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I - Introduction



Modeling

x1, . . . , xN particles in a trapping potential V , two-body
interactions

Ĥ =
N∑

j=1

(
− ~2

2m
∆xj + V (xj )

)
+

∑
1≤j ,k≤N

U(xj − xk )

Ground state : minimum of energy corresponding to Ĥ for the
wave function ψ̃(x1, . . . , xN).

For small T , thermal wavelength

λT =
~

(2πmkBT )1/2

larger than particle distance
 take into account statistical properties of the particles



 replace interaction potential by

Ueff (x) =
4π~2a

m
δ0(x)

a : atomic diffusion length (positive or negative)

Boson gaz : (Hartree approximation)

ψ̃(t, x1, . . . , xN) =
N∏

j=1

ψ(t, xj )

Moreover, large number of particles  rescaling

Gross- Pitaevskii (1961, superfluids)

i~∂tψ(t, x) = − ~2

2m
∆ψ + V (x)ψ +

4π~2a

m
|ψ|2ψ := LGPψ

V : confining potential



Non zero temperature

Aim : modeling of condensates close to critical T (phase
transition) Weiler et al., Nature, 2008

 need modeling of interactions with non condensed atoms, here
assumed “thermalized”

Duine, Stoof, 2001 ;

Gardiner Davis, 2003
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Figure 1. Schematic view of the condensate band, the non-condensate band and eliminated states
for a harmonic trap.

The function P! plays the role of a kind of coarse-grained delta function; however, it is also a
projector into the subspace of non-eliminated modes. Using the commutation relation (9) the
Heisenberg equation of motion for the field operator takes the form

ih̄
∂ψ(x)

∂ t
=

∫
d3x′ P!(x − x′)

{
− h̄2

2m
∇2ψ(x′) + V (x′) + uψ†(x′)ψ(x′)ψ(x′)

}
. (10)

In practical computations a momentum cut-off is selected by the spatial grid used, and on this
scale P! appears like a delta function.

When all of the conditions (1)–(4) are satisfied, this Hamiltonian is well defined and the
Born series is both convergent and accurate at first order.

2.2. Condensate and non-condensate bands

We now divide the states of the system into a condensate band RC and a non-condensate
band RNC and perform a corresponding resolution of the field operator in the form

ψ(x) = φ(x) + ψNC(x). (11)

We will describe RC fully quantum mechanically, while RNC will be taken as being essentially
thermalized. The cut between RC and RNC is set in terms of the single-particle energy ER, which
is such that particles with higher energy than this can be considered to be fully thermalized
with very little effect on their energies from the condensate band.

We want to make clear at this stage that ER ≪ h̄2!2/2m and thus the division into
condensate and non-condensate bands is quite independent of the cut at the wavenumber
! treated in the previous section. This is essentially the procedure followed in our work
on the finite temperature Gross–Pitaevskii equation (FTGPE) [15–17] with the use of the
contact potential approximationU0δ(x) in the spatial representation of the equations of motion.
However, in [15] the FTGPE in basis notation is written in terms of the full interatomic potential
and section 5.2 of [15] illustrates how certain terms can upgraded to a T -matrix description
that is well approximated by a contact potential. The point of view adopted in this paper is
consistent with our use of the delta function potential in quantum kinetic theory [21–23].

From Blackie et. al., Adv. Physics 2008



Stochastic projected GPE

ψ : wave function for the condensed atoms

LGP = − ~2

2m
∆ + V (x) + g |ψ(t, x)|2

where m is the atomic mass, g = 4π~2a
m and a the (positive)

s-wave scattering length. Then

dψ = Pc

[
− i

~
LGPψdt +

γ

kBT
(µ− LGP)ψdt + dWγ(t, x)

]
where µ is the chemical potential, and Pc is a spectral cut-off

(low energy modes)

〈dW ∗
γ (t, x)dWγ(t ′, x ′)〉 = 2γδ(t − t ′)δ(x − x ′)dt

Additional terms : interaction thermal cloud–condensate



Infinite dimensional model

dψ = (i − γ)
[
Aψ − µψ + |ψ|2ψ

]
dt +

√
2γdW

ψ(t, x) is the wave function ; γ > 0 ; W is a cylindrical Wiener
process : (hn)n∈Nd real valued c.o.s. of L2(Rd ) s.t.

Ahn := (−∆ + |x |2)hn = λnhn, λn = 2|n|+ d , n ∈ Nd

then W may be written as

W (t, x) =
∑

n∈Nd

βn(t)hn(x)

with (βn)n sequence of independent complex valued BM.

H(ψ) =
1

2
|∇ψ|2L2 +

1

2
|xψ|2L2 −

µ

2
|ψ|2L2 +

1

4
|ψ|4L4 .



II - Local/global existence of solutions



dψ = (i − γ)
[
Aψ − µψ + |ψ|2ψ

]
dt +

√
2γdW

Let Z be the stochastic convolution

Z (t) =
√

2γ

∫ t

−∞
e(i−γ)(t−s)AdW (s)

=
∑

n∈Nd

√
2γ

∫ t

−∞
e(i−γ)(t−s)λndβn(s)hn

=
∑

n∈Nd

gn(t)√
λn

hn

with (gn)n i.i.d. N (0, 1C) ; Z is the stationary solution of the linear
equation (without interaction term) ; then if ψ = v + Z , v solves

∂tv = (i − γ)[Av − µ(v + Z ) + |v + Z |2(v + Z )]



Case d = 1

Proposition (Burq, Thomann, Tzvetkov, 2013) : For any p > 2,
Z ∈ Lp(R) a.s. More precisely,

E(|Z (t)|pLp ) ≤ Cp, for all p > 2.

Remark :
I Use of |hk |Lp

x
≤ Cpλ

−θ(p)/12
k for all p > 2, with θ(p) > 0

I May actually prove for p ≥ 4 : for any s < 1
6 , and α < 1

12 − s
2 ,

Z ∈ Cα([0,T ];W s,p(R));

where
W s,p(R) = {v , As/2v ∈ Lp(R)}.

Consequence : Let p ≥ 3, and v(0) ∈ Lp, then there is a unique
local solution a.s. in C ([0,T ∗); Lp(R)) .

Estimates on the semi-group e(i−γ)At thanks to Mehler transform
and estimates on the GL semi-group Ginibre, Velo, 1997



Case d = 2

Proposition : Z ∈W−s,q a.s., for any q ≥ 2 and sq > 2, but
P(Z ∈ Lq) = 0 for any q.

Consequence :

I need renormalization (Wick products) based on the family
(hn)n to define polynomial terms in Z (theory is well known
for the torus T2, Nualart, Da Prato-Tubaro, ...)  need
generalization adapted to the family (hn)n of hermite functions

I need to define the products v : Z k : and |v |2Z ...

I need refined estimates on the corresponding linear semi-group
e(i−γ)tA



Case d = 2, renormalization

I Albeverio-Röckner, Da Prato-Tubaro, Gatarek-Goldys, ∼’90 :
stochastic quantization (weak solutions)

I Da Prato-Debussche (2002-2003) : strong solutions : 2-D
stochastic Navier Stokes, Φ4

2

I Mourrat-Weber (2017) : global well-posedness for Φ4
2 on the

plane

I Tsatsoulis-Weber (2018) : spectral gap for Φ4
2, irreducibility,...

I Trenberth (2019), Matsuda (2020) : stochastic complex GL
on 2-D torus, strong Feller property

I Hoshino (2018) : stochastic complex GL on 3-D torus



Case d = 2, Wick products

Itô-Wiener decomposition : L2(Ω,G,P) =
⊕+∞

k=0Hk , were G is
generated by ξ, Gaussian white noise on L2(R2) and

Hk = span{Hk ((ξ, hn)L2), n ∈ N},

where Hk Hermite polynomial of degree k.

Now if
(SNZ )(x) =

∑
n∈N2,|n|≤N

1√
λn
gnhn(x)

and
ρ2

N(x) =
∑

n∈N2,|n|≤N

h2
n(x)
λn

,

we obtain

: (SNz(x))k := PHk
(SNz)k = ρN(x)k

√
k!Hk

(SN z(x)
ρN (x)

)
.

Example : : (SNz(x))3 := (SNz)3(x)− 3ρ2
N(x)(SNz)(x).



Note that : ρN diverges (in any Lp space) as N goes to infinity

Nelson inequality (moment estimates of random variables in Hk )
allows to get

E(| : (SNz)k : |q
W−s,q ) . |A−s/2(SNK )k (·, ·)|

q
2

L
q
2 (∆)

where

K (x , y) =
∑

n

1

λn
hn(x)hn(y)

is the kernel of A−1. It turns out that for any r ≥ 2, and any k,
K k ∈ Lr

xW
α,2
y , for all α < 1− 2/r .

Prop : For any power k , the sequence (: (SNZ )k :)N∈N is Cauchy
in Lq(Ω;W−s,q(R2)), for q > 2, s > 0 and sq > 2.



Case d = 2 : estimates on the semigroup

Aim : Run a fixed point argument on the mild equation

v(t) = e(i−γ)tA(ψ0 − Z (0))

+(i − γ)

∫ t

0
e(i−γ)(t−τ)A : |v + Z |2(v + Z ) : dτ

 need estimates on the semigroup e−(i−γ)tA for positive γ ; let
for T > 0, β, s > 0, p, q ≥ 1,

ET = C ([0,T ];W−s,q) ∩ Lr (0,T ;W β,p)

Note we need q large (s small), but constrained on p

Prop : Let γ > 0, β, s > 0, q > p > 2 and assume 1
r
− β+s

2
− ( 1

p
− 1

q
) > 0 ;

then ∣∣∣e(i−γ)tAψ
∣∣∣
ET

≤ CT |ψ|W−s,q



Case d = 2 : local existence

Prop : Let q > p > 2, 0 < s < β < 2/p, assume β − s − (2/p − β) > 0 and
s + 2/p − β < 2(1− 1/q) ; then for any f , g , if α = s + 2(2/p − β)

|hg2|W−α,q ≤ C |h|W−s,q |g |2W β,p

Moreover, for any f ,∣∣∣ ∫ t

0
e(i−γ)(t−τ)Af (τ)dτ

∣∣∣
ET

≤ CTT δ|f |Lr/3(0,T ;W−α,q)

provided 1/r − (β + s)/2− (1/p − 1/q) > 0 and δ := 1− (2/p − β)− 3/r > 0.

Conclusion : Choosing q large enough, p close to 2, β close to
2/p and s sufficiently small, we get local existence of a unique
solution in ET , for small T ; can improve the result : for
ψ0 = v0 + Z (0) with v0 ∈ Lq(R2), then get local existence with v
in C (0,T ; Lq(R2)).



Global existence (large dissipation)

∂tv = (i − γ)[Av + Θ(v , (: Z k :)1≤k≤3)]

with Θ(v , (: Z k :)1≤k≤3) =: |v + Z |(v + Z ) : and µ = 0 for
simplicity.

Prop : Let γ > γ(q),with q as before, then

d

dt
|v(t)|qLq + δ|v(t)|qLq ≤ C

(∑3
k=1 | : Z k

N : |γk

W−s,q

)
for some positive δ = δ(γ, q) with C depending only on γ, q.

Conclusion : Global existence en C (R+; Lq(R2)) if γ > γ(q) and
v0 ∈ Lq. Smoothing properties of the semi-group  global
existence in C (R+;W−s,q) if v0 ∈W−s,q. Same is true in 1-D (no
need of Wick products).



Global existence (small dissipation)

Previous estimate still true in Lq0 for small γ, provided q0 > 2
close to 2.

Strategy :

I Starting from u0 ∈W−s,q, prove u(t0) ∈ Lq0 , q0 > 2 close to
2 as soon as t0 > 0  bound in Lq0

I Prove then that u(t) bounded in W σ,p, σ > 0 (small), p > 2
close to 2 (smoothing of the semi-group)

I boostrap argument (T. Matsuda) : upgrade regularity from
σ > 0 to σ < 1 close to 1

I Finaly get bound in W−s,q, large q by Sobolev embeddings

 global existence in W−s,q for any dissipation



III - Existence of invariant measures



Gibbs measures

Constructive quantum field theory (N-body problem)
Simon, Lieb, ..., ’60
Mean field limits for Gibbs measures Lewin, Pham, Rougerie, 2018

Leibowitz, Rose, Speer, 1988, Bourgain, 1994 : Gibbs measures
and global existence for dispersive equations (Hamiltonian
systems) ; lots of results since then Burq, Gerard, Tzvetkov,
Colliander, Oh, Bourgain, Bulut,...

Here :
dψ = J∇H(ψ)− γ∇H(ψ) +

√
2γdW

with J =
(

0 1
−1 0

)
, and C is identified with R2 ; note that J∇H is

a Hamiltonian operator, with

H(ψ) =
1

2
|∇ψ|2L2 +

1

2
|xψ|2L2 − µ|ψ|2L2 +

1

4
|ψ|4L4 .



The generator L of the transition semi-group Pt associated with
the previous equation has the form

L(Φ)(ψ) = γ TrD2Φ(ψ)− γ〈∇Φ(ψ),∇H(ψ)〉
+〈∇Φ(ψ), J∇H(ψ)〉

with 〈·, ·〉 the inner product in L2(Rd ,C) i.e.

〈u, v〉 = <
∫
Rd

u(x)v̄(x)dx

Then formally, if

ν(dψ) = z−1 e−H(ψ)dψ,

for some normalizing coefficient z , one may compute for any
bounded continuous function Φ on the state space E :

z

∫
E

(LΦ)(ψ)ν(dψ) = 0

so that L∗ν = 0, ν is (formally) invariant for Pt , even for γ = 0



Interpretation and support of ν : the case d = 1

Burq, Thoman, Tzvetkov, 2013 : rigorous definition of the Gibbs
measure ν and invariance for the Hamiltonian flow (d = 1)

Note that

H(ψ) =
1

2
〈ψ,Aψ〉 − µ

2
|ψ|2L2 +

1

4
|ψ|4L4 ,

with, as before, Aψ = −∆ψ + x2ψ with eigenvalues λn = 2n + 1,
and eigenfunctions hn, and ihn (Hermite functions) ;

Hence, we may formally write :

ν(dψ) = z−1 e−H(ψ)dψ

= z−1 e−
1
4
|ψ|4

L4 e−
1
2
〈ψ,Aψ〉+µ

2
|ψ|2

L2dψ

If µ < λ0 = 1, then the last term is a Gaussian measure, with
support in Lp(R), for any p > 2



Case d = 2

Remark : Gaussian measure has support in W−s,q, q ≥ 2, sq > 2 ;
moreover, 〈1, : |ψ|4 :〉 not well defined for ψ ∈W−s,q  no hope
to use a duality argument (Da Prato, Debusshe, Φ4

2, 2003)

However : Galerkin approximation of the purely dissipative
equation (ψN = SNψ) :

dψ = −γ
[
Aψ + SN(: |ψN |2ψN :)

]
dt +

√
2γΠNdW

in EN = span{h1, · · · , hN}, has a (unique) invariant Gibbs
measure

νN(dψ) = ΓNe
−HN (ψN )dψ

with

HN(ψ) =
1

2
|∇ψ|2L2 +

1

2
|xψ|2L2 +

1

4

∫
R2

: |ψ|4 : dx



Alternatively : ∂tv = −γ
[
Av + SN(: |vN + ZN |(vN + ZN) :)

]
dZ = −γAZ dt +

√
2γ ΠNdW

has an invariant measure µN (Krylov-Bogolyubov) on EN × EN

with ∫
EN

ϕ(x)νN(dx) =

∫
EN×EN

ϕ(u + z)µN(du, dz)

thanks to uniqueness of νN .

Question : tightness of (νN) (or (µN)) ?

Unfortunately : Lq-estimate not valid for Galerkin approximations
(due to SN)



However : another estimate for vN :

d

dt
|vN(t)|2L2 +

γ

2
|A1/2vN(t)|2L2 ≤ C

3∑
k=1

| : SNZ
k : |mk

W−s,q

(interpolation, Sobolev embeddings...) Now, if vN is stationary,
then integrating in time between 0 and 1, and taking expectations
implies

E(|A1/2vN(t)|2L2) ≤ C .

Conclusion : Bound on vN (indep. of N) in W 1,2 ⊂ Lq ⊂W−s′,q

for s ′ > 0. Since ZN is bounded in W−s′,q with s ′q > 2, we deduce
that (µN) is tight in W−s,q, for s > s ′.

Thm : Up to a subsequence, (νN) has a weak limit ν, which is an
invariant measure for Pt , for any γ > 0.



Conclusion and open problems

Case d = 1 :

I Strong Feller property (γ > 0) and irreducibilty of Pt  
ergodicity of ν

I Cvgence to equilibrium (exponential mixing) in L2(ν) with
rate γ(λ0 − µ) (Poincaré inequality)

Case d = 2 :

I Irreducibility not so clear : need information on the support of
PZ̄ with Z̄ = (Z , : Z 2 :, : Z 3 :) in (W−s,q)3.

I Uniqueness of ν ?

I Singularity of ν w.r. to Gaussian measure ?

I Invariance for γ = 0 ?
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