Poisson 2022, Poisson geometry minicourse: problem set

H. Bursztyn

Problem 1: Let 7 be a bivector field on M, consider the corresponding bracket on smooth functions
given by {f,g} = w(df,dg) and the trilinear operation Jac(f,g,h) = {f,{g,h}} + {h,{f,9}} +
{g,{h, f}}. Verify that

Jac(f?.g? h) = E[Xf,Xg]h‘ - £X{f7g}h = (EXfﬂ-)(dg7dh‘)

For a regular Poisson manifold (M, 7), use the first equality to show that the characteristic distri-
bution D = 7#(T*M) C TM is involutive, and hence integrable.

Problem 2: Let (M;, ) and (Ma, m2) be Poisson manifolds. Show that ¢ : M} — Ms is a Poisson
map iff X« is p-related to Xy for all f € C*(M) iff Wg\@(@ =Typo 7r§|x o Ty for all x € M.

Problem 3: Consider symplectic manifolds (M;,w;), with corresponding Poisson brackets {-,};,
i =1,2, and let ¢ : M7 — M> be a smooth map.

(a) Show that if ¢ preserves symplectic forms (i.e., ¢p*wo = wy), then it must be an immersion,
and that if ¢ is a Poisson map, then it must be a submersion.

(b) Prove that, if ¢ is a (local) diffeomorphism, then it is a Poisson map if and only if it preserves
symplectic forms.

(¢) Find examples of My, My and ¢ : My — M such that (1) ¢ is a Poisson map but does not
preserve symplectic forms; (2) ¢ preserves symplectic forms but is not a Poisson map.

Problem 4: Let (M,n) be a Poisson manifold. A submanifold N «— M is called coisotropic
if 7%(Ann(TN)) € TN. Let Iy C C*®(M) be the vanishing ideal of N. (a) Show that if N is
coisotropic then {Ix,In} C Iy, and that the converse holds as long as N is embedded. (b) Show
that a map ¢ : M; — My between Poisson manifolds is a Poisson map iff its graph is a coisotropic
submanifold of M; x My, where M, has minus the Poisson structure of M.

Problem 5: We say that a submanifold N — M is a Poisson submanifold if the inclusion is a
Poisson map. (a) Show that this is the case iff 7f(Ann(TN)) = 0 iff every hamiltonian vector field
on M is tangent to N. (b) When N is embedded, verify that this is equivalent to the vanishing
ideal Iy being a Lie-ideal, i.e., {C*°(M),In} C Iy. (c) Show that a complete Poisson submanifold
(i.e., a Poisson submanifold for which the inclusion map is complete) is a union of symplectic leaves.

Problem 6: Let g be a Lie algebra and consider its dual g* with the corresponding linear Poisson
structure. Let h C g be a subspace. Then b is a Lie subalgebra (resp. ideal) iff Ann(h) C g* is a
coisotropic (resp. Poisson) submanifold.



Problem 7: Consider Poisson manifolds (M, {-,-}1) and (Ma,{-, -}2), let M = M; x My. Show
that the formulal

{f,g}(xl,xg) = {frwgm}l(xl) + {fx1>9w1}2(x2)

defines a Poisson structure on M, for which the projections p; : M — M; are Poisson maps
and {p;C>(M;),p5C>°(Ms3)} = 0. (Considering the category of Poisson manifolds and Poisson
morphisms, is this product ”categorical " "?)

Problem 8: Let V be a (real) vector space and 7 € A2V (a constant Poisson structure). Consider
7t . V* = V defined by B(n*(a)) = n(a, 8), and let R = 7#(V*) C V.

(a) Show that there is a unique nondegenerate skew-symmetric bilinear form  on R given by
Q(u,v) = —m(a, B), for u = 7¥(a) and v = 7#(B). Conversely, show that given a pair (R, (), where
R C V is a subspace and 2 € A?R* is nondegenerate, there is a unique Poisson structure 7 on V
such that R = 7#(V*) and Q is defined as before.

(b) For a subspace W C V, let W™ = 7f(Ann(W)). Show that W™ = (W N R)® (symplectic
orthogonal in (R, ()), and hence (W™)™ = W N R.

Problem 9: Let 7 be a bivector field on a manifold M, consider the distribution R = 7(T*M) C
T M and suppose that R is integrable. Show that any leaf S — M carries a smooth, nondegenerate
2-form wg € Q%(S) given, at each point, as in the previous problem. Prove that 7 is Poisson iff
each wg is closed. Moreover, the inclusion of each leaf is a Poisson map. (In particular, if R is
integrable and 7 has rank at most 2, it must be Poisson.)

Problem 10: Consider a regular m-dimensional Poisson manifold (M, 7), with rank(7) = k. Sup-
pose that fi,..., f;—i are Casimir functions (i.e., Xy, = 0,4 =1,...,m—k) such that dfy, ..., dfm—
are linearly independent at all points. Show that the symplectic leaves are given by connected com-
ponents of the level sets of (f1,..., fm_k) : M — R™7K,

Problem 11: Let (M, 7) be a Poisson manifold and B € Q*(M). Let B* : TM — T*M, B*(X) =
ixB, and consider the map Id+ B’ o : T*M — T*M.

(a) Check that Id + B’ o is an isomorphism iff, on each leaf S of (M, ), the 2-form wg + Bs
is nondegenerate (here wg is the symplectic structure on S and Bg is the pullback of B to S).

(b) If Id 4+ B’ o nt is an isomorphism, show that there is a bivector field 75 on M such that
77% = 7t o (Id 4 B’ o )=, Note that the characteristic distribution of 75 coincides with that of
m, so they have the same leaves. Verify that, for each leaf S, the 2-form on S induced by 7p (cf.
Problem 10) is given by wg + Bg. Conclude (from Problem 10) that 7p is Poisson iff the pullback
of dB to each leaf vanishes.

For a closed 2-form B, we call the Poisson structure wp the gauge transformation of .

Problem 12: let (M, ) be a Poisson manifold. A submanifold N — M is called a Poisson
transversal (a.k.a. cosymplectic submanifold) if TyM = TyN & (T,N)™ for all y € N 2. Suppose
that N is a Poisson transversal, let py : TM|n — T'N be the projection along (T'N)™.

(a) Observe that N inherits a bivector field 7y satisfying 7T§V = py o 7* o p%. Noticing that

py(T*N) = Ann((T'N)™) and using Problem 9(b), check that w?v(T*N) = TN N R, where R =
Im(r?).

(b) Show that N intersects each leaf S of (M, ) transversally (i.e., for y € N and S leaf
through y, T,M = T,S+T,N), so NNS is a submanifold with T'(N N S) = TN NTS. By (a), the
characteristic distribution of 7y is integrable.

(c) Let (S,wg) be the symplectic leaf of (M, ) through y € N. Show that the (nondegenerate)
2-form on N NS induced by 7wy (as in Problem 10) coincides with the restriction of wg. It follows

For f € C*°(M; x M>) and (z1,x2) € My X Ms, denote by f,, € C°(Ms) the function y — f(z1,y), analogously
for fu.,.
“Note that dim((T,N)™) < dim(M) — dim(N), so it is enough to require that T, M = Ty N + (T, N)™



from Problem 10 that 7y is a Poisson structure (its symplectic leaves are symplectic submanifolds
of the symplectic leaves of 7 given by the connected components of their intersections with N).
(d) Take z € M, let S be the symplectic leaf cointaining x and N C M be a submanifold such
that T, M =T,N ®T,S. Show that there is a neighborhood of x in /N that is a Poisson transversal.
(e) Let M =S x N be the product of two Poisson manifolds S and N, with S symplectic, let
x € S. Show that {x} x N is a Poisson transversal in M and its Poisson structure coincides with
the one inherited as such.

Problem 13: Consider a Weinstein splitting chart S x N, where S is a neighborhood of 0 in
(R%*, wean) and N a neighborhood of 0 in (R®,7y), with 7x]o = 0. Consider a smooth map
¢: N — S, ¢(0) =0, and the submanifold Ny = {(¢(z),x), x € N} in M. Show that if NV is small
enough, N; is a Poisson transversal (use Problem 12(d)), hence inherits a Poisson structure my;, .
Let now 7’/ be the Poisson structure on N corresponding to 7y, under the diffeomorphism N; = N
given by the second projection. Prove that 7’ is a gauge transformation of mny by B = ¢*wean.
[Since in this case B is exact, one can use Moser’s method to conclude that N and N; are Poisson
diffeomorphic near the origin.]

Problem 14:[Dirac bracket] Let (M, 7). Consider a submersion ¥ = (¢!, ... %) : M — R* and
the submanifold N = U=1(0). Let (c¥/) be the matrix with entries ¢/ = {1*,47}. Show that N is
a Poisson transversal iff the matrix (c/) is invertible. Let (c;;) be the inverse matrix. Prove that
the Poisson bracket on N is given by

{f,g}nv = ({F,G} =Y _{F,¢'Yey{v/, G})|w,

i7j
where F' and G are extensions of f and g, respectively, to M.

Problem 15: A vector field X on a Poisson manifold (M, 7) is a Poisson vector field if Lxm = 0,
or, equivalently,

for all f,g € C°°(M). Any hamiltonian vector field is Poisson (cf. Problem 1). Give an example of
a Poisson manifold (it is enough to consider R2...) with a Poisson vector field that is not tangent
to the symplectic leaves (in particular, not hamiltonian).

Problem 16: (a) Consider R? = {(x1,z2)} with its canonical Poisson (symplectic) structure meg,.
Let f € C*°(R?) be such that f(m) = 0 and df|,, # 0. Prove that, in a neighborhood of m, there
is a smooth function g such that z; = f(x1,x2), 20 = g(x1,x2) define local coordinates around m
satisfying {z1, 22}can = 1. (Hint: straightening-out theorem for Xy).

(b) A Poisson structure on R? is always of the form m = f.qn, for f € C*(R?). Suppose that
it is log-symplectic (note that this means that 0 is a regular value of f). Let Z = f~!(0). Show
that any m € Z admits a neighborhood with coordinates (z1, z2) satisfying {z1, 22} = 21 (i.e.,
™= Zlazl A 832)

(c) Let (M?", ) be a log-symplectic manifold, with Z = (A"7)~1(0), and m € Z. Check that, in
Weinstein splitting coordinates around m, the transverse Poisson factor at m must have dimension

2. Conclude that there are local coordinates (z1, 22,41, .-, Gn—1,P1,---,Pn—1) around p such that
0 0 0 0
T=z21=— A= + A—
82’1 82’2 EZ: api 8q,-

Note, in particular, that 7 restricts to a Poisson structure of rank 2n — 2 on Z.

Problem 17:[Libermann’s theorem] Let (S,w) be a symplectic manifold and p : S — M be
a surjective submersion with connected fibers. Then M admits a (necessarily unique) Poisson



structure so that p is a Poisson map (= symplectic realization) iff the distribution (ker(du))“ is
involutive.

Problem 18: Consider a Lie group G acting freely and properly on a Poisson manifold (M, )
by Poisson diffeomorphisms. Show that M /G carries a (unique) Poisson structure for which the
quotient map M — M /G is Poisson. Prove also that this Poisson map is complete.

For those familiar with symplectic reduction: When M is symplectic and the action is hamil-
tonian, with momentum map p : M — g*, show that the symplectic leaves of M /G are identified
with the (connected components of the) symplectic reduced spaces at different levels.

Problem 19: Let (M, n) be a Poisson manifold, and consider 7*M with the induced Lie alge-
broid structure. Show thata submanifold N < M is coisotropic iff Ann(T'N) C T*M is a Lie
subalgebroid. Use this fact to conclude that there is a natural 1-1 correspondence between coiso-
tropic submanifolds of M and Lie subalgebroids of T*M that are lagrangian submanifolds (with
respect to the canonical symplectic form). [There is also a global version of this correspondence
relating lagrangian subgroupoids of a symplectic groupoid and coisotropic submanifolds of the unit
manifold.]

Problem 20: Let M be a manifold and TM = TM ®&T*M. For a 2-form B € Q?(M), consider the
operation 75 : TM — TM, (X,«a) — (X,ix B+ «). Note that 7p preserves the natural symmetric
pairing on TM.

(a) Show that 7p preserves the Courant bracket iff dB = 0. In particular, if L is a Dirac
structure, so is 7p(L).

(b) Suppose that L, = graph(7) is given by a Poisson structure. Show that 75(L;) is again
given by a Poisson structure iff (Id + B® o 7f) : T*M — T*M is an isomorphism, in which case
TB(Ly) = Lr, (see Problem 11).



