
Poisson 2022, Poisson geometry minicourse: problem set

H. Bursztyn

Problem 1: Let π be a bivector field onM , consider the corresponding bracket on smooth functions
given by {f, g} = π(df, dg) and the trilinear operation Jac(f, g, h) = {f, {g, h}} + {h, {f, g}} +
{g, {h, f}}. Verify that

Jac(f, g, h) = L[Xf ,Xg ]h− LX{f,g}h = (LXf
π)(dg, dh).

For a regular Poisson manifold (M,π), use the first equality to show that the characteristic distri-
bution D = π♯(T ∗M) ⊆ TM is involutive, and hence integrable.

Problem 2: Let (M1, π1) and (M2, π2) be Poisson manifolds. Show that φ :M1 →M2 is a Poisson

map iff Xφ∗f is φ-related to Xf for all f ∈ C∞(M) iff π♯2|φ(x) = Txφ ◦ π♯1|x ◦ T ∗
xφ for all x ∈M1.

Problem 3: Consider symplectic manifolds (Mi, ωi), with corresponding Poisson brackets {·, ·}i,
i = 1, 2, and let ϕ :M1 →M2 be a smooth map.

(a) Show that if ϕ preserves symplectic forms (i.e., ϕ∗ω2 = ω1), then it must be an immersion,
and that if ϕ is a Poisson map, then it must be a submersion.

(b) Prove that, if ϕ is a (local) diffeomorphism, then it is a Poisson map if and only if it preserves
symplectic forms.

(c) Find examples of M1, M2 and ϕ : M1 → M2 such that (1) ϕ is a Poisson map but does not
preserve symplectic forms; (2) ϕ preserves symplectic forms but is not a Poisson map.

Problem 4: Let (M,π) be a Poisson manifold. A submanifold N ↪→ M is called coisotropic
if π♯(Ann(TN)) ⊆ TN . Let IN ⊆ C∞(M) be the vanishing ideal of N . (a) Show that if N is
coisotropic then {IN , IN} ⊆ IN , and that the converse holds as long as N is embedded. (b) Show
that a map φ :M1 →M2 between Poisson manifolds is a Poisson map iff its graph is a coisotropic
submanifold of M1 ×M2, where M2 has minus the Poisson structure of M2.

Problem 5: We say that a submanifold N ↪→ M is a Poisson submanifold if the inclusion is a
Poisson map. (a) Show that this is the case iff π♯(Ann(TN)) = 0 iff every hamiltonian vector field
on M is tangent to N . (b) When N is embedded, verify that this is equivalent to the vanishing
ideal IN being a Lie-ideal, i.e., {C∞(M), IN} ⊆ IN . (c) Show that a complete Poisson submanifold
(i.e., a Poisson submanifold for which the inclusion map is complete) is a union of symplectic leaves.

Problem 6: Let g be a Lie algebra and consider its dual g∗ with the corresponding linear Poisson
structure. Let h ⊆ g be a subspace. Then h is a Lie subalgebra (resp. ideal) iff Ann(h) ⊆ g∗ is a
coisotropic (resp. Poisson) submanifold.
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Problem 7: Consider Poisson manifolds (M1, {·, ·}1) and (M2, {·, ·}2), let M = M1 ×M2. Show
that the formula1

{f, g}(x1, x2) = {fx2 , gx2}1(x1) + {fx1 , gx1}2(x2)

defines a Poisson structure on M , for which the projections pi : M → Mi are Poisson maps
and {p∗1C∞(M1), p

∗
2C

∞(M2)} = 0. (Considering the category of Poisson manifolds and Poisson
morphisms, is this product ”categorical´´?)

Problem 8: Let V be a (real) vector space and π ∈ ∧2V (a constant Poisson structure). Consider
π♯ : V ∗ → V defined by β(π♯(α)) = π(α, β), and let R = π♯(V ∗) ⊆ V .

(a) Show that there is a unique nondegenerate skew-symmetric bilinear form Ω on R given by
Ω(u, v) = −π(α, β), for u = π♯(α) and v = π♯(β). Conversely, show that given a pair (R,Ω), where
R ⊆ V is a subspace and Ω ∈ ∧2R∗ is nondegenerate, there is a unique Poisson structure π on V
such that R = π♯(V ∗) and Ω is defined as before.

(b) For a subspace W ⊆ V , let W π = π♯(Ann(W )). Show that W π = (W ∩ R)Ω (symplectic
orthogonal in (R,Ω)), and hence (W π)π =W ∩R.

Problem 9: Let π be a bivector field on a manifold M , consider the distribution R = π♯(T ∗M) ⊆
TM and suppose that R is integrable. Show that any leaf S ↪→M carries a smooth, nondegenerate
2-form ωS ∈ Ω2(S) given, at each point, as in the previous problem. Prove that π is Poisson iff
each ωS is closed. Moreover, the inclusion of each leaf is a Poisson map. (In particular, if R is
integrable and π has rank at most 2, it must be Poisson.)

Problem 10: Consider a regular m-dimensional Poisson manifold (M,π), with rank(π) = k. Sup-
pose that f1, . . . , fm−k are Casimir functions (i.e., Xfi = 0, i = 1, . . . ,m−k) such that df1, . . . , dfm−k

are linearly independent at all points. Show that the symplectic leaves are given by connected com-
ponents of the level sets of (f1, . . . , fm−k) :M → Rm−k.

Problem 11: Let (M,π) be a Poisson manifold and B ∈ Ω2(M). Let B♭ : TM → T ∗M , B♭(X) =
iXB, and consider the map Id+B♭ ◦ π♯ : T ∗M → T ∗M .

(a) Check that Id+B♭ ◦ π♯ is an isomorphism iff, on each leaf S of (M,π), the 2-form ωS +BS

is nondegenerate (here ωS is the symplectic structure on S and BS is the pullback of B to S).
(b) If Id + B♭ ◦ π♯ is an isomorphism, show that there is a bivector field πB on M such that

π♯B = π♯ ◦ (Id + B♭ ◦ π♯)−1. Note that the characteristic distribution of πB coincides with that of
π, so they have the same leaves. Verify that, for each leaf S, the 2-form on S induced by πB (cf.
Problem 10) is given by ωS +BS . Conclude (from Problem 10) that πB is Poisson iff the pullback
of dB to each leaf vanishes.

For a closed 2-form B, we call the Poisson structure πB the gauge transformation of π.

Problem 12: let (M,π) be a Poisson manifold. A submanifold N ↪→ M is called a Poisson
transversal (a.k.a. cosymplectic submanifold) if TyM = TyN ⊕ (TyN)π for all y ∈ N 2. Suppose
that N is a Poisson transversal, let pN : TM |N → TN be the projection along (TN)π.

(a) Observe that N inherits a bivector field πN satisfying π♯N = pN ◦ π♯ ◦ p∗N . Noticing that

p∗N (T ∗N) = Ann((TN)π) and using Problem 9(b), check that π♯N (T ∗N) = TN ∩ R, where R =
Im(π♯).

(b) Show that N intersects each leaf S of (M,π) transversally (i.e., for y ∈ N and S leaf
through y, TyM = TyS + TyN), so N ∩S is a submanifold with T (N ∩S) = TN ∩ TS. By (a), the
characteristic distribution of πN is integrable.

(c) Let (S, ωS) be the symplectic leaf of (M,π) through y ∈ N . Show that the (nondegenerate)
2-form on N ∩ S induced by πN (as in Problem 10) coincides with the restriction of ωS . It follows

1For f ∈ C∞(M1×M2) and (x1, x2) ∈ M1×M2, denote by fx1 ∈ C∞(M2) the function y 7→ f(x1, y), analogously
for fx2 .

2Note that dim((TyN)π) ≤ dim(M)− dim(N), so it is enough to require that TyM = TyN + (TyN)π



from Problem 10 that πN is a Poisson structure (its symplectic leaves are symplectic submanifolds
of the symplectic leaves of π given by the connected components of their intersections with N).

(d) Take x ∈M , let S be the symplectic leaf cointaining x and N ⊆M be a submanifold such
that TxM = TxN⊕TxS. Show that there is a neighborhood of x in N that is a Poisson transversal.

(e) Let M = S ×N be the product of two Poisson manifolds S and N , with S symplectic, let
x ∈ S. Show that {x} ×N is a Poisson transversal in M and its Poisson structure coincides with
the one inherited as such.

Problem 13: Consider a Weinstein splitting chart S × N , where S is a neighborhood of 0 in
(R2k, ωcan) and N a neighborhood of 0 in (Rs, πN ), with πN |0 = 0. Consider a smooth map
ϕ : N → S, ϕ(0) = 0, and the submanifold N1 = {(ϕ(x), x), x ∈ N} in M . Show that if N is small
enough, N1 is a Poisson transversal (use Problem 12(d)), hence inherits a Poisson structure πN1 .
Let now π′ be the Poisson structure on N corresponding to πN1 under the diffeomorphism N1

∼= N
given by the second projection. Prove that π′ is a gauge transformation of πN by B = ϕ∗ωcan.
[Since in this case B is exact, one can use Moser’s method to conclude that N and N1 are Poisson
diffeomorphic near the origin.]

Problem 14:[Dirac bracket] Let (M,π). Consider a submersion Ψ = (ψ1, . . . , ψk) : M → Rk and
the submanifold N = Ψ−1(0). Let (cij) be the matrix with entries cij = {ψi, ψj}. Show that N is
a Poisson transversal iff the matrix (cij) is invertible. Let (cij) be the inverse matrix. Prove that
the Poisson bracket on N is given by

{f, g}N = ({F,G} −
∑
i,j

{F,ψi}cij{ψj , G})|N ,

where F and G are extensions of f and g, respectively, to M .

Problem 15: A vector field X on a Poisson manifold (M,π) is a Poisson vector field if LXπ = 0,
or, equivalently,

LX{f, g} = {LXf, g}+ {f,LXg}

for all f, g ∈ C∞(M). Any hamiltonian vector field is Poisson (cf. Problem 1). Give an example of
a Poisson manifold (it is enough to consider R2...) with a Poisson vector field that is not tangent
to the symplectic leaves (in particular, not hamiltonian).

Problem 16: (a) Consider R2 = {(x1, x2)} with its canonical Poisson (symplectic) structure πcan.
Let f ∈ C∞(R2) be such that f(m) = 0 and df |m ̸= 0. Prove that, in a neighborhood of m, there
is a smooth function g such that z1 = f(x1, x2), z2 = g(x1, x2) define local coordinates around m
satisfying {z1, z2}can = 1. (Hint: straightening-out theorem for Xf ).

(b) A Poisson structure on R2 is always of the form π = fπcan, for f ∈ C∞(R2). Suppose that
it is log-symplectic (note that this means that 0 is a regular value of f). Let Z = f−1(0). Show
that any m ∈ Z admits a neighborhood with coordinates (z1, z2) satisfying {z1, z2}π = z1 (i.e.,
π = z1∂z1 ∧ ∂z2).

(c) Let (M2n, π) be a log-symplectic manifold, with Z = (∧nπ)−1(0), andm ∈ Z. Check that, in
Weinstein splitting coordinates around m, the transverse Poisson factor at m must have dimension
2. Conclude that there are local coordinates (z1, z2, q1, . . . , qn−1, p1, . . . , pn−1) around p such that

π = z1
∂

∂z1
∧ ∂

∂z2
+
∑
i

∂

∂pi
∧ ∂

∂qi

Note, in particular, that π restricts to a Poisson structure of rank 2n− 2 on Z.

Problem 17:[Libermann’s theorem] Let (S, ω) be a symplectic manifold and µ : S → M be
a surjective submersion with connected fibers. Then M admits a (necessarily unique) Poisson



structure so that µ is a Poisson map (= symplectic realization) iff the distribution (ker(dµ))ω is
involutive.

Problem 18: Consider a Lie group G acting freely and properly on a Poisson manifold (M,π)
by Poisson diffeomorphisms. Show that M/G carries a (unique) Poisson structure for which the
quotient map M →M/G is Poisson. Prove also that this Poisson map is complete.

For those familiar with symplectic reduction: When M is symplectic and the action is hamil-
tonian, with momentum map µ : M → g∗, show that the symplectic leaves of M/G are identified
with the (connected components of the) symplectic reduced spaces at different levels.

Problem 19: Let (M,π) be a Poisson manifold, and consider T ∗M with the induced Lie alge-
broid structure. Show thata submanifold N ↪→ M is coisotropic iff Ann(TN) ⊆ T ∗M is a Lie
subalgebroid. Use this fact to conclude that there is a natural 1-1 correspondence between coiso-
tropic submanifolds of M and Lie subalgebroids of T ∗M that are lagrangian submanifolds (with
respect to the canonical symplectic form). [There is also a global version of this correspondence
relating lagrangian subgroupoids of a symplectic groupoid and coisotropic submanifolds of the unit
manifold.]

Problem 20: LetM be a manifold and TM = TM⊕T ∗M . For a 2-form B ∈ Ω2(M), consider the
operation τB : TM → TM , (X,α) 7→ (X, iXB + α). Note that τB preserves the natural symmetric
pairing on TM .

(a) Show that τB preserves the Courant bracket iff dB = 0. In particular, if L is a Dirac
structure, so is τB(L).

(b) Suppose that Lπ = graph(π) is given by a Poisson structure. Show that τB(Lπ) is again
given by a Poisson structure iff (Id + B♭ ◦ π♯) : T ∗M → T ∗M is an isomorphism, in which case
τB(Lπ) = LπB (see Problem 11).


