Multivariate Stochastic Volatility Models and Large Deviation Principles

Archil Gulisashvili Ohio University

Stochastic Analysis and Stochastic Partial Differential Equations

A Celebration of Marta Sanz-Solé's Mathematical Legacy

Centre de Recerca Matematica, Barcelona, May 30 -- June 3, 2022

Outline

The following topics will be addressed in the talk:

- Multivariate time-inhomogeneous stochastic volatility models.
- Volterra type volatility processes.
- Restrictions on volatility models.
- Sample path large deviation principles for log-processes.
- Large deviation principles for volatility processes.
- First exit times for log-processes.
- Binary barrier options.
- Examples of models satisfying a comprehensive large deviation principle.

The talk is based on the paper: A. G., Multivariate stochastic volatility models and large deviation principles, submitted for publication, available at arXiv:2203.09015, 2022 (see also the author's papers [11] - [15]).

More papers to pay attention to: Bayer-Friz-Gassiat-Martin-Stemper [2], Chiarini-Fischer [5], Jacquier-Pannier [16], Nualart-Rovira [18], Rovira–Sanz-Solé [20], Wang [22], Zhang [23].

Multivariate Time-Inhomogeneous Stochastic Volatility Models

This talk deals with general multivariate time-inhomogeneous stochastic volatility models. Such a model is described by the following multidimensional stochastic differential equation:

$$dS_t = S_t \circ [b(t, \widehat{B}_t)dt + \sigma(t, \widehat{B}_t)(\overline{C}dW_t + CdB_t)], \quad 0 \le t \le T, \quad S_0 = s_0 \in \mathbb{R}^m$$
(1)

where the initial condition $s_0 = (s_0^{(1)}, \dots, s_0^{(m)})$ is such that $s_i > 0$ for all $1 \le i \le m$.

- The equation in (1) is defined on a probability space (Ω, F, P) carrying two independent *m*-dimensional standard Brownian motions W and B with respect to the measure P.
- By {*F_t*}_{0≤t≤T} is denoted the augmentation of the filtration generated by the processes *W* and *B*. We will also use the augmentation of the filtration generated by the process *B*, and denote it by {*F_t^B*}_{0≤t≤T}.
- The symbol b in (1) stands for a continuous map defined on [0, T] × ℝ^d with values in ℝ^m. We call b the drift map. By σ is denoted a continuous map of [0, T] × ℝ^d into the space of (m × m) real matrices. This map is called the volatility map.
- The process *B̂* = (*B̂*⁽¹⁾, ..., *B̂*^(d)) appearing in (1) is a continuous *d*-dimensional stochastic process adapted to the filtration {*F*^B_t}_{0≤t≤T}. The process *B̂* is called the volatility process.

- \mathbb{R}^m is the *m*-dimensional Euclidean space equipped with the norm $|| \cdot ||_m$.
- For a real (*m* × *m*)-matrix *M*, its Frobenius norm will be denoted by ||*M*||_{*m*×*m*} and the symbol *M*' stands for the transpose of *M*.
- The symbol \circ in (1) stands for the Hadamard (component-wise) product of vectors.
- The matrix C in (1) is a real (m × m)-matrix such that ||C||_{m×m} < 1. It is clear that the matrix Id_m − C'C is symmetric and positive definite, and we denote the unique symmetric and positive definite square root of the matrix Id_m − C'C by C.
- The model in (1) can be interpreted as a time-inhomogeneous stochastic volatility model describing the time-behavior of price processes of correlated risky assets. The matrix-valued process σ(t, B̂_t), with t ∈ [0, T], characterizes the joint volatility of these assets.

Set-Ups. Canonical set-up on W^p

We adopt the terminology (set-ups) used in Rogers-Williams [19].

Definition 1. The system $(\Omega, W, B, \mathcal{F}_T, \{\mathcal{F}_t\}_{0 \le t \le T}, \mathbb{P})$ is called a set-up associated with the model in (1), while the system $(\Omega, B, \mathcal{F}_T^B, \{\mathcal{F}_t^B\}_{0 \le t \le T}, \mathbb{P})$ is called a set-up associated with the volatility process in (1).

Canonical set-up. For a positive integer $p \ge 1$, the symbol W^p stands for the space of continuous \mathbb{R}^p -valued maps on [0, T] equipped with the norm $||f|| = \max_{t \in [0,T]} ||f(t)||_p$, $f \in W^p$.

Let B_s , with $s \in [0, T]$, be the coordinate process on W^p . Define a filtration on the space W^p by $\mathcal{B}_t^p = \sigma(B_s : 0 \le s \le t), t \in [0, T]$. The augmentation $\{\widetilde{\mathcal{B}}_t^p\}$ of the filtration $\{\mathcal{B}_t^p\}$ is called the canonical filtration on W^p .

Let \mathbb{P} be the Wiener measure on $\widetilde{\mathcal{B}}_T^p$. The coordinate process $s \mapsto B_s$ plays the role of *p*-dimensional standard Brownian motion with respect to the measure \mathbb{P} .

Definition 2. The ordered system $(\mathcal{W}^p, B, \widetilde{\mathcal{B}}^p_T, \{\widetilde{\mathcal{B}}^p_t\}, \mathbb{P})$ is called the canonical set-up on \mathcal{W}^p .

Canonical Set-Up on $\mathcal{W}^m \times \mathcal{W}^m$

- Denote the coordinate processes on Ω₁ and Ω₂ by W and B, respectively, and consider the filtration on Ω generated by the process t → (W_t, B_t), t ∈ [0, T].
- Denote by {*F_t*} the augmentation of this filtration with respect to the measure *P* = *P*₁ × *P*₂, where *P*₁ and *P*₂ are the Wiener measures on Ω₁ and Ω₂, respectively.
- By {*F*^B_t} will be denoted the augmentation of the filtration generated by process *t* → *B*_t, *t* ∈ [0, *T*].
- The processes W and B are independent *m*-dimensional Brownian motions defined on the space Ω.
- The system (Ω, W, B, F_T, {F_t}, {F_t}, {F_t^B}, ℙ) is called the canonical set-up on the space Ω = W^m × W^m.

The Log-Process

It can be established using the Doléans-Dade formula that the log-process $X = \log S$ can be represented as follows:

$$\begin{aligned} X_t &= x_0 + \int_0^t b(s, \widehat{B}_s) ds - \frac{1}{2} \int_0^t \operatorname{diag}(\sigma(s, \widehat{B}_s) \sigma(s, \widehat{B}_s)') ds \\ &+ \int_0^t \sigma(s, \widehat{B}_s) (\bar{C} dW_s + C dB_s), \quad 0 \le t \le T. \end{aligned}$$

Let $\varepsilon \in (0,1]$ be the scaling parameter. The scaled version of the log-process X is defined by

$$\begin{aligned} X_t^{(\varepsilon)} &= x_0 + \int_0^t b(s, \widehat{B}_s^{(\varepsilon)}) ds - \frac{1}{2} \varepsilon \int_0^t \operatorname{diag}(\sigma(s, \widehat{B}_s^{(\varepsilon)}) \sigma(s, \widehat{B}_s^{(\varepsilon)})') ds \\ &+ \sqrt{\varepsilon} \int_0^t \sigma(s, \widehat{B}_s^{(\varepsilon)}) (\bar{C} dW_s + C dB_s) \end{aligned}$$

where $X_0^{(\varepsilon)} = x_0$ for all $s \in (0, 1]$. The scaled volatility process $\widehat{B}^{(\varepsilon)}$ appearing in the previous formula will be introduced later.

One-Factor Models

In the case where m = 1, we use the correlation parameter $\rho \in (-1, 1)$ and set $\bar{\rho} = \sqrt{1 - \rho^2}$.

Therefore, the equation describing the evolution of the process *S* is as follows:

$$dS_t = S_t[b(t,\widehat{B}_t)dt + \sigma(t,\widehat{B}_t)(\overline{\rho}dW_t + \rho dB_t)], \quad S_0 = s_0 > 0.$$

Moreover, the log-process is given by

$$X_t = x_0 + \int_0^t b(s, \widehat{B}_s) ds - \frac{1}{2} \int_0^t \sigma(s, \widehat{B}_s)^2 ds + \int_0^t \sigma(s, \widehat{B}_s) (\overline{\rho} dW_s + \rho dB_s)$$

where $x_0 = \log s_0$.

Assumption A

A modulus of continuity is a nonnegative nondecreasing function ω on $[0, \infty)$ such that $\omega(s) \to 0$ as $s \to 0$.

Let $x = (t_1, v_1)$ and $y = (t_2, v_2)$ be elements of the space $[0, T] \times \mathbb{R}^d$ equipped with the Euclidean distance $v_d(x, y) = \sqrt{(t_1 - t_2)^2 + ||v_1 - v_2||_d^2}$. Denote by $\overline{B_d(r)}$ the closed ball centered at (0, 0) of radius r > 0 in the metric space defined above, and let ω be a modulus of continuity on $[0, \infty)$.

Definition 3. A map $\lambda : [0, T] \times \mathbb{R}^d \mapsto \mathbb{R}^1$ is called locally ω -continuous if for every r > 0there exists L(r) > 0 such that for all $x, y \in \overline{B_d(r)}$ the following inequality holds: $|\lambda(x) - \lambda(y)| \le L(r)\omega(\nu_d(x, y)).$

Assumption A: The components of the drift map b and the elements of the volatility map σ are locally ω -continuous on the space $[0, T] \times \mathbb{R}^d$ for some modulus of continuity ω . In addition, the elements of the volatility map σ are not identically zero on $[0, T] \times \mathbb{R}^d$.

Volatility Equations

Let *Y* be a stochastic process satisfying the following Volterra type stochastic integral equation on \mathcal{W}^m equipped with the canonical set-up:

$$Y_t = y + \int_0^t a(t, s, V^{(1)}, Y) ds + \int_0^t c(t, s, V^{(2)}, Y) dB_s.$$

- The previous equation will be called the volatility equation. In it, *a* is a map from the space [0, T]² × W^k₁ × W^d into the space ℝ^d, while *c* is a map from the space [0, T]² × W^k₂ × W^d into the space of (*d* × *m*)-matrices. More restrictions on the maps *a* and *c* will be introduced later.
- The processes $V^{(i)}$, i = 1, 2, appearing in the volatility equation, are fixed auxiliary continuous stochastic processes on W^m with state spaces \mathbb{R}^{k_1} and \mathbb{R}^{k_2} , respectively.
- These processes satisfy the following stochastic differential equations:

$$V_s^{(i)} = V_0^{(i)} + \int_0^s \bar{b}_i(r, V^{(i)}) dr + \int_0^s \bar{\sigma}_i(r, V^{(i)}) dB_r, \quad i = 1, 2$$
(2)

where $V_0^{(i)} \in \mathbb{R}^{k_i}$ are initial conditions, \bar{b}_i are maps of $[0, T] \times \mathcal{W}^{k_i}$ into \mathbb{R}^{k_i} , while $\bar{\sigma}_i$ are maps of $[0, T] \times \mathcal{W}^{k_i}$ into the space of $k_i \times m$ -matrices.

It is assumed that the equations in (2) satisfy Conditions (H1) - (H6) introduced in [5] by Chiarini and Fischer. This paper was an important source of ideas in our work on volatility processes. However, Chiarini and Fischer did not study Volterra type processes in the paper [5].

Remark 5. Examples of equations for which Conditions (H1) - (H6) hold true, include equations with locally Lipschitz coefficients satisfying the sub-linear growth condition and one-dimensional diffusion equations with Hölder dispersion coefficient, e.g, the CIR-equation.

Definition 6. The volatility process \widehat{B} used in the general stochastic volatility model has the following form: $\widehat{B} = GY$, where Y satisfies the volatility equation, while G is a continuous map from \mathcal{W}^d into itself that is $\widetilde{\mathcal{B}}_t^d / \mathcal{B}_t^d$ -measurable for every $t \in [0, T]$.

Definition 7. Denote by $(\mathbb{H}_0^1)^m$ the m-dimensional Cameron-Martin space. For every function $f \in (\mathbb{H}_0^1)^m$, the function $\hat{f} \in \mathcal{W}^d$ is defined by $\hat{f} = G(\Gamma_y \hat{f})$ where $\Gamma_y \hat{f}$ is the solution to the skeleton equation

$$\Gamma_y \dot{f}(t) = y + \int_0^t a(t, s, \psi_{1,f}, \Gamma_y \dot{f}) ds + \int_0^t c(t, s, \psi_{2,f}, \Gamma_y \dot{f}) \dot{f}(s) ds$$

(see Definition 15).

Scaled Volatility Processes

A scaled version of the volatility equation has the following form:

$$Y_t^{(\varepsilon)} = y + \int_0^t a(t, s, V^{1,\varepsilon}, Y^{(\varepsilon)}) ds + \sqrt{\varepsilon} \int_0^t c(t, s, V^{2,\varepsilon}, Y^{(\varepsilon)}) dB_s.$$

For every *i* = 1, 2, the process *V^{i,ε}* is a scaled version of the process *V⁽ⁱ⁾*. It satisfies the equation

$$V_s^{i,\varepsilon} = V_0^{(i)} + \int_0^s \bar{b}_i(r, V^{i,\varepsilon}) dr + \sqrt{\varepsilon} \int_0^s \bar{\sigma}_i(r, V^{i,\varepsilon}) dB_r.$$

 The previous equation has the unique strong solution and the path independence holds this equation if the conditions in Remark 5 are satisfied.

Definition 7. The scaled volatility process $\widehat{B}^{(\varepsilon)}$ is given by $\widehat{B}^{(\varepsilon)} = GY^{(\varepsilon)}$ where G is introduced in Definition 6, while $Y^{(\varepsilon)}$ is the solution to the scaled volatility equation.

Sample Path LDP for the Log-Process

A sample path large deviation principle (LDP) for a stochastic process characterizes logarithmic asymptotics of the probability that the path of a scaled version of the process belongs to a given set of paths. The theory of sample path large deviations goes back to the celebrated work of Varadhan [21] and Freidlin and Wentzell [10].

Theorem 4. Suppose Assumption A and Assumptions (C1) - (C7) hold true, and the model in (1) is defined on the canonical set-up. Then, the process $\varepsilon \mapsto X^{(\varepsilon)} - x_0$ with state space W^m satisfies the sample path large deviation principle with speed ε^{-1} and good rate function \widetilde{Q}_T defined on the previous slide. The validity of the large deviation principle means that for every Borel measurable subset \mathcal{A} of W^m , the following estimates hold:

$$-\inf_{g\in\mathcal{A}^{\circ}}\widetilde{Q}_{T}(g)\leq\liminf_{\varepsilon\downarrow0}\varepsilon\log\mathbb{P}\left(X^{(\varepsilon)}-x_{0}\in\mathcal{A}\right)$$
$$\leq\limsup_{\varepsilon\downarrow0}\varepsilon\log\mathbb{P}\left(X^{(\varepsilon)}-x_{0}\in\mathcal{A}\right)\leq-\inf_{g\in\mathcal{A}}\widetilde{Q}_{T}(g)$$

The symbols \mathcal{A}° and $\overline{\mathcal{A}}$ in the previous estimates stand for the interior and the closure of the set \mathcal{A} , respectively.

The Rate Function

 The rate function *Q̃_T* governing the large deviation principle for the log-process depends on the measurable map Φ : C^m₀ × C^m₀ × W^d → C^m₀ given by

$$\begin{split} \Phi(l,f,h)(t) &= \int_0^t b(s,\widehat{f}(s))ds + \int_0^t \sigma(s,\widehat{f}(s))\overline{Cl}(s)ds + \int_0^t \sigma(s,\widehat{f}(s))C\dot{f}(s)ds \\ \text{for all } l,f \in (\mathbb{H}_0^1)^m, h = \widehat{f} \in \mathcal{W}^d, \text{ and } 0 \leq t \leq T. \text{ For all the remaining triples} \\ (l,f,h), \text{ we set } \Phi(l,f,h)(t) &= 0 \text{ for } t \in [0,T]. \end{split}$$

• Let $g \in \mathbb{C}_0^m$, and define the function \widetilde{Q}_T by

$$\widetilde{Q}_{T}(g) = \inf_{l, f \in (\mathbb{H}_{0}^{1})^{m}} \left[\frac{1}{2} \int_{0}^{T} ||\dot{l}(s)||_{m}^{2} ds + \frac{1}{2} \int_{0}^{T} ||\dot{f}(s)||_{m}^{2} ds : \Phi(l, f, \hat{f}(t)) = g(t), t \in [0, T] \right],$$

if the equation $\Phi(l, f, \hat{f}(t)) = g(t)$ is solvable for l and f. If there is no solution, then we set $\tilde{Q}_T(g) = \infty$.

The Rate Function. Simplifications

Suppose for every $(t, u) \in [0, T] \times \mathbb{R}^d$, the matrix $\sigma(t, u)$ is invertible. Then the following are true:

• For all functions $g \in (\mathbb{H}_0^1)^m$,

$$\widetilde{Q}_{T}(g) = \frac{1}{2} \inf_{f \in (\mathbb{H}_{0}^{1})^{m}} \int_{0}^{T} (||\bar{C}^{-1}\sigma(s,\hat{f}(s))^{-1}[\dot{g}(s) - b(s,\hat{f}(s)) - \sigma(s,\hat{f}(s))C\dot{f}(s)]||_{m}^{2} + ||\dot{f}(s)||_{m}^{2})ds,$$

and $\widetilde{Q}_T(g) = \infty$ otherwise.

- The rate function \tilde{Q}_T is continuous in the topology of the space $(\mathbb{H}_0^1)^m$.
- If *n* = 1, then

$$\widetilde{Q}_{T}(g) = \frac{1}{2} \inf_{f \in \mathbb{H}_{0}^{1}} \int_{0}^{T} \left[\frac{(\dot{g}(s) - b(s, \hat{f}(s)) - \rho\sigma(s, \hat{f}(s))\dot{f}(s))^{2}}{(1 - \rho^{2})\sigma(s, \hat{f}(s))^{2}} + \dot{f}(s)^{2} \right] ds.$$

Sample Path LDPs for Volatility Processes

We will next formulate sample path LDPs for volatility processes. These LDPs hold under special restrictions on the volatility models (Assumptions (C1) – (C7) that will be explained later).

Theorem 10. Suppose Assumptions (C1) – (C7) hold, and let $Y^{(\varepsilon)}$ with $Y_0^{(\varepsilon)} = y$ be the solution to the volatility equation in the canonical set-up. Then, the process $Y^{(\varepsilon)}$ satisfies a sample path large deviation principle with speed ε^{-1} and good rate function defined on W^d by

$$I_{y}(\varphi) = \inf_{\{f \in L^{2}([0,T],\mathbb{R}^{m}): \Gamma_{y}(f) = \varphi\}} \frac{1}{2} \int_{0}^{T} ||f(t)||_{m}^{2} dt$$

if $\{f \in L^2([0,T], \mathbb{R}^m) : \Gamma_y(f) = \varphi\} \neq \emptyset$, and $I_y(\varphi) = \infty$ otherwise.

Theorem 11. Under the restrictions in Theorem 10, the process $\varepsilon \mapsto (\sqrt{\varepsilon}W, \sqrt{\varepsilon}B, \widehat{B}^{\varepsilon}), \varepsilon \in (0, 1]$, satisfies a sample path large deviation principle with speed ε^{-1} and good rate function defined on $\mathcal{W}^m \times \mathcal{W}^m \times \mathcal{W}^d$ by

$$\widetilde{I}_{y}(\varphi_{1},\varphi_{2},\varphi_{3}) = \frac{1}{2} \int_{0}^{T} ||\dot{\varphi}_{1}(t)||_{m}^{2} dt + \frac{1}{2} \int_{0}^{T} ||\dot{\varphi}_{2}(t)||_{m}^{2} dt$$

in the case where $\varphi_1, \varphi_2 \in (H_0^1)^m$ and $\varphi_3 = \widehat{\varphi_2}$, and by $\widetilde{I}_y(\varphi_1, \varphi_2, \varphi_3) = \infty$ otherwise.

Controlled Counterparts of Volatility Equations

Let $\mathcal{M}^2[0, T]$ be the space of all \mathbb{R}^m -valued square-integrable $\{\mathcal{F}^B_t\}$ -predictable processes. The controls will be chosen from the space $\mathcal{M}^2[0, T]$. Deterministic controls will be employed as well. They are functions belonging to the space $L^2([0, T], \mathbb{R}^m)$.

Definition 8. Let N > 0. By $\mathcal{M}_N^2[0, T]$ is denoted the class of controls $v \in \mathcal{M}^2[0, T]$ satisfying the condition $\int_0^T ||v_s||_m^2 ds \leq N \mathbb{P}$ -a.s.

Suppose $v \in \mathcal{M}_N^2[0, T]$. Then, the controlled counterparts of the volatility equations are as follows:

$$Y_t^{(v)} = y + \int_0^t a(t, s, V^{1,v}, Y^{(v)}) ds + \int_0^t c(t, s, V^{2,v}, Y^{(v)}) v_s ds + \int_0^t c(t, s, V^{2,v}, Y^{(v)}) dB_s$$

and

$$V_s^{i,v} = V_0^{(i)} + \int_0^s \bar{b}_i(r, V^{i,v})dr + \int_0^s \bar{\sigma}_i(r, V^{i,v})v_r dr + \int_0^s \bar{\sigma}_i(r, V^{i,v})dB_r, \quad i = 1, 2.$$

 Suppose v ∈ M²_N[0, T] for some N > 0. It follows from Girsanov's Theorem that the process

$$\mathsf{B}_t^{(v)} = B_t + \int_0^t v_s ds, \quad t \in [0,T]$$

is an *m*-dimensional Brownian motion on \mathcal{W}^m with respect to a measure $\mathbb{P}^{(v)}$ on \mathcal{F}_T^m that is equivalent to the measure \mathbb{P} .

- The process $B^{(v)}$ is adapted to the filtration $\{\mathcal{F}_t^B\}$.
- It follows that the controlled volatility equations can be rewritten as follows:

$$Y_t^{(v)} = y + \int_0^t a(t, s, V^{1,v}, Y^{(v)}) ds + \int_0^t c(t, s, V^{2,v}, Y^{(v)}) dB_s^{(v)}$$
(3)

and

$$V_s^{i,v} = V_0^{(i)} + \int_0^s \bar{b}_i(r, V^{i,v}) dr + \int_0^s \bar{\sigma}_i(r, V^{i,v}) dB_r^{(v)}, \quad i = 1, 2.$$

Assumption (C1)

- For all (η₁, φ) ∈ W^{k₁} × W^d, the map (t, s) → a(t, s, η₁, φ) is Borel measurable, with values in the space ℝ^d.
- For all (η₂, φ) ∈ W^{k₂} × W^d, the map (t, s) → c(t, s, η₂, φ) is Borel measurable, with values in the space of d × m-matrices.
- The maps *a* and *c* are of Volterra type in the first two variables.
- For every t ∈ [0, T], (s, η₁, φ) → a(t, s, η₁, φ) and (s, η₂, φ) → c(t, s, η₂, φ) are predictable path functionals mapping the space [0, t] × W^{k₁} × W^d into the space ℝ^d and the space [0, t] × W^{k₂} × W^d into the space of d × m matrices, respectively.
- The definition of a predictable path functional can be found in [19] (see Definition (8.3) and Remark (8.4) on p. 122). The requirement above is similar to Convention (8.7) on p. 123 in [19].

Assumption (C2)

(a) Let $\eta_1 \in W^{k_1}$, $\eta_2 \in W^{k_2}$, and $\varphi \in W^d$. Then, the following inequalities hold for all $t \in [0, T]$:

$$\int_0^t ||a(t,s,\eta_1,\varphi)||_d ds < \infty \quad \text{and} \quad \int_0^T ||c(t,s,\eta_2,\varphi)||_{d\times m}^2 ds < \infty.$$

(b) For all fixed $\eta_1 \in W^{k_1}$ and $\varphi \in W^d$, the function

$$t\mapsto \int_0^t a(t,s,\eta_1,\varphi)ds$$

is a continuous \mathbb{R}^d -valued function on [0, T]. In addition, for every fixed $t \in [0, T]$ the function

$$(\eta_1, \varphi) \mapsto \int_0^t a(t, s, \eta_1, \varphi) ds$$

is continuous on the space $\mathcal{W}^{k_1} \times \mathcal{W}^d$.

(c) Let
$$\eta_{2,n} \to \eta_2$$
 in \mathcal{W}^{k_2} and $\varphi_n \to \varphi$ in \mathcal{W}^d as $n \to \infty$. Then, for every $t \in [0, T]$,
$$\int_0^t ||c(t, s, \eta_{2,n}, \varphi_n) - c(t, s, \eta_2, \varphi)||_{d \times m}^2 ds \to 0 \quad \text{as} \quad n \to \infty.$$

Assumption (C3)

(a) For all $0 < \varepsilon \le 1$ there exists a strong solution to the scaled volatility equation.

(b) Let $v \in M_N^2[0,T]$ for some N > 0. Then, any two strong solutions to the equation in (3) are \mathbb{P} -indistinguishable.

Remark 12. Assumption (C3)(b) is weaker than the pathwise uniqueness condition employed in [5].

Assumption (C4)

For every function $f \in L^2([0, T], \mathbb{R}^m)$, the equation

$$\eta(t) = y + \int_0^t a(t, s, \psi_{1,f}, \eta) ds + \int_0^t c(t, s, \psi_{2,f}, \eta) f(s) ds,$$
(4)

is uniquely solvable in \mathcal{W}^d .

Remark 13. Under the restrictions imposed on \bar{b}_i and $\bar{\sigma}_i$ in [5], the functional equations

$$\psi_i(s) = V_0^{(i)} + \int_0^s \bar{b}_i(r,\psi_i)dr + \int_0^s \bar{\sigma}_i(r,\psi_i)f(r)dr, \quad i = 1, 2,$$

are uniquely solvable, the solutions $\psi_{i,f}$ belong to the spaces \mathcal{W}^{k_i} , and if $f_n \mapsto f$ weakly in $L^2([0,T], \mathbb{R}^m)$, then $\psi_{i,f_n} \mapsto \psi_{i,f}$ in \mathcal{W}^{k_i} for i = 1, 2.

Remark 14. It is true that the equation in (4) is always solvable. Therefore, only the uniqueness condition must be included in Assumption (C4).

Definition 15. The map $\Gamma_y : L^2([0,T], \mathbb{R}^m) \mapsto \mathcal{W}^d$ is defined by $\Gamma_y f = \eta_f$ where η_f is the unique solution to the equation in (4).

Assumption (C5)

For every N > 0, set $D_N = \{f \in L^2([0, T], \mathbb{R}^m) : \int_0^T ||f(t)||_m^2 dt \le N\}$. It is assumed that the restriction of the map Γ_y to D_N is a continuous map from D_N equipped with the weak topology into the space W^d .

Measurable Functionals:

Let $v \in M_N^2[0,T]$ for some N > 0. Then, there exists a map $g^{(2)} : W^m \mapsto W^{k_2}$ satisfying the following conditions: (i) $g^{(2)}(B) = V^{(2)}$. (ii) $g^{(2)}(B^{(v)}) = V^{2,v} \mathbb{P}$ -a.s. (iii) For every $t \in [0,T]$, $g^{(2)}$ is $\widetilde{\mathcal{B}}_t^m / \mathcal{B}_t^{k_2}$ -measurable.

See Lemma A.1 in [5], see also Theorem 10.4 on p. 126 in [19].

Suppose Assumption (C3) holds. Then there exists a map $h : W^m \mapsto W^d$ such that the solution Y to the volatility equation satisfies Y = h(B) and the map h is $\widetilde{\mathcal{B}}_t^m / \mathcal{B}_t^d$ -measurable for all $t \in [0, T]$.

Assumption (C6)

The process $t \mapsto \int_0^t c(t,s,g^{(2)}(B^{(v)}),h(B^{(v)}))dB_s^{(v)}, t \in [0,T]$ is continuous.

Assumption (C6) looks rather complicated. A special case, where Assumption (C6) is satisfied, is when the map *c* does not depend on the variable *t*. Indeed, in such a case, the correctness of Assumption (C6) follows from the restrictions on the map *c* in Assumption (C2)(a) and the continuity properties of stochastic integrals. More examples of the valid-ity of Assumption (C6) will be provided later.

Assumption (C7)

Suppose $0 < \varepsilon_n < 1$, with $n \ge 1$, is a sequence of numbers such that $\varepsilon_n \to 0$ as $n \to \infty$. Let $v^{(n)}$, $n \ge 1$, be a sequence of controls satisfying the condition $v^{(n)} \in \mathcal{M}_N^2[0,T]$ for some N > 0 and all $n \ge 1$ (see Definition 9).

Assumption (C7). (i) The family of W^d -valued random variables $Y^{\varepsilon_n, v^{(n)}}$, with $n \ge 1$, is tight in W^d .

(ii) For every $t \in [0, T]$, the following inequality is satisfied:

$$\sup_{n\geq 1}\int_0^t \mathbb{E}\left[||c(t,s,V^{2,\varepsilon_n,v^{(n)}},Y^{\varepsilon_n,v^{(n)}})||_{d\times m}^2\right]ds<\infty.$$

First Exit Time

Definition 16. (*i*) For every $\varepsilon \in (0, 1]$, the first exit time of the scaled log-process from the set O is defined by $\tau^{(\varepsilon)} = \inf\{s \in (0, T] : X_s^{(\varepsilon)} \notin O\}$ if the previous set is not empty, and by $\tau^{(\varepsilon)} = \infty$ otherwise. (*ii*) For every $\varepsilon \in (0, 1]$, the first exit time probability function is defined by $v_{\varepsilon}(t) = \mathbb{P}(\tau^{(\varepsilon)} \leq t)$,

(ii) For every $\varepsilon \in (0,1]$, the first exit time probability function is defined by $v_{\varepsilon}(t) = \mathbb{P}(\tau^{(\varepsilon)} \leq t)$, $t \in (0,T]$.

In the book [10] of Freidlin and Wentzell, the following restriction on an open set $O \subset \mathbb{R}^m$ was used: There exist interior points of the complement of O arbitrarily close to every point of the boundary of O. The previous condition can be formulated as follows: $\partial O = \partial(\text{ext}(O))$ where ext(O) is the set of interior points of the complement of O, and, for a set $D \subset \mathbb{R}^m$, the symbol ∂D stands for the boundary of D.

Theorem 17. Suppose the LDP in Theorem 4 holds. Suppose also that an open set $O \subset \mathbb{R}^m$ satisfies the Freidlin-Wentzell condition. Then

$$\varepsilon \log \mathbb{P}(\tau^{(\varepsilon)} \le t) = -\inf_{g \in \mathcal{A}_t} \widetilde{Q}_T(g) + o(1) \text{ as } \varepsilon \to 0$$

where $\mathcal{A}_t = \{f \in \mathbb{C}_0^m : f(s) \notin O - x_0 \text{ for some } s \in (0, t]\}.$

Binary Barrier Options

Suppose that the model in (1) describes the dynamics of price processes associated with a portfolio of correlated assets.

We will discuss the small-noise asymptotic behavior of binary up-and-in barrier options.

Denote by \mathbb{R}^m_+ the subset of \mathbb{R}^m consisting of all the vectors $s = (s_1, \dots, s_m) \in \mathbb{R}^m$ such that $s_i > 0$ for all $1 \le i \le m$, and let $O \subset \mathbb{R}^m_+$ be an open set. The boundary ∂O of the set O plays the role of the barrier. It is assumed that the model in (1) satisfies the restrictions imposed in Theorem 4.

Definition 18. Let O be an open set in \mathbb{R}^m_+ , and suppose that for every $\varepsilon \in (0,1]$ the initial condition s_0 for the process $t \mapsto S_t^{(\varepsilon)}$ satisfies $s_0 \in O$. In a small-noise setting, a binary up-and-in barrier option pays a fixed amount of cash, say one dollar, if the m-dimensional asset price process $S^{(\varepsilon)}$ hits the barrier ∂O at some time during the life of the option.

The price $B(\varepsilon)$ of the up-and-in barrier option at t = 0 is given by

$$B(\varepsilon) = e^{-rT} \mathbb{P}(S_t^{(\varepsilon)} \in \partial O \text{ for some } t \in [0, T])$$

where r > 0 is the interest rate.

Binary Barrier Options. Asymptotic Formula

Denote by \widetilde{O} the open subset of \mathbb{R}^m defined by

$$\widetilde{O} = \{x = (x_1, \cdots, x_m) \in \mathbb{R}^m : (e^{x_1}, \cdots, e^{x_m}) \in O\}.$$

Theorem 19. Suppose the LDP in Theorem **4** holds, and let O sarisfy the Freidlin-Wentzell condition. Then, the following asymptotic formula holds:

$$\varepsilon \log B(\varepsilon) = -\inf_{g \in \mathcal{A}_T} \widetilde{Q}_T(g) + o(1) \text{ as } \varepsilon \to 0$$

where $\mathcal{A}_T = \{ f \in \mathbb{C}_0^m : f(s) \notin \widetilde{O} - x_0 \text{ for some } s \in [0, T] \}.$

Admissible Kernels

The remaining part of the talk is devoted to examples of stochastic volatility models for which Theorem 4 is valid. More precisely, we will explain for what volatility processes \widehat{B} Assumptions (C1)-(C7) hold true.

• Let *K* be a real function on $[0, T]^2$. We call the function *K* an admissible Hilbert-Schmidt kernel if the following conditions hold:

(a) *K* is Borel measurable on [0, *T*]².
(b) *K* is Lebesgue square-integrable over [0, *T*]².
(c) For every *t* ∈ (0, *T*], the slice function *s* → *K*(*t*, *s*), with *s* ∈ [0, *T*], belongs to the space *L*²[0, *T*].
(d) For every *t* ∈ (0, *T*], the slice function is not almost everywhere zero.

If an admissible kernel K satisfies the condition K(t,s) = 0 for all s > t, then K is called an admissible Volterra kernel.

Volatility Processes in Gaussian Models

• Any admissible Volterra kernel *K* generates a Hilbert-Schmidt operator

$$\mathcal{K}(f)(t) = \int_0^t K(t,s)f(s)ds, \quad f \in L^2[0,T], \quad t \in [0,T],$$

and a Volterra Gaussian process

$$\widehat{B}_t = \int_0^t K(t,s) dB_s, \quad t \in [0,T].$$

- It is clear that the process *B* is adapted to the filtration {*F*^B_t}_{0≤t≤T}. This process is used as the volatility process in a one-factor Gaussian stochastic volatility model (see [12]).
- Important examples of such volatility processes are Brownian motion, the Ornstein-Uhlenbeck process, fractional Brownian motion, the Riemann-Liouville fractional Brownian motion, and super rough Volterra type Gaussian processes (see [12, 1]), e.g., logarithmic Brownian motion (see [17]).
- The scaled volatility process is defined as follows: $\widehat{B}_t^{(\varepsilon)} = \sqrt{\varepsilon} \widehat{B}_t$ for $t \in [0, T]$.

Fernique's Condition

• Let $X_t, t \in [0, T]$, be a square integrable stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$. The canonical pseudo-metric δ associated with this process is defined by the formula

$$\delta^2(t,s) = \mathbb{E}[(X_t - X_s)^2], \quad (t,s) \in [0,T]^2.$$

• Suppose η is a modulus of continuity on [0, T] such that $\delta(t, s) \leq \eta(|t - s|)$ for $t, s \in [0, T]$. Suppose also that for some b > 1, the following inequality holds:

$$\int_{b}^{\infty} \eta\left(u^{-1}\right) \left(\log u\right)^{-\frac{1}{2}} \frac{du}{u} < \infty.$$

 The previous condition is called Fernique's condition. It guarantees that the volatility process
 B is a continuous Gaussian process.

Assumption F and Non-Gaussian Fractional Models

By the Itô isometry, the following equality holds for the process \widehat{B} :

$$\delta^{2}(t,s) = \int_{0}^{T} (K(t,u) - K(s,u))^{2} du, \quad t,s \in [0,T].$$

The L^2 -modulus of continuity of the kernel *K* is defined on [0, T] by

$$M_{K}(\tau) = \sup_{t,s\in[0,T]:|t-s|\leq\tau} \int_{0}^{T} (K(t,u) - K(s,u))^{2} du, \quad \tau\in[0,T].$$

Assumption F. The kernel K is an admissible Volterra kernel such that $M_K(\tau) \leq \eta^2(\tau)$, $\tau \in [0, T]$ for some modulus of continuity η satisfying Fernique's condition.

One-factor non-Gaussian fractional stochastic volatility models:

The volatility process in such a model is given by

$$\hat{B}_t = \int_0^t K(t,s) U(V_s) ds$$

where $U : \mathbb{R} \mapsto [0, \infty)$ is a continuous non-negative function and *K* is an admissible kernel. The process *V* is the solution to a diffusion equation satisfying special conditions (see Gerhold, Gerstenecker, A. G. [11]).

Mixed Models

We will next introduce a new class of volatility models. A model belonging to this class may be called a mixture of a multivariate Gaussian stochastic volatility model and a multivariate non-Gaussian fractional model.

The volatility process $Y_t = (Y_t^{(1)}, \cdots, Y_t^{(d)})$ in a mixed model satisfies the following system of stochastic differential equations:

$$Y_t^{(i)} = x_i + \int_0^t K_i(t,s) U_i(V_s) ds + \sum_{j=1}^m \int_0^t K_{ij}(t,s) dB_s^{(j)}, \quad 1 \le i \le d.$$

Restrictions:

(1) K_i , with $0 \le i \le d$, and $\{K_{ij}\}$, with $1 \le i \le d$ and $1 \le j \le m$, are families of admissible Volterra type Hilbert-Schmidt kernels such that Assumption F holds for them. (2) V is an auxiliary k-dimensional continuous process defined on the space W^m equipped with the canonical set-up.

(3) Conditions (H1) – (H6) in [5] are satisfied for the process V.

(4) *U* is a continuous map from \mathbb{R}^k into \mathbb{R}^d .

Theorem 20. Assumptions (C1) - (C7) hold true for the mixed volatility model introduced above. Therefore, the LDPs in Theorems 10 and 11 hold for the mixed model. By assuming that U = 0, we obtain the scaled volatility process in a multivariate Gaussian stochastic volatility model.

Similarly, the scaled volatility process in a multivariate non-Gaussian fractional model can be obtained by setting $K_{ij} = 0$ for all $1 \le i \le d$ and $1 \le j \le m$.

The Heston model and the fractional Heston model are special cases of non-Gaussian models described above. In fractional Heston models, the volatility is a fractional integral operator applied to the CIR process.

A different generalization of the Heston model (a rough Heston model) is due to El Euch and Rosenbaum (see [7]). In the rough Heston model, the fractional integral operator is applied to the CIR equation, and not to the CIR process.

I do not know whether the LDP in Theorem 4 holds the log-process in the rough Heston model.

Volterra Type Equations

Multidimensional Volterra type stochastic differential equation:

$$Y_t = y + \int_0^t a(t, s, Y_s) ds + \int_0^t c(t, s, Y_s) dB_s.$$
 (6)

The scaled version:

$$Y_t^{\varepsilon} = y + \int_0^t a(t, s, Y_s^{\varepsilon}) ds + \sqrt{\varepsilon} \int_0^t c(t, s, Y_s^{\varepsilon}) dB_s,$$
(7)

Assumptions Used in the Papers of Wang [22] and Zhang [23]

(H1) For some p > 2 there exists $C_T > 0$ such that for all $x, y \in \mathbb{R}^d$ and $s, t \in [0, T]$,

$$||a(t,s,x) - a(t,s,y)||_{d} \le C_{T}K_{1}(t,s)\rho^{\frac{1}{p}}(||x-y||_{d}^{p}),$$

$$||c(t,s,x) - c(t,s,y)||_{d\times m}^{2} \le C_{T}K_{2}(t,s)\rho^{\frac{2}{p}}(||x-y||_{d}^{p}),$$

and

$$\int_0^t (||a(t,s,0)||_d + ||c(t,s,0)||_{d \times m}^2) ds \le C_T$$

where K_i , with i = 1, 2, are two positive functions on $[0, T]^2$ for which

$$\int_0^t \left[K_1(t,s)^{\frac{p}{p-1}} + K_2(t,s)^{\frac{p}{p-2}} \right] ds \le C_T, \quad t \in [0,T].$$

In addition, $\rho : \mathbb{R}^+ \to \mathbb{R}^+$ is a concave function satisfying $\int_{0+}^{\cdot} \rho(u)^{-1} du = \infty$.

(H2) For all $t, t', s \in [0, T]$ and $x \in \mathbb{R}^d$,

$$||a(t,s,x) - a(t',s,x)||_d \le F_1(t',t,s)(1+||x||_d),$$

$$||c(t,s,x) - c(t',s,x)||_{d \times m}^2 \le F_2(t',t,s)(1+||x||_d^2),$$

and for some C > 0 and $\theta > 1$,

$$\int_0^t (||a(t,s,0)||_d^{\theta} + ||c(t,s,0)||_{d\times m}^{2\theta}) ds < C.$$

The functions F_i , i = 1, 2, are positive functions on $[0, T]^3$ satisfying the condition

$$\int_0^{t \wedge t'} (F_1(t', t, s) + F_2(t', t, s)) ds \le C |t - t'|^{\gamma}$$

for some $\gamma > 0$.

Results obtained in Wang [22]:

- If Condition (H1) holds, then there exists a unique progressively measurable solution Y to the equation in (6).
- Moreover, if Conditions (H1) and (H2) hold, then the unique solution Y has a δ-Hölder continuous version for any δ ∈ (0, ¹/_p ∧ ^{θ-1}/_{2θ} ∧ ^γ/₂).

A slightly weaker condition than Condition (H2):

• $(\widehat{H}2)$ The restriction $t, t', s \in [0, T]$ in Condition (H2) is replaced by the restriction $0 \le s \le t, t' \le T$.

It is not hard to see, by analyzing the main results obtained in the paper [22] of Wang, that these results hold true with Condition (H2) replaced by Condition (\hat{H} 2).

Results obtained in Zhang [23]:

- Zhang established a sample path LDP for the unique solution ε → Y.^(ε)(·), ε ∈ (0, 1] to the equation in (7), under Conditions (H1) and (H2) and two extra conditions (H3) and (H4) (see Theorem 1.2 in [23]).
- Note that the initial condition *y* ∈ ℝ^d plays the role of a variable in the process defined above. The state space of this process is the space of continuous maps from [0, *T*] × ℝ^d into ℝ^d.
- Using the LDP obtained by Zhang and the contraction principle, we prove a sample path LDP for the process ε → Y^(ε), with the initial condition y ∈ ℝ^d that is fixed. The state space of this process is the space W^d.

The LDP obtained by Zhang is a special case of the universal LDP:

Theorem 21. Suppose Conditions (H1) and $(\widehat{H}2)$ hold true for the maps a and c appearing in (6). Then, Assumptions (C1) - (C7) are satisfied. Therefore, under Conditions (H1) and $(\widehat{H}2)$, the LDPs in Theorems 10 and 11 hold for the process $\varepsilon \mapsto Y^{(\varepsilon)}$.

Remark: Conditions (H3) and (H4) are not needed in the LDP for the process $\varepsilon \mapsto \Upsilon^{(\varepsilon)}$.

Assumptions in Nualart - Rovira [18].

(*H*₁) The map *a* is measurable from $\{0 \le s \le t \le T\} \times \mathbb{R}^d$ to \mathbb{R}^d , while the map *c* is measurable from $\{0 \le s \le t \le T\} \times \mathbb{R}^d$ to $\mathbb{R}^{d \times m}$.

 (H_2) The maps *a* and *c* are Lipschitz in *x* uniformly in the other variables, that is,

$$||c(t,s,x) - c(t,s,y)||_{d \times m} + ||a(t,s,x) - a(t,s,y)||_{d} \le K||x-y||_{d}$$

for some constant K > 0, all $x, y \in \mathbb{R}^d$, and all $0 \le s \le t \le T$. (*H*₃) The maps *a* and *c* are α -Hölder continuous in *t* on [*s*, *T*] uniformly in the other variables. This means that there exists a constant K > 0 such that

$$||c(t,s,x) - c(r,s,x)||_{d \times m} + ||a(t,s,x) - a(r,s,x)||_{d} \le K|t - r|^{\alpha}$$

for all $x \in \mathbb{R}^d$ and $s \leq t, r \leq T$ where $0 < \alpha \leq 1$. (*H*₄) There exists a constant K > 0 such that

$$||c(t,s,x) - c(r,s,x) - c(t,s,y) + c(r,s,y)||_{d \times m} \le K|t - r|^{\gamma}||x - y||_{d}$$

for all $x, y \in \mathbb{R}^d$ and $T \ge t, r \ge s$ where $0 < \gamma \le 1$. (*H*₅) $a(t, s, x_0)$ and $c_j(t, s, x_0)$ are bounded. In [18], a sample path LDP was established for the unique solution to the equation in (7) under Conditions $(H_1) - (H_5)$ (see Theorem 1 in [18]).

Our result:

Theorem 22. Conditions $(H_1) - (H_3)$ and (H_5) in [18] imply Conditions (H1) and $(\widehat{H}2)$ in [22, 23]. Therefore, the LDPs in Theorems 10 and 11 hold for the process $\varepsilon \mapsto Y^{(\varepsilon)}$ in the canonical set-up (see Theorem 21).

Remark: Theorem 1 in [18] is valid under Conditions $(H_1) - (H_3)$ and (H_5) if the canonical set-up is employed. Condition (H_4) is not needed. We do not know if the same is true on any set-up.

References I

- C. Bayer, F. Harang, P. Pigato, Log-modulated rough stochastic volatility models, SIAM J. Financial Math. 12 (2021) 1257-1284.
- [2] C. Bayer, P. K. Friz, P. Gassiat, J. Martin, B. Stemper, A regularity structure for rough volatility, Math. Finance 30 (2020) 782-832.
- [3] G.Catalini, B. Pacchiarotti, Asymptotics for multifactor Volterra type stochastic volatility models, awailable on arXiv:2109.09448.
- [4] M. Cellupica, B. Pacchiarotti, Pathwise asymptotics for Volterra type stochastic volatility models, J. Theor. Probab. 34 (2021) 682-727.
- [5] A. Chiarini, M. Fischer, On large deviations for small noise Itô processes, Adv. in Appl. Probab. 46 (2014) 1126-1147.
- [6] P. Dupuis, R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations, John Wiley & Sons, Inc., 1997.
- [7] O. El Euch, M. Rosenbaum, The characteristic function of rough Heston models, Math. Finance 29 (2019) 3-38.
- [8] X. Fernique, Continuité des processus Gaussiens, C. R. Acad. Sci. Paris 258 (1964) 6058-6060.
- [9] M. Forde, H. Zhang, Asymptotics for rough stochastic volatility models, SIAM J. Financial Math. 8 (2017) 114-145.
- [10] M. I. Freidlin, A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag NewYork, 1998.
- [11] S. Gerhold, C. Gerstenecker, A. Gulisashvili, Large deviations for fractional volatility models with non-Gaussian volatility driver, Stochastic Process. Appl. 142 (2021) 580-600.

References II

- [12] A. Gulisashvili, Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super-roughness, Stochastic Process. Appl. 139 (2021) 37-79.
- [13] A. Gulisashvili, Large deviation principles for stochastic volatility models with reflection and three faces of the Stein and Stein model, submitted for publication, available on arXiv:2006.15431, 2020.
- [14] A. Gulisashvili, Gaussian stochastic volatility models: Scaling regimes, large deviations, and moment explosions, Stochastic Process. Appl. 130 (2020) 3648-3686.
- [15] A. Gulisashvili, Large deviation principle for Volterra type fractional stochastic volatility models, SIAM J. Financial Math. 9 (2018) 1102-1136.
- [16] A. Jacquier, A. Pannier, Large and moderate deviations for stochastic Volterra systems, available on arXiv:2004.10571, 2020.
- [17] O. Mocioalca, F. Viens, Skorokhod integration and stochastic calculus beyond the fractional Brownian scale, J. Funct. Anal. 222 (2005) 385-434.
- [18] D. Nualart, C. Rovira, Large deviations for stochastic Volterra equations, Bernoulli 6 (2000) 339-355.
- [19] L. C. G. Rogers, D. Williams, Diffusions, Markov Processes, and Matringales, Vol. 2, Itô Calculus, Cambridge University Press, 2000.
- [20] C. Rovira, M. Sanz-Solé, Large deviations for stochastic Volterra equations in the plane, Potential Anal. 12 (2000) 359-383.
- [21] S. R. S. Varadhan, Asymptotic probabilities and differential equations, Comm. Pure Appl. Math. 19 (1966) 261-286.
- [22] Z. Wang, Existence and uniqueness of solutions to stochastic Volterra equations with singular kernels and non-Lipschitz coefficients, Statist. Probab. Lett. 78 (2008) 1062-1071.
- [23] X. Zhang, Euler schemes and large deviations for stochastic Volterra equations with singular kernels, J. Differental Equations 244 (2008) 2226-2250.

Thank you!