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Introduction

1. Introduction

smashing a vase

the man/woman and the wall

the skier and his/her favorite pub

M. Röckner (Bielefeld) Taming uncertainty and profiting from randomness 3 / 27



Introduction

stochastic resonance

Fact: Roughly every 100,000 years “big” (that is, very cold) ice ages.
One possible explanation: (Klaus Ferdinand Hasselmann, Max-Planck-Institute for
Meteorology, Hamburg, 1976)

random influences

(Phenomenon of “stochastic resonance”).
Using this, in a pioneering paper four physicists Roberti Benzi, Giorgio Parisi, Alfonso
Sufera, Angelo Vulpiani, in 1982, succeeded in giving an explanation for the “big” ice
ages every 100,000 years.
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Stochastics dynamical processes and stochastic (partial) differential equations

2. Stochastics dynamical processes and stochastic (partial) differential
equations

SDE on Rd

dX (t) = b(t,X (t))dt + σ(t,X (t))dW (t), t ∈ [0,T ]

X (0) = x ∈ Rd ,

with measurable

b : [0,T ]× Rd → Rd

σ : [0,T ]× Rd → (d × d)− real matrices;

W (t), t ≥ 0, Brownian motion on Rd ,
i.e.

X (t)(ω) = x +

∫ t

0

b(t,X (t)(ω))dt +

(∫ t

0

σ(t,X (t))dW (t)

)
(ω), t ∈ [0,T ].
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Stochastics dynamical processes and stochastic (partial) differential equations Recall: Brownian Motion

Recall: Brownian Motion

[Lévy–Wiener–Ciesielski]
First ingredient: Haarbasis of L2

(
[0, 1], dt

)
:

f0,0 :≡ 1, and for n ∈ N, 0 < k < 2n, k odd,

6

-

fn,k

1k+1
2n

k
2n

k−1
2n

0

−
√
2n−1

√
2n−1

Observe: (fn,k)0<k<2n, k odd,
n∈N

is ONB of L2
(
[0, 1], dt

)
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Stochastics dynamical processes and stochastic (partial) differential equations Recall: Brownian Motion

Recall: Brownian Motion

Second ingredient: Standard normal distribution on R∞

Standard normal (Gauss) distribution γ on R1:

γ(dx) :=
1√
2π

· e−
x2

2 dx︸︷︷︸
Lebesgue meas.

on R1

Set γn,k := γ and

P :=
⊗

0<k<2n,
k odd,
n∈N

γn,k product measure on R∞ (= R{(n,k)|...} =: Ω)

Define ξn,k : R{(n,k)|n∈N, 0<k<2n, k odd}∪{(0,0)} → R (projection) and for t ∈ [0, 1]
the Brownian motion W (t)(ω) by

W (t)(ω) :=
∑
(n,k)

(
ξn,k(ω)

∫ t

0

fn,k(s) ds

)
(converges uniformly in t ∈ [0, 1]

for P-a.e.ω ∈ Ω).
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Stochastics dynamical processes and stochastic (partial) differential equations Recall: Brownian Motion

Heuristic motivation for this type of equations:

Let F : [0,T ]× Rd × Rd → Rd . Consider SODE

dX (t)

dt
(ω) = F (t,X (t)(ω), Ẇ︸︷︷︸

random path

(t)(ω)), t ∈ [0,T ]

Worst case scenario:

Ẇ (t), t ∈ [0,T ], all independent, (centered) with infinite variance, i.e.

E
[
Ẇ i (t)2

]
= +∞ ∀i ∈ N, Ẇ i (t) = i-th component of Ẇ (t).

Then by Taylor expansion (around 0) in the third variable up to first order:

dX (t)

dt
= F (t,X (t), 0) + D3F (t,X (t), 0)Ẇ (t) .
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Stochastics dynamical processes and stochastic (partial) differential equations Recall: Brownian Motion

In integral form for t ∈ [0,T ]

X (t) = X (0) +

∫ t

0

F (s,X (s), 0)︸ ︷︷ ︸
=:b(s,X (s))

ds +

∫ t

0

D3F (s,X (s), 0)︸ ︷︷ ︸
=:σ(s,X (s))

Ẇ (s)ds︸ ︷︷ ︸
dW (s)

Assume: Ẇ (t), t ∈ [0,∞), are Gaussian.
Then:

Ẇ (t), t ∈ [0,∞), “white noise”, only exists as generalized function (= Schwartz
distribution) in t.

W (t), t ∈ [0,∞), Wiener process or Brownian motion on Rd (with
Ẇ (t) := d

dt
W (t) in the sense of generalized functions in t).
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Stochastics dynamical processes and stochastic (partial) differential equations Recall: Brownian Motion

Likewise SPDE on H
(e.g.)
= separable Hilbert space

dX (t) = −A(t,X (t))dt + σ(t,X (t))dW (t), t ∈ [0,T ],

with measurable

A : [0,T ]× H → H

σ : [0,T ]× H → L(H,H) (:= all bounded linear operators on H)

W (t), t ≥ 0, Brownian motion on H.
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Stochastics dynamical processes and stochastic (partial) differential equations Recall: Brownian Motion

Let F : [0,T ]× H × H → H. Consider ODE

dX (t)

dt
= F (t,X (t), Ẇ︸︷︷︸

random path

(t)), t ∈ [0,T ]

Worst case scenario:

Ẇ (t), t ∈ [0,T ], all independent, (centered) with infinite variance, i.e.

E
[
Ẇ i (t)2

]
= +∞ ∀i ∈ N, Ẇ i (t) = i-th component of Ẇ (t) w.r.t. ONB of H.

Then by Taylor expansion (around 0) in the third variable up to first order:

dX (t)

dt
= F (t,X (t), 0) + D3F (t,X (t), 0)Ẇ (t) .
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Stochastics dynamical processes and stochastic (partial) differential equations Recall: Brownian Motion

In integral form for t ∈ [0,T ]

X (t) = X (0) +

∫ t

0

F (s,X (s), 0)︸ ︷︷ ︸
=:−A(s,X (s))

ds +

∫ t

0

D3F (s,X (s), 0)︸ ︷︷ ︸
=:σ(s,X (s))

Ẇ (s)ds︸ ︷︷ ︸
dW (s)

Assume: Ẇ (t), t ∈ [0,∞), are Gaussian.
Then:

Ẇ (t), t ∈ [0,∞), “white noise”, only exists as generalized function (= Schwartz
distribution) in t.

W (t), t ∈ [0,∞), Wiener process or Brownian motion on H (with Ẇ (t) := d
dt
W (t)

in the sense of generalized functions in t).
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Profiting from randomness

3. Profiting from randomness

Recall: W (t) : Ω(:= R∞) → Rd ,
Regularization by noise
Let b : [0,T ]× Rd → R such that∫ T

0

(∫
Rd

|b(t, x)|pRd dx

) q
p

dt <∞

where p ∈ [2,∞), q ∈ (2,∞) with d
p
+ 2

q
< 1. Then ([Krylov/R.: Probab. Th. Rel.

Fields 2005])

dX (t) = b(t,X (t))dt + dW (t), t ∈ [0,T ] (SDE)

X (0) = x ∈ Rd ,

i.e.,
X (t)(ω) = x +

∫ t

0

b(s,X (s)(ω))ds +W (t)(ω), t ∈ [0,T ], for P-a.e. ω ∈ Ω

has a unique solution, where ”unique” means:

X , X̃ solve (SDE) ⇒ P
(
{ω ∈ Ω|X (t)(ω) = X̃ (t)(ω) ∀t ∈ [0,T ]}

)
= 1.

But without W (t) no solution exists! WHY?
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Profiting from randomness

Analytic reason:

”Linearize” (SDE): Take solution X (t, x), t ∈ [0,T ], of (SDE), and consider all
φ : Rd → R smooth with compact support.
Then by Itô’s formula (= chain rule)

dφ(X (t, x)) = (∇φ)(X (t, x))dX (t, x) +
1

2
(∆φ)︸ ︷︷ ︸

appears, because t 7→ X (t, x) is only of
bounded quadratic variation
(not of bounded variation)
because of randomness

(X (t, x))dt

=
(SDE)

(∇φ)(X (t, x)) · b(t,X (t, x))dt + (∇φ)(X (t, x)) · dW (t)

+
1

2
(∆φ)(X (t, x))dt

i.e., φ(X (t, x)) = φ(x) +

∫ t

0

(∇φ)(X (s, x)) · b(s,X (s, x))dt +

∫ t

0

∇φ(X (s, x)) · dW (s)

+
1

2

∫ t

0

(∆φ)(X (s, x))ds

Now take
∫
Ω
P(dω) to get
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Profiting from randomness

∫
Ω

φ(X (t, x)(ω))P(dω) = φ(x) +

∫ t

0

∫
Ω

(∇φ)(X (s, x)(ω)) · b(s,X (s, x)(ω))P(dω)ds

+

∫
Ω

(∫ t

0

(∇φ)(X (s, x)) · dW (s)

)
(ω)P(dω)︸ ︷︷ ︸

=0 !

+
1

2

∫ t

0

∫
Ω

(∆φ)(X (s, x)(ω))P(dω)ds

Then with µx
t := (X (t, x))∗P (= push forward or image measure), t ∈ [0,T ] get∫

Rd

φ(y)µx
t (dy) = φ(x) +

∫ t

0

∫
Rd

b(s, y) · ∇φ(y)µx
s (dy) +

1

2

∫ t

0

∫
Rd

∆φ(y)µx
s (dy)ds.

Taking d
dt

d

dt

∫
Rd

φ(y)µx
t (dy) =

∫
Rd

(
1

2
∆ + b(t, y) · ∇

)
φ(y)µx

s (dy)

or (since ”for all φ”) get a linear PDE for ”time marginal laws”, µx
t , t ∈ [0,T ],

∂

∂t
µx
t =

(
1

2
∆ + b(t, ·) · ∇

)∗

µx
t . Linear Fokker-Planck equation.

Elliptic! Because of ∆, i.e. because of noise W (t), t ≥ 0.
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Profiting from randomness

So, have ”profited from noise” to get well-posedness and understood where this
comes from.

Remark 1

For critical case d
p
+ 2

q
= 1, p, q ∈ (2,∞), see [Guohuan Zhao/R.: arXiv: 2103.05803].

Remark 2

Have

SDE ⇔ FPE.

Have a nonlinear analogue.

McKean Vlasov SDE ⇒⇐ nonlinear FPE

[Barbu/R.: Annals of Probability 2020] (Existence)
[Barbu/R.: arXiv: 2203.00122] (Uniqueness)
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Taming uncertainty

4. Taming uncertainty

Let us go back to our SPDE on H = separable Hilbert space, e.g. here
H := L2(O), O ⊂ Rd , open, bounded

dX (t) = −A(t,X (t))dt + σ(t,X (t))︸ ︷︷ ︸
≈

Taylor
σ(t,0)+D2σ(t,0)X (t)

dW (t). (SPDE)

Assume that W (t) has the following representation

W (t) :=
∞∑
j=1

µjej(·)W j(t),

where W j , j ∈ N, independent Brownian motions in R, {ej |j ∈ N} ONB of
H = L2(O),

∑∞
j=1 µ

2
j (1 + ∥ej∥∞) <∞, and for simplicity assume

σ(t,X (t))dW (t) = X (t)︸︷︷︸
∈L2(O)

·dW (t)︸ ︷︷ ︸
∈L∞(O)

.

Assume have V ⊂ H ⊂ V ′ Gelfand triple (e.g. H1 ⊂ L2 ⊂ (H1)′)

A : [0,T ]× V −→ V ′,

σ : [0,T ]× H −→ L(H,H),

W (t), t ≥ 0, Brownian motion on H.
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Taming uncertainty

Examples

Fix O ⊂ Rd , open, bounded, ∂O smooth.

(1) Stochastic porous media equations
Let H := H−1(O).

dX (t)−∆(ψ(X (t)))︸ ︷︷ ︸
A(t,X (t))

dt = X (t)dW (t), t ∈ [0,T ] .

ψ : R → R continuous, ψ(0) = 0

(ψ(r)− ψ(r
′
))(r − r

′
) ≥ 0 (⇔ ψ increasing)

rψ(r) ≥ c1|r |p − c2 ; c1, c2 ∈ (0,∞), p ∈ (1,∞)
|ψ(r)| ≤ c3|r |p−1 + c4 ; c3, c4 ∈ (0,∞)

E.g.: ψ(r) = r |r |p−1 , p > 1,
i.e. stochastic classical porous media equation.
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Taming uncertainty

(2) Stochastic nonlinear parabolic equations
Let H := L2(O).

dX (t)− div(a(∇X (t)))︸ ︷︷ ︸
A(t,X (t))

dt = X (t)dW (t) , t ∈ [0,T ] ,

a : Rd → Rd , continuous, a(0) = 0

⟨a(r)− a(r
′
), r − r

′ ⟩Rd ≥ 0 “a increasing”
⟨r , a(r)⟩Rd ≥ c1∥r∥pRd − c2 ; c1, c2 ∈ (0,∞), p ∈ (1,∞)

∥a(r)∥Rd ≤ c3∥r∥p−1

Rd + c4 ; c3, c4 ∈ (0,∞)

E.g.: a(r) = r∥r∥p−1

Rd , p > 1,
i.e. stochastic parabolic p-Laplace equation.
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Taming uncertainty

By the transformation

Y (t)(ω) := e−W (t)(ω)X (t)(ω), t ∈ [0,T ],

and Itô’s formula (SPDE) transforms into random PDE

dy

dt
+ e−W (t)(ω)A(t, eW (t)(ω)y(t)) + µy(t) = 0 for t. − a.e. t ∈ (0,T ) (RPDE)

y(0) = x ,

and vice versa, where

µ(ξ) :=
1

2

∞∑
j=1

µ2
j e

2
j (ξ), ξ ∈ O.
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Taming uncertainty

Now consider the following (huge!) spaces of random paths:

V := all measurable maps y : [0,T ]× Ω → V ,

such that

|y |V :=

(∫
Ω

∫ T

0

∣∣∣eW (t)(ω)y(t)(ω)
∣∣∣p
V
dt P(dω)

) 1
p

<∞;

H := all measurable maps y : [0,T ]× Ω → H,

such that

|y |H :=

(∫
Ω

∫ T

0

∣∣∣eW (t)(ω)y(t)(ω)
∣∣∣2
H
dtP(dω)

) 1
2

<∞;

V ′ := all measurable maps y : [0,T ]× Ω → V ′,

such that

|y |V′ :=

(∫
Ω

∫ T

0

∣∣∣eW (t)(ω)y(t)(ω)
∣∣∣p′
V ′
dtP(dω)

) 1
p′

<∞.
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Taming uncertainty

Now define A : V −→ V ′ and B : D(B) ⊂ V −→ V ′ by

(Ay)(t) = e−W (t)A(t)(eW (t)y(t)), t ∈ (0,T ), y ∈ V,

(By)(t) =
dy

dt
(t) + µy(t), t ∈ (0,T ), y ∈ D(B),

D(B) =
{
y ∈ V : y ∈ AC([0,T ];V ′) ∩ C([0,T ];H), P-a.s.,

dy

dt
∈ V ′, y(0) = x

}
.

Here, AC([0,T ];V ′) is the space of all absolutely continuous V ′-valued functions on
[0,T ]. Then

A+ B : D(B) ⊂ V → V ′

and (RPDE) can be rewritten as

(A+ B)(y) = 0.
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Taming uncertainty

This means our solutions to (SPDE) resp. (RPDE) are zeros of the map

A+ B : D(B) ⊂ V → V ′.

So, to have existence of solutions, it is more than enough to prove that this map is onto.
And for uniqueness that it is one-to-one.

This can in fact be done (see [Barbu/R.: JEMS 2015]) by using the theory of (maximal)
monotone operators on a Gelfant triple. The proof of the monotonicity of the (time)
operator B depends on an infinite dimensional Itô formula!

So, well-posedness for such SPDEs resp. existence and uniqueness of the
corresponding stochastic dynamics (+ properties...) achieved through ”taming
uncertainty” by mathematical tools from analysis.
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Taming uncertainty

Marta’s CONTRIBUTIONS — a selection:

Hitting probabilities of anisotropic Gaussian random fields; stochastic wave equations
with superlinear coefficients, hitting probablities of stochastic Poisson equations; support
theorem in Hölder norm of a stochastic wave equation; hitting probabilities for nonliear
systems of stochastic waves; absolute conitnuity for SPDEs; logarithmic asymptotics of
the densities of SPDEs; Malliavin differentiability and absolute continuity; a Laplace
principle for a stochastic wave equation; hitting probabilities with applications to systems
of stochastic wave equations; fractional Poisson equation; Hölder-Sobolev regularity of
the solution; mild solutions for a class of fractional SPDEs; properties of the density for a
three-dimensional stochastic wave equation; approximation of rough parts of fractional
Brownian motion; smoothness of the functional law; probability density for a hyperbolic
SPDE; large deviations for rough paths of the fractional Brownian motion; regularity of
the sample paths of a class of second-order SPDEs; Malliavin calculus; stochastic wave
equation; absolute continuity of the law of the solution to the 3-dimensional stochastic
wave equation; existence of density for the solution to the 3-dimensional stochastic wave
equation; equivalence and Hölder-Sobolev regularity of solutions; positivity of the density
for the stochastic wave equation in two spatial dimensions; Hölder continuity for the
stochastic heat equation with spatially correlated noise; applications of Malliavin calculus
to SPDEs; Hölder-Sobolev regularity; logarithmic estimates for the density of hypoelliptic
two-parameter diffusions; stochastic Volterra equations in the plane; asymptotic behavior
of the density in a parabolic SPDE;
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Taming uncertainty

path properties of a class of Gaussian processes with applications to SPDEs; support
theorem for a wave equation; stochastic delay equations with hereditary drift; large
deviations for stochastic Volterra equations in the plane; expansion of the density: a
Wiener-chaos approach; logarithmic estimates for the density of an anticipating
stochastic differential equation; Taylor expansion of the density in a stochastic heat
equation; regularity of the law for a class of anticipating stochastic differential equations;
points of positive density for the solution to a hyperbolic SPDE; small perturbations in a
hyperbolic stochastic partial differential equation; existence and regularity of density;
anticipating stochastic differential equations: regularity of the law; Varadhan estimates
for the density; the law of the solution to a nonlinear hyperbolic SPDE; strong
approximations for stochastic differential equations with boundary conditions; a Fubini
theorem for generalized Stratonovich integrals; a nonlinear hyperbolic SPDE:
approximations and support; approximation and support theorem; Green formulas in
anticipating stochastic calculus; support theorem for diffusion processes; support of the
solution to a hyperbolic SPDE; Hilbert-valued anticipating stochastic differential
equations; Doob-Meyer decomposition and integrator properties of the Wong-Zakai
anticipating integral; on the support of a Skorhod anticipating stochastic differential
equation; moduls of continuity for stochastic flows; Skorohod integral; The Hu-Meyer
formula for nondeterministic kernels; large deviations for a class of anticipating stochastic
differential equations; un théorème de support pour une équation aux dérivées partielles
stochastique hyperbolique; Itô formula for two-parameter martingales; une remarque sur
la théorie des grandes déviations; small perturbations for quasilinear anticipating
stochastic differential equations; Doob-Meyer decomposition for anticipating processes;
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Taming uncertainty

composition of large deviation principles and applications; nonadaptive stochastic
calculus; on generalized multiple stochastic integrals and multiparameter anticipative
calculus; application of Malliavin calculus; two-parameter continuous martingales;
déviation stochastique de diffusions réfléchies; Planar semimartingales; smoothness of the
solution; two-parameter continuous martingales and Itô’s formula; time reversal for
infinite-dimensional diffusions; integration by parts and time reversal for diffusion
processes; two-parameter continuous martingales; Malliavin calculus for two-parameter
Wiener functionals; Malliavin calculus for two-parameter processes; a singular stochastic
integral equation; two-parameter strong martingales; conditional independence property
in filtrations associated to shopping lines; a Markov property for two-parameter Gaussian
processes; caractérisation des martingales à deux paramètres indépendantes du chemin;
stochastic differential calculus for processes with n-dimensional parameter; processus de
Wiener à deux paramètres; etc. ...
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Taming uncertainty

THANK YOU VERY MUCH, MARTA!

AND ALL THE BEST FOR MANY MORE HAPPY AND SCIENTIFICALLY
PRODUCTIVE YEARS !
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