admit an equivalent for singular foliations.

There are similar questions about the holonomy groupoid. Recall that it is a topological groupoid,
although it is not a Lie groupoid. The topology is the push-forward topology of any atlas of bisections
that define it. It makes sense, therefore, to speak of a singular foliation F whose holonomy groupoid
Hol(F) is proper: it is a singular foliation for which

(s, t) : Hol(F) −→M ×M

is a proper map.

Definition 3.1.25. We say that a singular foliation F is proper if Hol(F) is a proper topological
groupoid.

Example 3.1.26. Consider a proper groupoid Γ ⇒M , e.g. the action groupoid associated to an action
of a compact group on a manifold.

Then the basic singular foliation3 is a proper singular foliation. This is easy proven from ??

Proper groupoids have very strong linearization properties Here is a theorem by Nguyen Tien Zung4:
Theorem 3.1.27. Consider a proper Lie groupoid Γ ⇒M . Every fixed point m ∈M admits a saturated
neighborhood U on which the restriction of Γ is isomorphic, as a Lie groupoid, to a transformation
groupoid of the action of the compact isotropy group Gm on the tangent space V = TmM .

It is therefore very natural to guess that the following result should be true:

3i.e. F = ρ(Γ(A)) with (A, ρ, [·, ·]) the Lie algebroid of G⇒M
4Recall that for every fixed point m ∈ M of a Lie groupoid (i.e. any point for which t(s−1(m)) = {m}), the isotropy

group at m acts naturally by linear automorphisms of the tangent space TmM
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Question 3.1.28: Extend Zung’s linearization to SF

Consider a singular foliation F on M whose holonomy groupoid Hol(F) ⇒ M is proper. Every
fixed point m ∈M admits a saturated neighborhood U on which the restriction of F is isomorphic,
as a singular foliation, to a transformation groupoid of some action of the compact isotropy group
Hol(F)m on the tangent space TmM .

For a regular foliations, properness of the holonomy Lie groupoid implies, for instance, that every
leaf has a saturated neighborhoods on which the holonomy map is by linear automorphisms of a finite
group. Also, proper Lie groupoids have several very strong properties: Nguyen Tien Zung [] has for
instance proven that near a fixed point, it has to be isomorphic to a linear action of a compact Lie group
by isometries of finite dimensional Euclidian space. Last, Poisson manifolds of compact type [CFMT19]
have a rich and complicated geometry. Here is a natural question:

Question 3.1.29: Proper holonomy groupoid

What does properness (or compactness) of the Androulidakis-Skandalis holonomy Lie groupoid
implies ? For instance, does it imply that, for any point, the transverse singular foliation is given
by a linear action of a compact Lie group by isometries of a finite dimensional Euclidian space ?

It has been proven in [PTW21] that singular foliations arising form a compact Lie groupoid can be
made a regular foliation by finitely many blow-up operations of its most singular leaves. It would be
interesting to generalize this result to any singular foliation whose holonomy groupoid is compact: a
positive answer to the previous question should do it.

3.2 Cohomologies of a singular foliation

We already saw that the derived cohomology TorC∞(M)(F ,K) comes equipped with a Lie ∞-algebra
structure, whose cohomology permits to solve some elementary problems. But these are cohomologies
associated to points or to leaves. Our next question is rather vague:

Question 3.2.1: Relevant cohomologies?

What are the interesting global cohomology theories for singular foliations?

Here are several candidates5. We denote by O the algebra of smooth functions on M . Also, for any
O-module E , the notation E ∧O E stands for the wedge product over O, i.e. we allow

X ∧ FY = FX ∧ Y for all X,Y ∈ E , F ∈ O

1. Longitudinal cohomology of a singular foliation was introduced in [LGLS20]. Let us describe it:

5We describe them in the smooth context: for the real-analytic or holomorphic settings, one has to add a Čech-type
differential for a good covering - as always in sheaf theory
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Chains in degree k Differential on chains of degree k
Skew symmetric and O-multilinear maps
F ∧O · · · ∧O F︸ ︷︷ ︸

k−times
−→ O ∀ω ∈ Homk

F (F ,O)

and all X0, . . . , Xk ∈ F
i.e. HomO(∧OF ,O) δω (X0, . . . , Xk) =∑k

i=0(−1)iXi
[
ω(X0, . . . , X̂i, . . . , Xk)

]
+
∑
i<j(−1)i+j+1ω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk)

Chains in degree 0 Differential on chains of degree 0

In degree 0, chains are simply elements of O ∀F ∈ O,

δ(F ) : F → O
X 7→ X[F ]

For a regular foliation, this cohomology is simply the De Rham cohomology along the leaves, i.e.
it is the complex Γ(∧•T ∗xF), dFdR) with dFdR being the De Rham differential, but computed leaf by
leaf.

2. The basic cohomology is the sub-complex of (Ω(M), dDR) made, in degree k, of all k-forms that
vanish on k-elements in F . Equivalently, these are k-forms ω such that iLω = 0 for every leaf L.

3. The universal cohomology of F is the cohomology of the commutative differential graded algebra
of functions6 on any universal Q-manifold7 of F . This is more precisely defined as the cohomology
of (Γ(S(⊕i≥1E

∗
i ))), Q). The definition makes sense: it can be proven that since any two universal

Lie ∞-algebroid of F , say (E,Q) and (E′, Q′) are homotopy equivalent, the differential graded
commutative algebras (Γ(S(⊕i≥1E

∗
i ))), Q) and (Γ(S(⊕i≥1(E′i)∗))), Q′) are homotopy equivalent in

a unique uo to homotopy manner. In particular, their cohomologies are canonically isomorphic.
Univeral cohomology should be seen as a refinement of the longitudinal cohomology, since there is
a map of differential graded commutative algebras:

Longitudinal cohomology of F −→ Universal cohomology of F .

See the section on ”longitutinal cohomology” in [LGLS20].

4. The Chevalley-Eilenberg cohomology for the adjoint representation [?, ?] of any universal Lie ∞-
algebroid of F . This is a refinement of the basic cohomology of F .

6One can also choose compactly supported functions
7I.e, the dual of any universal Lie ∞-algebroid of F
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