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Outline

The following topics will be addressed in the talk:

e Multivariate time-inhomogeneous stochastic volatility models.
e Volterra type volatility processes.

e Restrictions on volatility models.

e Sample path large deviation principles for log-processes.

e Large deviation principles for volatility processes.

e First exit times for log-processes.

e Binary barrier options.

e Examples of models satisfying a comprehensive large deviation principle.



The talk is based on the paper: A. G., Multivariate stochastic volatility models and large

deviation principles, submitted for publication, available at arXiv:2203.09015, 2022 (see
also the author’s papers [1 1] = [15]).

More papers to pay attention to: Bayer-Friz-Gassiat-Martin-Stemper [?], Chiarini-Fischer
[>], Jacquier-Pannier [16], Nualart-Rovira [ 18], Rovira-Sanz-Solé [20], Wang [27], Zhang

[25].



Multivariate Time-Inhomogeneous Stochastic Volatility Models

This talk deals with general multivariate time-inhomogeneous stochastic volatility

models. Such a model is described by the following multidimensional stochastic
differential equation:

dS; = Sy o [b(t, By)dt + o (t, By)(CAW; + CdBy)], 0<t<T, Sy=spcR"

where the initial condition sy = {sf-]”, ‘e ,,sém]) is such thats; > 0forall1l < i < m.

(1)



The equation in (1) is defined on a probability space (2, F,P) carrying two inde-
pendent m-dimensional standard Brownian motions W and B with respect to the
measure .

By {F; }o<i<T is denoted the augmentation of the filtration generated by the pro-
cesses W and B. We will also use the augmentation of the filtration generated by
the process B, and denote it by { FF}o<i=T.

The symbol b in (1) stands for a continuous map defined on [0, T| x R? with values

in R™. We call b the drift map. By ¢ is denoted a continuous map of [0, T| x R?
into the space of (m x m) real matrices. This map is called the volatility map.

The process B = (B'1,...,B!¥) appearing in (1) is a continuous d-dimensional
stochastic process adapted to the filtration {F”}y-;<7. The process B is called the
volatility process.



R™ is the m-dimensional Euclidean space equipped with the norm || - || .

For a real (m x m)-matrix M, its Frobenius norm will be denoted by || M||,; « and
the symbol M’ stands for the transpose of M.

The symbol o in (1) stands for the Hadamard (component-wise) product of vectors.

The matrix C in (1) is a real (m x m)-matrix such that ||C||,«m < 1. Itis clear that
the matrix Idm — C'C is symmetric and positive definite, and we denote the unique
symmetric and positive definite square root of the matrix Id,, — C'C by C.

The model in (1) can be interpreted as a time-inhomogeneous stochastic volatility
model describing the time-behavior of price processes of correlated risky assets.

The matrix-valued process ¢(t, B;), with t € [0, T), characterizes the joint volatility
of these assets.



Set-Ups. Canonical set-up on W¥

We adopt the terminology (set-ups) used in Rogers-Williams [1Y].

Definition 1. The system (Q, W, B, Fr,{Ft }o<t<T,P) is called a set-up associated with the

model in (1), while the system (Q, B, F£, { FF }o<i<1,P) is called a set-up associated with the
volatility process in (1).

Canonical set-up. For a positive integer p > 1, the symbol WV stands for the space of
continuous RP-valued maps on [0, T] equipped with the norm ||f[| = max;cjo, 1) || f(£)[[p,
fewr. '

Let Bs, with s € [0, T|, be the coordinate process on W*. Define a filtration on the space
WPby Bl = ¢(Bs : 0 <5 <t),t € [0,T]. The augmentation { B} } of the filtration {B}} is
called the canonical filtration on W¥.

Let IP be the Wiener measure on E# The coordinate process s ++ B; plays the role of
p-dimensional standard Brownian motion with respect to the measure .

Definition 2. The ordered system (W, B, g#,, {BF'}, P) is called the canonical set-up on W¥.



Canonical Set-Up on w™ x w"

Denote the coordinate processes on ()1 and (); by W and B, respectively, and con-
sider the filtration on () generated by the process t — (W, By), t € [0, T|.

Denote by {.F; } the augmentation of this filtration with respect to the measure
P = Py x P, where Py and IP; are the Wiener measures on (); and (), respec-
tively.

By {FP} will be denoted the augmentation of the filtration generated by process
t— By, t € [D,T]

The processes W and B are independent m-dimensional Brownian motions defined
on the space ().

The system (0, W, B, Fr, { F;}, {FF},IP) is called the canonical set-up on the space
ﬂ — WFH W Wm.



The Log-Process

[t can be established using the Doléans-Dade formula that the log-process X = log 5 can
be represented as follows:

-, -,

t N t
X, = xo + f b(s, By)ds — % f diag(c(s, B)or(s, Bs)')ds
0 0
t —
+A o(s, Bs)(CAW, + CdB.), 0<t<T.

Let € € (0,1] be the scaling parameter. The scaled version of the log-process X is defined
by

| E t . _
Xﬁ""} = X —I—] b(s, B*))ds — %Ef diag(c(s, B'*)o (s, B¥)Y )ds
0 0
t - _
+VE f o (s, BE)) (CAW, + CdB)
0

where XE,E} — xp for all s € (0,1]. The scaled volatility process B'*) appearing in the
previous formula will be introduced later.



One-Factor Models

[n the case where m = 1, we use the correlation parameter p € {—1,1) and set

Therefore, the equation describing the evolution of the process S is as follows:
dSt = Si[b(t, Br)dt + o (t, B) (pdW; + pdBi)], Sp = so > 0.

Moreover, the log-process is given by

Xy =2x0+ f b(s, Bs)ds — % _/ (s, B }EdS + f (s, Bs)(pdWs + pdBs)
0 0 0l

where xp = log sp.



Assumption A

A modulus of continuity is a nonnegative nondecreasing funciton w on [0, o0} such that
w(s) —+0ass—0.

Let x = (t;,v;) and y = (t,v2) be elements of the space [0, T| x R? equipped with the

Euclidean distance v;(x,y) = \/[h — t2)2 + ||v1 — va) |§ Denote by B;(r) the closed ball

centered at (0,0) of radius r > 0 in the metric space defined above, and let w be a modu-
lus of continuity on [0, co).

Definition 3. A map A : [0, T| x R® s R is called locally w-continuous if for every r > 0
there exists L(r) > 0 such that for all x,y € By(r) the following inequality holds:

A(x) = Aly)| = L{r)w(va(x, y)).

Assumption A: The components of the drift map b and the elements of the volatility map
o are locally w-continuous on the space [0, T| x R? for some modulus of continuity w. In
addition, the elements of the volatility map ¢ are not identically zero on [0, T] x R



Volatility Equations

Let Y be a stochastic process satistying the following Volterra type stochastic integral
equation on W" equipped with the canonical set-up:

t t
}q:y+f n{f,s,vf“,}f)dHf c(t,s, V2 Y)dB..
0 0

e The previous equation will be called the volatility equation. In it, # is a map from
the space [0, T]? x Wh x W into the space R, while ¢ is a map from the space

0, T]? x W2 x W into the space of (d x m)-matrices. More restrictions on the
maps a and ¢ will be introduced later.

e The processes V!, i = 1,2, appearing in the volatility equation, are fixed auxiliary
continuous stochastic processes on W™ with state spaces R*! and R*2, respectively.

e These processes satisfy the following stochastic differential equations:

| B c _ s .
VO v+ [(B VOt [“on s, =12 @)
0 0

where Vﬂ[ ') € Rk are initial conditions, b; are maps of [0, T| x W into R¥, while

7; are maps of [0, T| x W into the space of k; x m-matrices.



[t is assumed that the equations in (2) satisty Conditions (H1) - (H6) introduced in [5] by
Chiarini and Fischer. This paper was an important source of ideas in our work on
volatility processes. However, Chiarini and Fischer did not study Volterra type processes

in the paper [5].

Remark 5. Examples of equations for which Conditions (H1) - (H6) hold true, include equations
with locally Lipschitz coefficients satisfying the sub-linear growth condition and one-dimensional

diffusion equations with Halder dispersion coefficient, e.g, the CIR-equation.

Definition 6. The volatility process B used in the general stochastic volatility model has the

following form: B = GY, where Y satisfies the volatility equation, while G is a continuous map
from W into itself that is BY / B -measurable for every t € [0, T).

Definition 7. Denote by (H})™ the m-dimensional Cameron-Martin space. For every function
f € (H})™, the function f € WA is defined by f = G(T,f) where Tf is the solution to the
skeleton equation

t f
Cyf(t) =y + A a(t,s, 1,5, Tyf)ds + /D c(t,s,¥p5, Tyf ) f(s)ds
(see Definition 15).



Scaled Volatility Processes

A scaled version of the volatility equation has the following form:

' . t
Y\ =y + f a(t,s, VY, Y'¥)ds + VEf c(t,s, V¥, Y¥))dB,.
0 0

e Forevery i = 1,2, the process V'# is a scaled version of the process V!!. It satisfies
the equation

vie — i) | fﬂ Bi(r, Vi )dr + /& fﬂ 5i(r, Vi#)dB,.

e The previous equation has the unique strong solution and the path independence
holds this equation if the conditions in Remark 5 are satisfied.

Definition 7. The scaled volatility process B¢ is given by B'®) = GY'¢) where G is introduced
in Definition 6, while Y& is the solution to the scaled volatility equation.



Sample Path LDP for the Log-Process

A sample path large deviation principle (LDP) for a stochastic process characterizes
logarithmic asymptotics of the probability that the path of a scaled version of the process
belongs to a given set of paths. The theory of sample path large deviations goes back to
the celebrated work of Varadhan [21] and Freidlin and Wentzell [10].

Theorem 4. Suppose Assumption A and Assumptions (C1) —(C7) hold true, and the model in (1)
is defined on the canonical set-up. Then, the process & — X'£) — x, with state space W™ satisfies

the sample path large deviation principle with speed e ' and good rate function Or defined on the
previous slide. The validity of the large deviation principle means that for every Borel measurable
subset A of W™, the following estimates hold:

— inf Qr(g) < liminfelog P (X[E:' — X € A)

ge A el0
< limsup elog P (X[EJ —xp € ,4) < — inf ér{g}.
el0 geA

The symbols A° and A in the previous estimates stand for the interior and the closure of the set
A, respectively.



The Rate Function

e The rate function Q7 governing the large deviation principle for the log-process
depends on the measurable map @ : CI x Ci* x W+ ClI' given by

t

(I, f,h)(t) :f[;b{s,f{sjjds—l—fﬂtﬂr{s,f{s]](ff[sjds-i—f[] (s, f(s))Cf(s)ds

forall I, f € (H})™, h

= j? € Wi, and 0 < t < T. For all the remaining triples
(I, f,h), weset®(I, f,h)(t) =

0fort e [0,T].
e Let g € C', and define the function Qr by
~ _ 1 77 ., 5 1 77T ., 5 -
Or(g) = inf |5 [1liG)|Bds+ 5 [ 1If©)3ds: (1, £,F(1) = g(t), t € 0,7,
1fe(Hy)™ 0 0

if the equation cb{!,f,f{f)j = g(t) is solvable for | and f. If there is no solution,
then we set Qr(g) = 0.



The Rate Function. Simplifications

Suppose for every (t,u) € [0, T| x R?, the matrix o (¢, u) is invertible. Then the following
are true:

e For all functions g € I[]I-I}-_,)'",

-

Qr(s) =5 inf (160 (s, F5)) 7 [806) = b(s, F)) = o5, F)ICFEIE + £ B )d

_fE ( Hflﬁ ‘J,J:lr

and O7(g) = oo otherwise.
e The rate function Oy is continuous in the topology of the space (H)™.

e [fn =1, then

5 1 §(s) —b(s, f(s)) — po(s, F()) () | 4.y2
Qr(g) { “_ ols T + f(s)



Sample Path LDPs for Volatility Processes

We will next formulate sample path LDPs for volatility processes. These LDPs hold

under special restrictions on the volatility models (Assumptions (C1) - (C7) that will
be explained later).

Theorem 10. Suppose Assumptions (C1) — (C7) hold, and let Y'¢) with Yéf} = 1 be the solution
to the volatility equation in the canonical set-up. Then, the process Y'¢) satisfies a sample path
large deviation principle with speed e ' and good rate function defined on W by

T
I(g) = inf o [l Bt

 {FEl2(0TIRM):Ty () =0}
if {f € L>([0, T, R™) : T (f) = ¢} # @, and I,(¢) = oo otherwise.

Theorem 11. Under the restrictions in Theorem 10, the process € — (\/eW, \/eB, B?), £ € (0,1],
satisfies a sample path large deviation principle with speed e~ and good rate function defined on
W 5 WM Wd b}a’

- 1T 14T
Ly(o1 p2.93) = 5 [ Nlos(IBdt+ 5 [ llga(t) Bt

in the case where @1, g2 € (H j and @3 = @2, and by IJ(r.;pl, @2, @3) = oo otherwise.



Controlled Counterparts of Volatility Equations

Let M?2[0, T] be the space of all R"-valued square-integrable { 7} }-predictable processes.
The controls will be chosen from the space M?(0, T]. Deterministic controls will be em-
ployed as well. They are functions belonging to the space L?([0, T|, R™).

Definition 8. Let N > 0. By M3,[0, T| is denoted the class of controls v € M?2|0, T| satisfying
the condition J'}}T||z«'5||2 ds < N P-a.s.

(Fh

Suppose v € M?3;[0, T]. Then, the controlled counterparts of the volatility equations are
as follows:

- r T r‘ i . r
Yt{ﬂ} =Y+ ﬁ a(t,s, V7, Y'"ds + L c(t,s, V>, Y'"))o.ds +ﬁ c(t,s, V>, Y'"))dB,
1 (

and

5

vir = v+ [ B viydr+ [

an(r, v Youdr + ﬁ G:(r, Vi?)dB,, i=1,2.
[



Suppose v € M3,[0, T] for some N > 0. It follows from Girsanov’s Theorem that
the process

f
B® — B, + ] veds, t€[0,T]
)

is an m-dimensional Brownian motion on W" with respect to a measure P on
J7' that is equivalent to the measure IP.

The process B'?) is adapted to the filtration {F}}.

It follows that the controlled volatility equations can be rewritten as follows:

Y\ =y+ f
t Y 0

t _ 3
a(t,s, V72, Y))ds + f c(t,s, V22, Y@ dB" (3)
(

and

_ . s , 5 . - _
Vi — Vf{“urf bi(r, v“*’}dr+f 5. (r, Vi*)dB®) i =1,2.
i 0



Assumption (C1)

Forall (111, ) € WX x W4, the map (t,s) —+ a(t,s, 1, ) is Borel measurable, with
values in the space R".

Forall (12, @) € W2 % WA the map (f,s) > c(t,s, 172, @) is Borel measurable, with
values in the space of d x m-matrices.

The maps a and c are of Volterra type in the first two variables.

For every t € [0,T|, (s,m1,¢) > a(t,s, 41, @) and (s, 172, @) +> c(t,s,12, @) are pre-
dictable path functionals mapping the space [0,t] x W* x W* into the space R
and the space [0, t] x W x W4 into the space of d x m matrices, respectively.

The definition of a predictable path functional can be found in [1Y] (see Definition
(8.3) and Remark (8.4) on p. 122). The requirement above is similar to Convention
(8.7) onp. 123 in [1Y].



Assumption (C2)

(a) Let iy € WX, 5, € W*2, and ¢ € W9, Then, the following inequalities hold for all
te0,T):

i T
fﬂ ||a(t,s, 31, @)||ads < co and fn [le(t 5,112, )7, s < oo.

(b) For all fixed n; € WK and @ € WY, the function

t
tr%/ a(t,s, n1, @)ds
0

is a continuous R?-valued function on [0, T]. In addition, for every fixed t € [0, T] the
function

f
(1. ¢) '—?'fﬂ a(t,s, ny, @)ds

is continuous on the space W x W1,

(c) Let 1j2,, — 112 in W*2 and @, — ¢ in WY as n — co. Then, for every t € [0, T],

i
| 116t 120, 9u) = €(t,5,112,9) [ Frdls 0 a5 1



Assumption (C3)

(a) For all 0 < € < 1 there exists a strong solution to the scaled volatility equation.

(b) Let v € M%[0,T] for some N > 0. Then, any two strong solutions to the equation
in (3) are IP-indistinguishable.

Remark 12. Assumption (C3)(b) is weaker than the pathwise uniqueness condition employed in

[5]



Assumption (C4)

For every function f € L*([0, T|,R™), the equation

t f
i (t) =P’+f (fﬁ:'ﬁ’l,f:??}d5+fﬂ c(t,s,a,5,9)f (s)ds, (4)

a
0
is uniquely solvable in W9,

Remark 13. Under the restrictions imposed on b; and &; in [5), the functional equations

. 5 5

¥i(s) = V" +fﬂ b(r, IPf)d?‘+fD oi(r, i) f(r)dr, i=1,2,
are uniquely solvable, the solutions ; ¢ belong to the spaces W5, and if f, > f weakly in
L2([0, T], R™), then ; . + W; s in Wi fori = 1,2

Remark 14. It is true that the equation in (4) is always solvable. Therefore, only the uniqueness
condition must be included in Assumption (C4).

Definition 15. The map T, : L*([0, T|,R™) > W* is defined by T\,f = n; where 1y is the
unique solution to the equation in (4). |



Assumption (C5)

For every N > 0,set Dy = {f € L2([0, T],R™) Jf[] |£(t)]|2,dt < N}. It is assumed that
the restriction of the map I'y to Dy is a continuous map fmm Dy equipped with the weak

topology into the space W*.

Measurable Functionals:

Let v € M%[0,T| for some N > 0. Then, there exists a map g'?/ : W™ — W satis-
fying the following conditions:

(i) g (B) = V12,
(ii) ¢'%(B'")) = V¥ P-a.s.
(ili) For every t € [0,T], ¢'? is B/ B}2-measurable.

See Lemma A.1 in [5], see also Theorem 10.4 on p. 126 in [1Y].

Suppose Assumption (C3) holds. Then there exists a map h : W™ — W* such that the so-

lution Y to the volatility equation satisfies Y = /(B) and the map # is B / Bd-measurable
forallt € [0, T].



Assumption (C6)
d . ~12) fI!]I (T) ':;E“]' . .
The process t + [, c(t,s,8'*/(B'")), h(B'*)))dB;"', t € [0, T| is continuous.

Assumption (C6) looks rather complicated. A special case, where Assumption (C6) is
satisfied, is when the map ¢ does not depend on the variable t. Indeed, in such a case, the
correctness of Assumption (C6) follows from the restrictions on the map c in Assumption
(C2)(a) and the continuity properties of stochastic integrals. More examples of the valid-
ity of Assumption (Cé) will be provided later.



Assumption (C7)

Suppose 0 < g, < 1, with n > 1, is a sequence of numbers such that ¢, — 0 asn — co.

Let '"), n > 1, be a sequence of controls satisfying the condition v'") € M3,[0, T] for
some N > (0 and all n > 1 (see Definition 9).

Assumption (C7). (i) The family of W9-valued random variables YE*“I’["], with n > 1, is
tight in W*.

(ii) For every t € [0, T|, the following inequality is satisfied:

;

sup E [Hﬂ{f: s, V?,Errfﬂt‘z];‘}/EJ].-‘E_II:”]}HﬁKIH] ds < oo,
n=1+0



First Exit Time

Definition 16. (i) For every € € (0,1, the first exit time of the scaled log-process from the set O

is defined by 7€) = inf{s € (0,T] : X\*) ¢ O} if the previous set is not empty, and by T\ = oo
otherwise.
(ii) For every e € (0,1], the first exit time probability function is defined by v.(t) = P(7'¥) < t),
t € (0, T

[n the book [1 0] of Freidlin and Wentzell, the following restriction on an open set

O C R™ was used: There exist interior points of the complement of O arbitrarily close to
every point of the boundary of O. The previous condition can be formulated as follows:
d0 = d(ext(O)) where ext(O) is the set of interior points of the complement of O, and,
for a set D C R™, the symbol dD stands for the boundary of D.

Theorem 17. Suppose the LDP in Theorem 4 holds. Suppose also that an open set O C R™
satisfies the Freidlin-Wentzell condition. Then

elogP(1!?) < t) = — inf Qr(g) +0(1) as e — 0
gEA;

where Ay = {f € CJ' : f(s) ¢ O — xq for some s € (0,]}.



Binary Barrier Options

Suppose that the model in (1) describes the dynamics of price processes associated with
a portfolio of correlated assets.

We will discuss the small-noise asymptotic behavior of binary up-and-in barrier options.

Denote by R"! the subset of R™ consisting of all the vectors s = (s1,--- ,s,) € R" such
thats; > Oforall1 <i < m, and let O C R'! be an open set. The boundary 0O of the set
O plays the role of the barrier. It is assumed that the model in (1) satisfies the restrictions
imposed in Theorem 4.

Definition 18. Let O be an open set in R"™, and suppose that for every ¢ € (0,1| the initial

condition sy for the process t +— S}EJ satisfies sg € O. In a small-noise setting, a binary up-and-in
barrier option pays a fixed amount of cash, say one dollar, if the m-dimensional asset price process

S'€) hits the barrier 90 at some time during the life of the option.

The price B(¢) of the up-and-in barrier option at t = 0 is given by
B(e) = e 'TP(S}* € 90 for somet € [0, T))

where r > () is the interest rate.



Binary Barrier Options. Asymptotic Formula

Denote by O the open subset of R defined by
{3 — {I — [:_1'1’ . ;I,ﬂ) cR™: I[E'xlf- - ’EI‘"} - G}

Theorem 19. Suppose the LDP in Theorem 4 holds, and let O sarisfy the Freidlin-Wentzell con-
dition. Then, the following asymptotic formula holds:

elog B(e) = —ging Or(g)+0(1) ase — 0

where Ar = {f € C' : f(s) & O — xg for some s € [0, T]}.



Admissible Kernels

The remaining part of the talk is devoted to examples of stochastic volatility models
for which Theorem 4 is valid. More precisely, we will explain for what volatility

processes B Assumptions (C1)-(C7) hold true.

¢ Let K be a real function on [0, T|2. We call the function K an admissible Hilbert-
Schmidt kernel if the following conditions hold:

(a) K is Borel measurable on [0, T]>.

(b) K is Lebesgue square-integrable over [0, T
(c) For every t € (0, T|, the slice function s ~> K(t,s), with s € [0, T|, belongs to the
space L?[0, T].

(d) For every t € (0, T, the slice function is not almost everywhere zero.

2

e If an admissible kernel K satisfies the condition K(f,s) = 0 for all s > ¢, then K is
called an admissible Volterra kernel.



Volatility Processes in Gaussian Models

¢ Any admissible Volterra kernel K generates a Hilbert-Schmidt operator

K(f)(t) = f; K(t,s)f(s)ds, felL?0,T], tel0,Tl,

and a Volterra Gaussian process

~ '
Bt:fﬂ K(t,s)dBs, t€ [0,T).

e It is clear that the process B is adapted to the filtration {FEYo<r<1- This process is
used as the volatility process in a one-factor Gaussian stochastic volatility model

(see [12]).

e Important examples of such volatility processes are Brownian motion, the Ornstein-
Uhlenbeck process, fractional Brownian motion, the Riemann-Liouville fractional
Brownian motion, and super rough Volterra type Gaussian processes (see [12, 1]),
e.g., logarithmic Brownian motion (see [17]).

e The scaled volatility process is defined as follows: EJEE}' = \/eB; for t € [0, T).



Fernique’s Condition

e Let X;,t € [0, T|, be a square integrable stochastic process on (), F,IP). The canon-
ical pseudo-metric 4 associated with this process is defined by the formula

8%(t,s) = E[(X; — Xs)?|, (t,5) € [0, T)

e Suppose 1 is a modulus of continuity on [0, T| such that 4(t,s) < #(|t — s|) for
t,s € [0, T]. Suppose also that for some b > 1, the following inequality holds:

A 1 (u_l) (log uj_%d—u < 0o,

¢ The previous condition is called Fernique’s condition. It guarantees that the volatil-
ity process B is a continuous Gaussian process.



Assumption F and Non-Gaussian Fractional Models
By the Itd isometry, the following equality holds for the process B:

6% (t,s) = fT[K[t,u} — K(s,u))?du, t,s€|0,T|.
0

The L2-modulus of continuity of the kernel K is defined on [0, T| by

T
Mg(T) = sup f (K(t,u) — K(s,u))*du, 1€ 0,T).
tse[0,T]:|t—s|<T /0
Assumption F. The kernel K is an admissible Volterra kernel such that Mg (1) < 5%(1),
T € |0, T|] for some modulus of continuity # satisfying Fernique’s condition.

Omne-factor non-Gaussian fractional stochastic volatility models:

The volatility process in such a model is given by

B, — fﬂtK{f, SYU(V,)ds

where U : R +» [0,00) is a continuous non-negative function and K is an admissible
kernel. The process V is the solution to a diffusion equation satisfying special conditions
(see Gerhold, Gerstenecker, A. G. [ 1]).



Mixed Models

We will next introduce a new class of volatility models. A model belonging to this class

may be called a mixture of a multivariate Gaussian stochastic volatility model and a
multivariate non-Gaussian fractional model.

The volatility process Y; = [Y}”, e Y;‘djj in a mixed model satisfies the following system
of stochastic differential equations:

I

o f i ‘.
v :x!-—l—f K,—l[f,s}ul-{VS]lds-i—Zf Ki(t,s)dBY), 1<i<d.
0 i=1 0

Restrictions:

() K;, with 0 < i < d, and {Kj;}, with1 < i < dand 1 < j < m, are families of ad-
missible Volterra type Hilbert-Schmidt kernels such that Assumption F holds for them.

(2) V is an auxiliary k-dimensional continuous process defined on the space WW" equipped
with the canonical set-up.

(3) Conditions (H1) — (H6) in [5] are satisfied for the process V.
(4) U is a continuous map from R* into RY.

Theorem 20. Assumptions (C1) —(C7) hold true for the mixed volatility model introduced above.
Therefore, the LDPs in Theorems 10 and 11 hold for the mixed model.



By assuming that U = (), we obtain the scaled volatility process in a multivariate
Gaussian stochastic volatility model.

Similarly, the scaled volatility process in a multivariate non-Gaussian fractional model
can be obtained by setting Kij=0 foralll <i<dand1 <j<m.

The Heston model and the fractional Heston model are special cases of non-Gaussian
models described above. In fractional Heston models, the volatility is a fractional inte-
gral operator applied to the CIR process.

A different generalization of the Heston model (a rough Heston model) is due to El Euch
and Rosenbaum (see [7]). In the rough Heston model, the fractional integral operator is
applied to the CIR equation, and not to the CIR process.

I do not know whether the LDP in Theorem 4 holds the log-process in the rough Hes-
ton model.



Volterra Type Equations

Multidimensional Volterra type stochastic differential equation:

f
Yi=y+ | alts, ds—l—f c(t, s, Y.)dBs. (6)

The scaled version:

t
Yf=j—|—fﬂ stEds+«/_f c(t,s,Y)dB., 7)



Assumptions Used in the Papers of Wang [22] and Zhang |

(H1) For some p > 2 there exists Ct > 0 such that for all x,y € R and s, t € 0, T],

|la(t,s, x) —alt,s,y)||la < CrKy(t,s)p ||I—_f||d}

||c(t,5,x} _C[:t-'sry}dem < CTK?“-'S)PP(HE_FHQ‘ ’

and t
[ (llatt 5,011+ [le(t,5,0)|13,)ds < Cr

where K;, with i = 1,2, are two positive functions on [0, T|? for which

t
/ [Kﬂt,,sj*’_fr + Kg{f,SjIP_{E} ds<Cr, tel0,T|.
0

In addition, p : R™ —+ R is a concave function satisfying [, p(u) 'du = co.

]



(H2)For all t,#,s € [0, T] and x € R¥,

la(t,s,x) —a(t',s,x)[la < F(t, t,s)(1+ [[x[|a),

le(t,s,x) = c(t',s,%)||5.,, < B(t,ts)(1+]|x]|3),

and forsome C > 0and 8 > 1,
t
| (latt,s, 00115+ [le(t,5,0)|13,,)ds < €.
The functions F;, i = 1,2, are positive functions on [0, T|? satisfying the condition
tAt’
[ (B ) 4 Bt 1,5))ds < Cle— ]
(

for some ¢ = 0.



Results obtained in Wang [22]:

e [f Condition (H1) holds, then there exists a unique progressively measurable solu-
tion Y to the equation in (6).

e Moreover, if Conditions (H1) and (H2) hnld then the unique solution Y has a é-
Holder continuous version for any 8 € {D A E‘ A ).

A slightly weaker condition than Condition (H2):

{ﬁ' 2) The restriction t,t',s € [0, T| in Condition (H2) is replaced by the restriction
0<s<tt <T.

It is not hard to see, by analyzing the main results obtained in the paper [22] of Wang,
that these results hold true with Condition (H2) replaced by Condition (H2).



Results obtained in Zhang [25]:

e Zhang established a sample path LDP for the unique solution & + y'® (-),e €(0,1]
to the equation in (7), under Conditions (H1) and (H2) and two extra conditions
(H3) and (H4) (see Theorem 1.2 in [23]).

e Note that the initial condition y € R? plays the role of a variable in the process de-
fined above. The state space of this process is the space of continuous maps from

0, T] x R? into R.

e Using the LDP obtained by Zhang and the contraction principle, we prove a sam-

ple path LDP for the process £ + Y!#/, with the initial condition y € R that is
fixed. The state space of this process is the space W".

The LDP obtained by Zhang is a special case of the universal LDP:

Theorem 21. Suppose Conditions (H1) and (H2) hold true for the maps a and ¢ appearing in
(6). Then, Assumptions (C1) - (C7) are satisfied. Therefore, under Conditions (H1) and (H2), the
LDPs in Theorems 10 and 11 hold for the process € — Y€,

Remark: Conditions (H3) and (H4) are not needed in the LDP for the process & — Y'¢/.



Assumptions in Nualart - Rovira [18]

(H;) The map a is measurable from {0 < s < t < T} x R to RY, while the map c is
measurable from {0 < s <t < T} x RY to R9*™,

(H>) The maps a and ¢ are Lipschitz in x uniformly in the other variables, that is,
||E{t!‘5f I} o E{errH” |d>::m + ||ﬂ{f:5.rx,} o ﬂ[trs.ry] ||¢.f E K| |I o y' |.[1I
for some constant K > 0, all x,y € R%, and all0 <s <t < T.
(H3) The maps a and ¢ are a-Holder continuous in f on [s, T| uniformly in the other vari-
ables. This means that there exists a constant K > 0 such that

||E{t.r5r I} o E{rrsr I]Haﬁﬂﬂ + ||H(t.r5r I] o ﬂ{r,S, I}He.f {_: K|f o r|l‘f

forallx €« R?ands < t,r < Twhere 0 < a < 1.
(Hy) There exists a constant K > (0 such that

le(t,s, x) —c(r,s,x) —c(t,s,y) + c(r.8,y)||axm < K|t —r[T[|x —yl|4

forall x,y € RYand T > t,r > swhere 0 < 7 < 1.
(Hs)al(t,s, xg) and cj(f, s, Xo) are bounded.



In [15], a sample path LDP was established for the unique solution to the equation in (7)
under Conditions (H;) — (Hs) (see Theorem 1 in [15]).

Owur result:

Theorem 22. Conditions (Hy) — (H3) and (Hs) in [15] imply Conditions (H1) and (H2) in
[22, 23]. Therefore, the LDPs in Theorems 10 and 11 hold for the process & — Y€ in the canonical
set-up (see Theorem 21).

Remark: Theorem 1 in [15] is valid under Conditions (H; ) - (H3) and (Hjs) if the
canonical set-up is employed. Condition { Hy ) is not needed. We do not know if the same

is true on any set-up.
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