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Stochastic model for turbulent flows

Stochastic Navier-Stokes equation with transport noise on a
domain O ⊂ Rd , d = 2, 3:
du = (ν∆u + ((u + ū) · ∇u) +∇p)dt + φdW ◦ ∇u + φ̃dW̃

= (ν∆u + Kφu + ((u + ū) · ∇u) +∇p))dt + φdW · ∇u + φ̃dW̃ ,

divu = 0,

I u = u(x , t), x ∈ O, t > 0 is the velocity; p = p(x , t) is the

pressure; W and W̃ are cylindrical Wiener process and φ, φ̃
are the covariance operator (in other words, since these are

smoothing operator, φdW , φ̃dW̃ are spatially smooth time
white noises); ū is the Ito-Stokes drift.

I These equations are supplemented with boundary conditions:
for instance Dirichlet, periodic if O = Td , or decaying at
infinity if O = Rd .



Stochastic model for turbulent flows

Stochastic Navier-Stokes equation with transport noise on a
domain O ⊂ Rd : du = (ν∆u + ((u + ū) · ∇u) +∇p)dt + φdW ◦ ∇u + φ̃dW̃

divu = 0,

I R. Mikulevicius & B. Rozovsky, E. Mémin and co-authors (see
also Z. Brzezniak, M. Capinski, , and F. Flandoli): start with
the Lagrangian description of the fluid and add a perturbation.

I D. Holm and co-authors: derive stochastic fluid equation from
variational principle, SALT model (Stochastic advection by Lie
transport). A slightly different equation is obtained. This
equation has the property to have similar conservation
properties as in the deterministic case.



Stochastic model for turbulent flows

 du = (ν∆u + ((u + ū) · ∇u) +∇p)dt + φdW ◦ ∇u + φ̃dW̃

divu = 0,

I Write
dx = u(x(t), t) + φ(x(t), t)dW .

The noise models the small unresolved scales.
I Do the classical derivation of fluid mechanics equation by

looking at the evolution of a volume transported by the
stochastic flow. Ito-Wentzel formula introduces the additional
terms in the Navier-Stokes equations.

I The derivation is not rigorous because: 1. The deterministic
derivation is not rigorous. 2. Some terms like the derivative of
the white noise have to be discarded.

I Many other models (quasi-geostrophic equations, primitive
equations ...) can be derived in this way.
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Mathematical framework

 du = (ν∆u + ((u + ū) · ∇u) +∇p)dt + φdW ◦ ∇u + φ̃dW̃

divu = 0.

I Introduce

H = {u ∈ (L2(O))d , divu = 0, u · n = 0 on ∂O},

P the Leray projector on H, the Stokes operator

A = νP∆ on D(A) = (H2(O) ∩ H1
0 (O))d ∩ H

and b(u, v) = P(u · ∇v).

I Rewrite the equation as:

du = Au + b(u + ū, u)dt + bo(φdW , u) + Pφ̃dW̃ .

I Well-posedness has been studied by various authors.



A multiscale approach

Inspired by works by A. Majda, P. Kramer, I. Timorfeyev, E. Van
den Eijden, F. Flandoli proposed to study a multiscale fluid
equation:{

∂tu = Au + b(u + v , u),

dv = (Av +
1

ε
Cv)dt + b(u + v , v)dt +

1

ε
φdW ,

I A natural choice is C = I , this represents a friction.

I Formally, when ε→ 0, we get v = (−C )−1φdW and the
Navier-Stokes equation with transport noise:

du = Au + b(u, u) + bo((−C )−1φdW , u).

This misses the Ito-Stokes drift.
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A multiscale approach

Inspired by works by A. Majda, P. Kramer, I. Timorfeyev, E. Van
den Eijden, F. Flandoli proposed to study a multiscale fluid
equation:{

∂tu = Au + b(u + v , u),

dv = (Av +
1

ε
Cv)dt + b(u + v , v)dt +

1

ε
φdW ,

I
du = Au + b(u, u) + bo((−C )−1φdW , u).

I F. Flandoli and U. Pappalettera studied the 2d case without
viscosity: A = 0. They use the vorticity form of the equation
and characteristic method. The solutions of the characteristics
of the fast equations ”converge” to a white noise and they
obtain a sort of Wong-Zakai result.

I The same result would be obtain without the nonlinear term
in the fast equation.



Remark: Another scaling

I The scaling{
∂tu = Au + b(u + v , u),

dv = (Av +
1

ε
Cv)dt + b(u + v , v))dt +

1

ε1/2
φdW ,

is also very natural. This is the averaging regime.

I The limit does not contain any trace of the small scales or of
the noise: ∂tu = Au + b(u, u)

I A non trivial limit would be obtained from:{
∂tu = Au + b(u + v , u),

dv =
1

ε
(Av + b(u + v , v))dt +

1

ε1/2
φdW ,

 ∂tu = Au + b(u, u) +

∫
H
b(v , u)dνu(v).
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Generators
Consider first the simpler case:{

∂tu = Au + b(u + v , u),

dv =
1

ε
Cvdt +

1

ε
φdW ,

I v is of order ε−1/2  w = ε1/2v and
∂tu = Au + b(u, u) +

1

ε1/2
b(w , u),

dw =
1

ε
Cwdt +

1

ε1/2
φdW ,

I The generator:

Lεϕ(u,w) = 〈Au + b(u, u),Duϕ(u,w)〉+
1

ε1/2
〈b(w , u),Duϕ(u,w)〉

+
1

ε
〈Cw ,Dwϕ(u,w)〉+

1

2ε
Tr(φ2D2

wwϕ(u,w)).
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Perturbed test function method


∂tu = Au + b(u, u) +

1

ε1/2
b(w , u),

dw =
1

ε
Cwdt +

1

ε1/2
φdW ,

I The generator:

Lεϕ(u,w) = 〈Au + b(u, u),Duϕ(u,w)〉+
1

ε1/2
〈b(w , u),Duϕ(u,w)〉

+
1

ε
Lwϕ(u,w)

where

Lwϕ(u,w) = 〈Cw ,Dwϕ(u,w)〉+
1

2
Tr(φ2D2

wwϕ(u,w)).

I Use correctors: ϕε(u,w) = ϕ(u) + ε1/2ϕ1(u,w) + εϕ2(u,w)

 ϕ1(u,w) = (Duϕ(u), b((−C )−1w , u)).



Perturbed test function method
∂tu = Au + b(u, u) +

1

ε1/2
b(w , u),

dw =
1

ε
Cwdt +

1

ε1/2
φdW ,

I ϕε(u,w) = ϕ(u) + ε1/2ϕ1(u,w) + εϕ2(u,w)

Lεϕε(u,w) = 〈Au + b(u, u),Duϕε(u,w)〉+
1

ε1/2
〈b(w , u),Duϕε(u,w)〉

+
1

ε
Lwϕε(u,w)

= 〈Au + b(u, u),Duϕε(u,w)〉

+

∫
H

〈
Duϕ(u), b((−C )−1y , b(y , u))

〉
dν(y)

+

∫
H

〈
D2
uuϕ(u) · b(y , u), b((−C )−1y , u)

〉
dν(y)

+O(ε1/2)

= L0ϕ(u) + O(ε1/2).

 du = Au + b(u, u) + bo((−C )−1φdW , u).



The proof
I Take ϕ(u) = (u, h) and apply Ito formula to ϕε(u,w):

ϕ(uεt ) = ϕ(u0) +

∫ t

0
L0ϕ(uεs)ds +

∫ t

0
〈b((−C )−1Q1/2dWs , u

ε
s), h〉

+ ε1/2 (ϕ1(u0,w0)− ϕ1(uεt ,w
ε
t )) + ε (ϕ2(u0, 0)− ϕ2(uεt ,w

ε
t ))

+ ε1/2

∫ t

0
Φ1(uεs ,w

ε
s ,w

ε
s )ds + ε

∫ t

0
Φ2(uεs ,w

ε
s )ds

+ ε1/2

∫ t

0
〈Dwϕ2(uεs ,w

ε
s ),Q1/2dWs〉,

where

Φ1(u,w ,w) = 〈Au + b(u, u),Duϕ1(w)〉+ 〈b(u,w),Dwϕ1(u)〉
+ 〈b(w , u),Duϕ2(w)〉,

Φ2(u,w) = 〈Au + b(u, u),Duϕ2(w)〉.
I The control of the various remaining terms is delicate due to

A and b. Recall that ϕ1(u,w) = (Duϕ(u), b((−C )−1w , u)).

We cannot take C = I , except when d = 2 on T2.
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The proof
I Take the test function ϕ(u) = (u, h):

ϕ(uεt ) = ϕ(u0) +
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I Prove tightness of (uε)ε>0 and take the limit for a
subsequence above.

I A limit point is a weak solution of the stochastic
Navier-Stokes equation.

I If pathwise uniqueness holds for the limit problem, the whole
sequence converge in probability.



The proof
I Take the test function ϕ(u) = (u, h):

ϕ(uεt ) = ϕ(u0) +

∫ t

0
L0ϕ(uεs)ds +

∫ t

0
〈b((−C )−1Q1/2dWs , u

ε
s), h〉

(1)

+ ε1/2 (ϕ1(u0,w0)− ϕ1(uεt ,w
ε
t )) + ε (ϕ2(u0, 0)− ϕ2(uεt ,w

ε
t ))

+ ε1/2

∫ t

0
Φ1(uεs ,w

ε
s ,w

ε
s )ds + ε

∫ t

0
Φ2(uεs ,w

ε
s )ds

+ ε1/2

∫ t

0
〈Dwϕ2(uεs ,w

ε
s ),Q1/2dWs〉,

I Prove tightness of (uε)ε>0 and take the limit for a
subsequence above.

I A limit point is a weak solution of the stochastic
Navier-Stokes equation.

I If pathwise uniqueness holds for the limit problem, the whole
sequence converge in probability.



The full problem{
∂tu = Au + b(u + v , u),

dv = ε−1(εAv + Cv)dt + b(u + v , v)dt + ε−1φdW .

I Split v = r + ε1/2w :
∂tu = Au + b(u + ε−1/2w + r , u),

dw = ε−1(εAw + Cw)dt + ε−1/2φdW ,

∂tr = ε−1(εAr + Cr)dt + b(u + ε−1/2w + r , ε−1/2w + r).

I An averaging phenomenon appears for r , we expect that it
converges to

r̄ = (−C )−1

∫
H
b(w ,w)dν(w).

I This is a Ito-Stokes drift.



Assumptions

I Tr(−C )−1φ2 <∞.

I There exists Γ ≥ γ > 1/4 such that for s ∈ R, β > 0:

|x‖2
Hs+βγ . ‖(−C )β/2x‖2

Hs . ‖x‖2
Hs+βΓ .

I ν = N (0, 1
2 (−C )−1φ2). It is supported by Hs0 for some s0

depending on d , Γ: ∫
H
‖w‖2

Hs0ν(dw) <∞.

I C and φ commute.



Theorem
Let u0, v0 ∈ H be given. For ε > 0 there exists a weak solution

to: {
∂tu = Au + b(u + v , u),

dv = ε−1(εAv + Cv)dt + b(u + v , v)dt + ε−1φdW .

with initial data u0, v0 which is uniformly bounded in(
L∞(Ω,C ([0,T ],H)∩L2([0,T ],H1))

)
×
(
L2(Ω,C ([0,T ],H)∩L2([0,T ],H1))

)

The laws of (uε)ε>0 are tight in L2(0,T ,H) ∩ C ([0,T ],H−β) for
β > 0 and every limit point is a weak solution of

du = Au + b(u + r̄ , u) + bo((−C )−1φdW , u).

For d = 2, the solutions are probabilistically strong and
convergence holds in probability.
Moreover on the torus, if u0 ∈ (H1(T2))2, we can take C = I ,



I Similar ideas are used in a recent work of J. Garnier and L.
Mertz for finite dimensional SDEs and in the context of the
limit from stochastic Zakharov to stochastic Nonlinear
Schrödinger equation by A. de Bouard, A.D. and G. Barrué.

I In finite dimension, it is possible to obtain an order of
convergence. In our case, it requires a lot of smoothness.

I The model obtained by E. Mémin also contains an additive
noise which we do not capture here. This would be captured
by the system:{
∂tu = A(u + v) + b(u + v , u) + φ̃dW̃ ,

dv = ε−1(εA(u + v) + Cv)dt + b(u + v , v)dt + ε−1φdW .

I Another difference is that the divergence of the velocity is not
zero in Mémin’s model.



I Similar ideas are used in a recent work of J. Garnier and L.
Mertz for finite dimensional SDEs and in the context of the
limit from stochastic Zakharov to stochastic Nonlinear
Schrödinger equation by A. de Bouard, A.D. and G. Barrué.
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Vanishing noise
Following ideas of F. Flandoli and D. Luo we consider:{

∂tu = Au + b(u + v , u),

dv = ε−1(εAv + Cv)dt + b(u + v , v)dt + ε−1φNdW .

and assume that the noise in the limit equation vanishes:

lim
n→∞

∑
k

‖φnek‖2
H−1−2γ = 0.

I If we let N →∞ first and then ε→ 0, we obtain the
deterministic Navier-Stokes equation. No trace of the high
scale v at the limit.

I If first ε→ 0 and then N →∞, it may happen that the noise
disappears but not the Stratonovitch corrections

κN(u) =
∑
k∈N

qN,k
2λ2

k

b(ek , b(ek , u))

I It is easy to check that κ is symmetric and∑
k∈N

qN,k
2λ2

k

〈b(ek , b(ek , u)), u〉 = −
∑
k∈N

qN,k
2λ2

k

‖b(ek , u)‖2
H .
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Vanishing noise

Theorem Let φN satisfy the assumptions of the previous result
and κN is continuous from Hσ0 to H for some σ0, and
κN(u)→ κ(u) in H as N →∞ for u ∈ Hσ0 . Finally, assume

lim
N→∞

∑
k∈N
‖Q1/2

N ek‖2
H−1−2γ = 0.

Then {uε,N}ε>0,N∈N are tight in L2([0,T ],H) ∩ C ([0,T ],H−β),
and every weak accumulation point u as ε→ 0 and N →∞ is a
weak solution of

∂tu = Au + b(u, u) + κ(u).

If u0 ∈ H1 and 〈κ(u), u〉 ≤ −κ0‖u‖2
H1 for every u ∈ H1 for some

κ0 sufficiently large (depending on u0, T ). Then u is the unique
strong solution on [0,T ], and the whole sequence {uε,N}ε>0,N∈N
converges to u as ε→ 0 and N →∞.



Vanishing noise

I For any α > 0, it is possible to construct an example of noise
such that

κ(u) = α∆u

(from F. Flandoli and D. Luo)

I We can choose ε = εN . The same result holds under the
condition:

ε
δ

2(1−γ)

N Tr((−A)θ0/2(−C)−1Q
1/2
N )→ 0,

for some δ ∈ (0, γ − 1/4).

I With the noise constructed by Flandoli and Luo, this amounts
to:

εNN
β → 0

for some β > 0.



2D Surface Quasi-Geostrophic equations
In vorticity form on T2:

dξεt = −
(

(−ν∆)1/2ξεt + uεt · ∇ξεt +
1

ε1/2
y εt · ∇ξεt

)
dt,

dηεt =

(
1

ε
Cηεt + (−ν∆)1/2ηεt − (uεt · ∇)ηεt −

1

ε1/2
(y εt · ∇)ηεt

)
dt

+
1

ε1/2
dWt ,

uεt = −∇⊥(−∆)−1/2ξεt ,

y εt = −∇⊥(−∆)−1/2ηεt ,

I H = L2
0(T2), Au = (−ν∆)1/2, b(ξ, η) = ∇⊥(−∆)−1/2ξ · ∇η.

I We obtain convergence to:

dξt = Aξtdt + b(ξt , ξt)dt + b((−C )−1Q1/2 ◦ dWt , ξt) + b(r , ξt)dt

with r =

∫
(−C )−1b(w ,w)dµ(w).



The primitive equations



duεt = ν∆uεtdt − (uεt · ∇x)uεtdt − v εt ∂zu
ε
tdt

−ε−1/2(y εt · ∇x)uεtdt − ε−1/2w ε
t ∂zu

ε
tdt +∇xp

ε
tdt,

dy εt = ε−1Cy εt dt + ν∆y εt dt − (uεt · ∇x)y εt dt − v εt ∂zy
ε
t dt

−ε−1/2(y εt · ∇x)y εt dt − ε−1/2w ε
t ∂zy

ε
t dt + ε−1/2dWt +∇xq

ε
tdt,

∂zp
ε
t = 0, ∂zq

ε
t = 0,

divxu
ε
t + ∂zv

ε
t = 0, divxy

ε
t + ∂zw

ε
t = 0,

We define:

H =

{
u ∈ [L2(Td)]d−1 :

∫
Td

u(x, z)dxdz = 0,

∫ 1

0
divxu(x, z)dz = 0

}
.

and with v(x, z) = −
∫ z

0
divxut(x, z

′)dz ′:

(Πu)(x, z) = u(x, z)−
∫ 1

0
u(x, z ′)dz ,′ Au = ν∆u,

b(u, u′) = −Π(u · ∇x)u′ − Πv∂zu
′, Q1/2W = ΠW,



We prove convergence to

dut = Autdt + b(ut , ut)dt + b((−C )−1Q1/2 ◦ dWt , ut) + b(r , ut)dt

= ν∆utdt − Π(ut · ∇x)utdt − Πvt∂zutdt

− Π((−C )−1Q1/2 ◦ dWt · ∇x)ut − Πdwt∂zutdt

− Π(r · ∇x)utdt − Πq∂zutdt,

with the Ito-Stokes drift r =
∫

(−C )−1b(w ,w)dµ(w) and where
v ,w , q are defined implicitly by the incompressibility conditions

divxut + ∂zvt = 0, divx(−C )−1Q1/2Wt + ∂zwt = 0, divxr + ∂zq = 0.

We need stronger assumptions on C .


