Poisson 2022, Poisson geometry minicourse: problem set

H. Bursztyn

Problem 1: Let π be a bivector field on M, consider the corresponding bracket on smooth functions given by $\{f, g\} = \pi(df, dg)$ and the trilinear operation $Jac(f, g, h) = \{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\}$. Verify that

$$Jac(f,g,h) = \mathcal{L}_{[X_f,X_g]}h - \mathcal{L}_{X_{\{f,g\}}}h = (\mathcal{L}_{X_f}\pi)(dg,dh).$$

For a regular Poisson manifold (M, π) , use the first equality to show that the characteristic distribution $D = \pi^{\sharp}(T^*M) \subseteq TM$ is involutive, and hence integrable.

Problem 2: Let (M_1, π_1) and (M_2, π_2) be Poisson manifolds. Show that $\varphi : M_1 \to M_2$ is a Poisson map iff $X_{\varphi^* f}$ is φ -related to X_f for all $f \in C^{\infty}(M)$ iff $\pi_2^{\sharp}|_{\varphi(x)} = T_x \varphi \circ \pi_1^{\sharp}|_x \circ T_x^* \varphi$ for all $x \in M_1$.

Problem 3: Consider symplectic manifolds (M_i, ω_i) , with corresponding Poisson brackets $\{\cdot, \cdot\}_i$, i = 1, 2, and let $\phi : M_1 \to M_2$ be a smooth map.

- (a) Show that if ϕ preserves symplectic forms (i.e., $\phi^*\omega_2 = \omega_1$), then it must be an immersion, and that if ϕ is a Poisson map, then it must be a submersion.
- (b) Prove that, if ϕ is a (local) diffeomorphism, then it is a Poisson map if and only if it preserves symplectic forms.
- (c) Find examples of M_1 , M_2 and $\phi: M_1 \to M_2$ such that (1) ϕ is a Poisson map but does not preserve symplectic forms; (2) ϕ preserves symplectic forms but is not a Poisson map.

Problem 4: Let (M, π) be a Poisson manifold. A submanifold $N \hookrightarrow M$ is called *coisotropic* if $\pi^{\sharp}(\operatorname{Ann}(TN)) \subseteq TN$. Let $I_N \subseteq C^{\infty}(M)$ be the vanishing ideal of N. (a) Show that if N is coisotropic then $\{I_N, I_N\} \subseteq I_N$, and that the converse holds as long as N is embedded. (b) Show that a map $\varphi : M_1 \to M_2$ between Poisson manifolds is a Poisson map iff its graph is a coisotropic submanifold of $M_1 \times \overline{M_2}$, where $\overline{M_2}$ has minus the Poisson structure of M_2 .

Problem 5: We say that a submanifold $N \hookrightarrow M$ is a *Poisson submanifold* if the inclusion is a Poisson map. (a) Show that this is the case iff $\pi^{\sharp}(\operatorname{Ann}(TN)) = 0$ iff every hamiltonian vector field on M is tangent to N. (b) When N is embedded, verify that this is equivalent to the vanishing ideal I_N being a Lie-ideal, i.e., $\{C^{\infty}(M), I_N\} \subseteq I_N$. (c) Show that a complete Poisson submanifold (i.e., a Poisson submanifold for which the inclusion map is complete) is a union of symplectic leaves.

Problem 6: Let \mathfrak{g} be a Lie algebra and consider its dual \mathfrak{g}^* with the corresponding linear Poisson structure. Let $\mathfrak{h} \subseteq \mathfrak{g}$ be a subspace. Then \mathfrak{h} is a Lie subalgebra (resp. ideal) iff $\operatorname{Ann}(\mathfrak{h}) \subseteq \mathfrak{g}^*$ is a coisotropic (resp. Poisson) submanifold.

Problem 7: Consider Poisson manifolds $(M_1, \{\cdot, \cdot\}_1)$ and $(M_2, \{\cdot, \cdot\}_2)$, let $M = M_1 \times M_2$. Show that the formula¹

$$\{f,g\}(x_1,x_2) = \{f_{x_2},g_{x_2}\}_1(x_1) + \{f_{x_1},g_{x_1}\}_2(x_2)$$

defines a Poisson structure on M, for which the projections $p_i: M \to M_i$ are Poisson maps and $\{p_1^*C^{\infty}(M_1), p_2^*C^{\infty}(M_2)\} = 0$. (Considering the category of Poisson manifolds and Poisson morphisms, is this product "categorical'?)

Problem 8: Let V be a (real) vector space and $\pi \in \wedge^2 V$ (a constant Poisson structure). Consider $\pi^{\sharp}: V^* \to V$ defined by $\beta(\pi^{\sharp}(\alpha)) = \pi(\alpha, \beta)$, and let $R = \pi^{\sharp}(V^*) \subset V$.

(a) Show that there is a unique nondegenerate skew-symmetric bilinear form Ω on R given by $\Omega(u,v) = -\pi(\alpha,\beta)$, for $u = \pi^{\sharp}(\alpha)$ and $v = \pi^{\sharp}(\beta)$. Conversely, show that given a pair (R,Ω) , where $R \subseteq V$ is a subspace and $\Omega \in \wedge^2 R^*$ is nondegenerate, there is a unique Poisson structure π on V such that $R = \pi^{\sharp}(V^*)$ and Ω is defined as before.

(b) For a subspace $W \subseteq V$, let $W^{\pi} = \pi^{\sharp}(\operatorname{Ann}(W))$. Show that $W^{\pi} = (W \cap R)^{\Omega}$ (symplectic orthogonal in (R, Ω) , and hence $(W^{\pi})^{\pi} = W \cap R$.

Problem 9: Let π be a bivector field on a manifold M, consider the distribution $R = \pi^{\sharp}(T^*M) \subseteq$ TM and suppose that R is integrable. Show that any leaf $S \hookrightarrow M$ carries a smooth, nondegenerate 2-form $\omega_S \in \Omega^2(S)$ given, at each point, as in the previous problem. Prove that π is Poisson iff each ω_S is closed. Moreover, the inclusion of each leaf is a Poisson map. (In particular, if R is integrable and π has rank at most 2, it must be Poisson.)

Problem 10: Consider a regular *m*-dimensional Poisson manifold (M, π) , with rank $(\pi) = k$. Suppose that f_1, \ldots, f_{m-k} are Casimir functions (i.e., $X_{f_i} = 0, i = 1, \ldots, m-k$) such that df_1, \ldots, df_{m-k} are linearly independent at all points. Show that the symplectic leaves are given by connected components of the level sets of $(f_1, \ldots, f_{m-k}) : M \to \mathbb{R}^{m-k}$.

Problem 11: Let (M, π) be a Poisson manifold and $B \in \Omega^2(M)$. Let $B^{\flat}: TM \to T^*M, B^{\flat}(X) =$ $i_X B$, and consider the map $Id + B^{\flat} \circ \pi^{\sharp} : T^*M \to T^*M$.

(a) Check that $Id + B^{\flat} \circ \pi^{\sharp}$ is an isomorphism iff, on each leaf S of (M, π) , the 2-form $\omega_S + B_S$ is nondegenerate (here ω_S is the symplectic structure on S and B_S is the pullback of B to S).

(b) If $Id + B^{\flat} \circ \pi^{\sharp}$ is an isomorphism, show that there is a bivector field π_B on M such that $\pi_B^{\sharp} = \pi^{\sharp} \circ (Id + B^{\flat} \circ \pi^{\sharp})^{-1}$. Note that the characteristic distribution of π_B coincides with that of π , so they have the same leaves. Verify that, for each leaf S, the 2-form on S induced by π_B (cf. Problem 10) is given by $\omega_S + B_S$. Conclude (from Problem 10) that π_B is Poisson iff the pullback of dB to each leaf vanishes.

For a closed 2-form B, we call the Poisson structure π_B the gauge transformation of π .

Problem 12: let (M,π) be a Poisson manifold. A submanifold $N \hookrightarrow M$ is called a *Poisson* transversal (a.k.a. cosymplectic submanifold) if $T_y M = T_y N \oplus (T_y N)^{\pi}$ for all $y \in N^{-2}$. Suppose that N is a Poisson transversal, let $p_N: TM|_N \to TN$ be the projection along $(TN)^{\pi}$.

(a) Observe that N inherits a bivector field π_N satisfying $\pi_N^{\sharp} = p_N \circ \pi^{\sharp} \circ p_N^*$. Noticing that $p_N^*(T^*N) = \operatorname{Ann}((TN)^{\pi})$ and using Problem 9(b), check that $\pi_N^{\sharp}(T^*N) = TN \cap R$, where R = $\operatorname{Im}(\pi^{\sharp}).$

(b) Show that N intersects each leaf S of (M,π) transversally (i.e., for $y \in N$ and S leaf through $y, T_yM = T_yS + T_yN$, so $N \cap S$ is a submanifold with $T(N \cap S) = TN \cap TS$. By (a), the characteristic distribution of π_N is integrable.

(c) Let (S, ω_S) be the symplectic leaf of (M, π) through $y \in N$. Show that the (nondegenerate) 2-form on $N \cap S$ induced by π_N (as in Problem 10) coincides with the restriction of ω_S . It follows

¹For $f \in C^{\infty}(M_1 \times M_2)$ and $(x_1, x_2) \in M_1 \times M_2$, denote by $f_{x_1} \in C^{\infty}(M_2)$ the function $y \mapsto f(x_1, y)$, analogously for f_{x_2} . ²Note that dim $((T_yN)^{\pi}) \leq \dim(M) - \dim(N)$, so it is enough to require that $T_yM = T_yN + (T_yN)^{\pi}$

from Problem 10 that π_N is a Poisson structure (its symplectic leaves are symplectic submanifolds of the symplectic leaves of π given by the connected components of their intersections with N).

(d) Take $x \in M$, let S be the symplectic leaf cointaining x and $N \subseteq M$ be a submanifold such that $T_x M = T_x N \oplus T_x S$. Show that there is a neighborhood of x in N that is a Poisson transversal.

(e) Let $M = S \times N$ be the product of two Poisson manifolds S and N, with S symplectic, let $x \in S$. Show that $\{x\} \times N$ is a Poisson transversal in M and its Poisson structure coincides with the one inherited as such.

Problem 13: Consider a Weinstein splitting chart $S \times N$, where S is a neighborhood of 0 in $(\mathbb{R}^{2k}, \omega_{can})$ and N a neighborhood of 0 in (\mathbb{R}^s, π_N) , with $\pi_N|_0 = 0$. Consider a smooth map $\phi: N \to S, \phi(0) = 0$, and the submanifold $N_1 = \{(\phi(x), x), x \in N\}$ in M. Show that if N is small enough, N_1 is a Poisson transversal (use Problem 12(d)), hence inherits a Poisson structure π_{N_1} . Let now π' be the Poisson structure on N corresponding to π_{N_1} under the diffeomorphism $N_1 \cong N$ given by the second projection. Prove that π' is a gauge transformation of π_N by $B = \phi^* \omega_{can}$. [Since in this case B is exact, one can use Moser's method to conclude that N and N_1 are Poisson diffeomorphic near the origin.]

Problem 14: [Dirac bracket] Let (M, π) . Consider a submersion $\Psi = (\psi^1, \ldots, \psi^k) : M \to \mathbb{R}^k$ and the submanifold $N = \Psi^{-1}(0)$. Let (c^{ij}) be the matrix with entries $c^{ij} = \{\psi^i, \psi^j\}$. Show that N is a Poisson transversal iff the matrix (c^{ij}) is invertible. Let (c_{ij}) be the inverse matrix. Prove that the Poisson bracket on N is given by

$$\{f,g\}_N = (\{F,G\} - \sum_{i,j} \{F,\psi^i\} c_{ij}\{\psi^j,G\})|_N,$$

where F and G are extensions of f and g, respectively, to M.

Problem 15: A vector field X on a Poisson manifold (M, π) is a Poisson vector field if $\mathcal{L}_X \pi = 0$, or, equivalently,

$$\mathcal{L}_X\{f,g\} = \{\mathcal{L}_X f,g\} + \{f, \mathcal{L}_X g\}$$

for all $f, g \in C^{\infty}(M)$. Any hamiltonian vector field is Poisson (cf. Problem 1). Give an example of a Poisson manifold (it is enough to consider \mathbb{R}^2 ...) with a Poisson vector field that is not tangent to the symplectic leaves (in particular, not hamiltonian).

Problem 16: (a) Consider $\mathbb{R}^2 = \{(x_1, x_2)\}$ with its canonical Poisson (symplectic) structure π_{can} . Let $f \in C^{\infty}(\mathbb{R}^2)$ be such that f(m) = 0 and $df|_m \neq 0$. Prove that, in a neighborhood of m, there is a smooth function g such that $z_1 = f(x_1, x_2), z_2 = g(x_1, x_2)$ define local coordinates around m satisfying $\{z_1, z_2\}_{can} = 1$. (Hint: straightening-out theorem for X_f).

(b) A Poisson structure on \mathbb{R}^2 is always of the form $\pi = f\pi_{can}$, for $f \in C^{\infty}(\mathbb{R}^2)$. Suppose that it is log-symplectic (note that this means that 0 is a regular value of f). Let $Z = f^{-1}(0)$. Show that any $m \in Z$ admits a neighborhood with coordinates (z_1, z_2) satisfying $\{z_1, z_2\}_{\pi} = z_1$ (i.e., $\pi = z_1 \partial_{z_1} \wedge \partial_{z_2}$).

(c) Let (M^{2n}, π) be a log-symplectic manifold, with $Z = (\wedge^n \pi)^{-1}(0)$, and $m \in Z$. Check that, in Weinstein splitting coordinates around m, the transverse Poisson factor at m must have dimension 2. Conclude that there are local coordinates $(z_1, z_2, q_1, \ldots, q_{n-1}, p_1, \ldots, p_{n-1})$ around p such that

$$\pi = z_1 \frac{\partial}{\partial z_1} \wedge \frac{\partial}{\partial z_2} + \sum_i \frac{\partial}{\partial p_i} \wedge \frac{\partial}{\partial q_i}$$

Note, in particular, that π restricts to a Poisson structure of rank 2n-2 on Z.

Problem 17:[Libermann's theorem] Let (S, ω) be a symplectic manifold and $\mu : S \to M$ be a surjective submersion with connected fibers. Then M admits a (necessarily unique) Poisson

structure so that μ is a Poisson map (= symplectic realization) iff the distribution $(\ker(d\mu))^{\omega}$ is involutive.

Problem 18: Consider a Lie group G acting freely and properly on a Poisson manifold (M, π) by Poisson diffeomorphisms. Show that M/G carries a (unique) Poisson structure for which the quotient map $M \to M/G$ is Poisson. Prove also that this Poisson map is *complete*.

For those familiar with symplectic reduction: When M is symplectic and the action is hamiltonian, with momentum map $\mu: M \to \mathfrak{g}^*$, show that the symplectic leaves of M/G are identified with the (connected components of the) symplectic reduced spaces at different levels.

Problem 19: Let (M, π) be a Poisson manifold, and consider T^*M with the induced Lie algebroid structure. Show that a submanifold $N \hookrightarrow M$ is coisotropic iff $\operatorname{Ann}(TN) \subseteq T^*M$ is a Lie subalgebroid. Use this fact to conclude that there is a natural 1-1 correspondence between coisotropic submanifolds of M and Lie subalgebroids of T^*M that are lagrangian submanifolds (with respect to the canonical symplectic form). [There is also a global version of this correspondence relating lagrangian subgroupoids of a symplectic groupoid and coisotropic submanifolds of the unit manifold.]

Problem 20: Let M be a manifold and $\mathbb{T}M = TM \oplus T^*M$. For a 2-form $B \in \Omega^2(M)$, consider the operation $\tau_B : \mathbb{T}M \to \mathbb{T}M$, $(X, \alpha) \mapsto (X, i_X B + \alpha)$. Note that τ_B preserves the natural symmetric pairing on $\mathbb{T}M$.

(a) Show that τ_B preserves the Courant bracket iff dB = 0. In particular, if L is a Dirac structure, so is $\tau_B(L)$.

(b) Suppose that $L_{\pi} = \operatorname{graph}(\pi)$ is given by a Poisson structure. Show that $\tau_B(L_{\pi})$ is again given by a Poisson structure iff $(Id + B^{\flat} \circ \pi^{\sharp}) : T^*M \to T^*M$ is an isomorphism, in which case $\tau_B(L_{\pi}) = L_{\pi_B}$ (see Problem 11).