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I - INTRODUCTION
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Modeling

X1,...,Xy particles in a trapping potential V/, two-body
interactions

A= i( ij+\/xj) Z U(x; — xk)

j=1 <j,k<N

Ground state : minimum of energy corresponding to H for the
wave function ¥(x1, ..., xn).

For small T, thermal wavelength

h

G —
T (2rmkg T)12

larger than particle distance
~> take into account statistical properties of the particles



~> replace interaction potential by

Arh?a

Ueff(X) = 50(X)

a : atomic diffusion length (positive or negative)

Boson gaz : (Hartree approximation)

N

@(tvxla s 7XN) = Hlj(tvxj)
j=1

Moreover, large number of particles ~ rescaling

Gross- Pitaevskii (1961, superfluids)

f2 4 h2
O(E0) = — 8+ Vg + T2

%) == Lept)

V : confining potential



Non zero temperature

Aim : modeling of condensates close to critical T (phase
transition) Weiler et al., Nature, 2008

~» need modeling of interactions with non condensed atoms, here
assumed “thermalized”

Duine, Stoof, 2001 ;

7n2A2
2m

Gardiner Davis, 2003

Excitation energy

Position

From Blackie et. al., Adv. Physics 2008



Stochastic projected GPE

1) : wave function for the condensed atoms

f2
Lop = —5— A+ V(x) + gli(t, %)
where m is the atomic mass, g = 4”h =
s-wave scattering length. Then

and a the (positive)

dy = Pc[ 7 LGpg)dt + ﬁ( — LGP)/I/)dt + dWA’,(l}X)}

where p is the chemical potential, and P. is a spectral cut-off
(low energy modes)

(dW (£, x)dW, (t', X)) = 27d(t — t')d(x — x")dt

Additional terms : interaction thermal cloud—condensate



Infinite dimensional model

A = (i =) | AV = utp + [026] dt + /27w

W(t, x) is the wave function; v > 0; W is a cylindrical Wiener
process : (hn)pene real valued c.o.s. of L?(RY) s.t.

Ahp = (=D + [x|°)hy = Aphn,  An=2|n|+d, neN?
then W may be written as

W(t,x)= > Ba(t)ha(x)

neNd

with (/n)n sequence of independent complex valued BM.

1 1 1
H() = 5|Vl + Slxvlt — SlvlEe + 1wl



IT - LOCAL/GLOBAL EXISTENCE OF SOLUTIONS



d = (i — ) [Az/J — i+ y«uy\%} dt + \/2vdW

Let Z be the stochastic convolution

2(t) = f/ MDAy (s)
- ZF/ iP5, (5)h,

neNd
gn

neNd

with (gn)n i.i.d. N(0,1¢); Z is the stationary solution of the linear
equation (without interaction term); then if ) = v + Z, v solves

Opv = (i = N[AV — (v + 2) + |v + Z*(v + 2)]



Cased =1

Proposition (Burg, Thomann, Tzvetkov, 2013) : For any p > 2,
Z € LP(R) a.s. More precisely,

E(|Z(t)|},) < Cp, forall p>2.
Remark :
> Use of |hi],e < CoA, """ for all p > 2, with 6(p) > 0
» May actually prove for p > 4 : for any s < %, and a < % -3,
Z € C¥([o, T]; W*P(R));

where
W*P(R) = {v, A*?v € LP(R)}.

Consequence : Let p > 3, and v(0) € LP, then there is a unique

local solution a.s. in C([0, T*); LP(R)) .

Estimates on the semi-group e('""At thanks to Mehler transform
and estimates on the GL semi-group Ginibre, Velo, 1997



Case d =2

Proposition : Z € W™>9 a.s,, for any g > 2 and sq > 2, but
P(Z € L9) =0 for any q.

Consequence :

» need renormalization (Wick products) based on the family
(hn)s to define polynomial terms in Z (theory is well known
for the torus T2, Nualart, Da Prato-Tubaro, ...) ~ need
generalization adapted to the family (h,), of hermite functions

» need to define the products v : Z¥ : and |v|?Z...

» need refined estimates on the corresponding linear semi-group
e(’._A/')tA



Case d = 2, renormalization

» Albeverio-Rockner, Da Prato-Tubaro, Gatarek-Goldys, ~'90 :
stochastic quantization (weak solutions)

» Da Prato-Debussche (2002-2003) : strong solutions : 2-D
stochastic Navier Stokes, ‘219‘21

» Mourrat-Weber (2017) : global well-posedness for ®4 on the
plane

» Tsatsoulis-Weber (2018) : spectral gap for ®3, irreducibility,...

» Trenberth (2019), Matsuda (2020) : stochastic complex GL
on 2-D torus, strong Feller property

» Hoshino (2018) : stochastic complex GL on 3-D torus



Case d = 2, Wick products

It6-Wiener decomposition : [*(Q, G, P) = EB Hy, were G is
generated by &, Gaussian white noise on L?(R?) and

Hi = span{Hk((&, hn);2), n € N},

where Hy Hermite polynomial of degree k.

Now if
(S82))= Y. Aenha(x)
neN2 |n|<N
and ,
hs(x
A= > B
neN2 |n|<N
we obtain

- (Swz(:)) 1= Pra,(Su2) = pu(x) VATH, (228)).

Example : : (Syz(x))3 := (Snz)3(x) — 3p3,(x)(Snz)(x).



Note that : py diverges (in any LP space) as N goes to infinity

Nelson inequality (moment estimates of random variables in Hy)
allows to get

B (Sn2)" : [y va) S 1A-2(SuK) ()7

where

K(xy)=>_ Alnhn(x)hn(y)

n

is the kernel of A~L. It turns out that for any r > 2, and any k,
KKe LLWe? forall o < 1—2/r.

Prop : For any power k, the sequence (: (SyZ)¥ :)nen is Cauchy
in L9(Q; W—9(R?)), for ¢ > 2, s > 0 and sq > 2.



Case d = 2 : estimates on the semigroup
Aim : Run a fixed point argument on the mild equation
W(t) = ey - 2(0))
+(i =) /(;t eU=ME=DA 1y 4 Z2(v + Z) : dr

~~ need estimates on the semigroup e~ (= for positive v ; let
forT>0,8,s>0 p,g>1,

Er = C([0, TEW™=9) N L(0, T; W)

Note we need g large (s small), but constrained on p

Prop : Let y>0, 8,s>0, g>p>2and assume 1 — & (1 _1y~9;

then

)e(ifﬂ,)tA

< Crllw-—sa

Er



Case d = 2 : local existence

Prop : Let g>p>2,0<s<B8<2/p, assume 8—s—(2/p— ) >0 and
s+2/p—B<2(1—-1/q); then for any f, g, if a =s+2(2/p—9)

‘hg2|W*~-q < C\h\W*S‘q‘g\%/vﬂ.p

Moreover, for any f,
t -
’ / el=NE=NAL (1) d 7 - Cr TN |30, 1w -0
Jo T

provided 1/r — (8+5s)/2—(1/p—1/q)>0and §:=1—(2/p—B) —3/r > 0.

Conclusion : Choosing g large enough, p close to 2, 5 close to
2/p and s sufficiently small, we get local existence of a unique
solution in £, for small T ; can improve the result : for

Yo = vo + Z(0) with vg € L9(R?), then get local existence with v
in C(0, T; LY(R?)).



Global existence (large dissipation)

Oev = (i = 7)[Av + O(v, (: Z¥ )1<k<3)]

with ©(v, (: Z¥ )1<k<3) =1 |v+ Z|(v+ Z) : and p = O for
simplicity.

Prop : Let v > 7(q),with g as before, then

d -
SO+ 3Vl < (01 26 )

for some positive § = 4(y, g) with C depending only on 7, g.

Conclusion : Global existence en C(R*; L9(R?)) if v > v(q) and
vo € L9. Smoothing properties of the semi-group ~ global
existence in C(RT; W==9) if vy € W~=9. Same is true in 1-D (no
need of Wick products).



Global existence (small dissipation)

Previous estimate still true in L% for small v, provided gg > 2
close to 2.

Strategy :

» Starting from up € W59, prove u(ty) € L%, go > 2 close to
2 as soon as tyg > 0 ~~» bound in L9

» Prove then that u(t) bounded in W?P, o > 0 (small), p > 2
close to 2 (smoothing of the semi-group)

» boostrap argument (T. Matsuda) : upgrade regularity from
o0>0too <1close to 1

> Finaly get bound in W9 large g by Sobolev embeddings

~ global existence in W ™29 for any dissipation



III - EXISTENCE OF INVARIANT MEASURES



Gibbs measures

Constructive quantum field theory (N-body problem)
Simon, Lieb, ..., '60
Mean field limits for Gibbs measures Lewin, Pham, Rougerie, 2018

Leibowitz, Rose, Speer, 1988, Bourgain, 1994 : Gibbs measures
and global existence for dispersive equations (Hamiltonian
systems) ; lots of results since then Burq, Gerard, Tzvetkov,
Colliander, Oh, Bourgain, Bulut,...

Here :
dip = JVH(¢) —yVH(Y) 4+ /2vdW

with J = (% ), and Cis identified with R?; note that JVH is
a Hamiltonian operator, with

11 o1
H(W) = SIVelE + 5 Ixlt — ulvlE + 1011



The generator £ of the transition semi-group P; associated with
the previous equation has the form

L)) = 7 TrD*d(¥) —y(VO(¥), VH())
+(Vo(y), JVH(Y))

with (-, -) the inner product in L?>(RY,C) i.e.

(u,v) =R [ u(x)v(x)dx
Rd

Then formally, if
v(dyp) = z7t e HW) gy,

for some normalizing coefficient z, one may compute for any
bounded continuous function ® on the state space E :

; / (LO) () (di) = 0
JE

so that £L*v = 0, v is (formally) invariant for P, even for v =0



Interpretation and support of v : the case d =1
Burg, Thoman, Tzvetkov, 2013 : rigorous definition of the Gibbs
measure v and invariance for the Hamiltonian flow (d = 1)

Note that ]
/ o/ K2 24
(0, A9) — 1l + 31l

N —

H(p) =

with, as before, Ai) = —Av + x%¢) with eigenvalues \, = 2n+1,
and eigenfunctions h,,, and ih, (Hermite functions);

Hence, we may formally write :

v(dy) = z7te HWgy
= 271 97711"“‘14 e‘%(&ﬁ’@)-‘-%\w\iz dw
If < Ag =1, then the last term is a Gaussian measure, with

support in LP(R), for any p > 2



Case d =2

Remark : Gaussian measure has support in W=9, g > 2, sq > 2;
moreover, (1,: [1|* :) not well defined for 1) € W =59 ~~ no hope
to use a duality argument (Da Prato, Debusshe, ¢‘2*, 2003)

However : Galerkin approximation of the purely dissipative
equation (¢Yn = Sy) :

dip = —y| Ay + Spy(: \'z;LvN\ZubN )} dt + /2yMNydW

in Ey = span{hy,---, hy}, has a (unique) invariant Gibbs

measure
vn(dy) = Tye Hvn) gy

with

R2

1 1 1
Hn(v) = 5‘V’l/)|%2 + E‘X’l/)‘iQ t3 / ||t dx



Alternatively :

dev = J/[AHSN(; vy + Zul(vw + Zn) )
47 = —~yAZdt+ /2y NydW

has an invariant measure 11y (Krylov-Bogolyubov) on Ey X Ep
with

/;N Plxvn(d) = / ¢(u+ z)un(du, dz)

ENXEN

thanks to uniqueness of vy.
Question : tightness of (vy) (or (1n))?

Unfortunately : L9-estimate not valid for Galerkin approximations
(due to Sy)



However : another estimate for vy :

3

d A~/

a]v/\,(t)ﬁg + éyAl/%N(t)\fz <CY [ SnZF .,
k=1

(interpolation, Sobolev embeddings...) Now, if vy is stationary,
then integrating in time between 0 and 1, and taking expectations
implies

E(JAY2wn(t)]72) < C.

Conclusion : Bound on vy (indep. of N) in W12 c L9 c W9
for s’ > 0. Since Zy is bounded in W59 with s'q > 2, we deduce
that (1) is tight in W59, for s > s’

Thm : Up to a subsequence, (vy) has a weak limit , which is an
invariant measure for P, for any v > 0.



Conclusion and open problems

Cased=1":

» Strong Feller property (v > 0) and irreducibilty of P; ~~
ergodicity of v

» Cvgence to equilibrium (exponential mixing) in L?(v) with

rate y(Ao — p) (Poincaré inequality)

Cased=2:

> Irreducibility not so clear : need information on the support of
Ps with Z = (Z,: Z%:: Z3 ) in (W_s4)>.

> Uniqueness of v 7?
» Singularity of v w.r. to Gaussian measure ?

> Invariance for y =07
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