
Four Open Questions for the N-Body Problem

Richard Montgomery





Contents

1. Preface and book structure 7
2. Introduction 7

Part 1. Introduction 9

Chapter -1. A Tour of Solutions 11
1. Two bodies 11
2. Kepler 11
3. Three bodies 13
4. Four bodies 22
5. More. 24
6. Perturbation theory and a return to the Solar system. 25

Chapter 0. The Problem and its structures 31
1. The problem, its symmetries, and conservation laws. 31
2. Kepler and the two-body problem. 37
3. Metric structure, boundedness, center-of-mass, scaling 39
4. The Shape Sphere for three bodies. 46
5. Reduction and a shape sphere for more bodies 53
6. Limitations 55
7. Notes. 57

Part 2. Questions 59

Chapter 1. Is the Number of Central Configurations Finite? 61
1. Why care? 61
2. What’s known? 63
3. Central Configurations as Critical Points 65
4. Exploring the Motivations 69
5. Some words on the Hampton-Moeckel and Albouy-Kaloshin proofs 76
6. Relative equilibria in four dimensions 77
7. Other questions and projects 79
8. Historical notes. 80

Chapter 2. Are there any stable periodic orbits? 81
1. Really?! 81
2. What’s known? 81
3. Linear Stability 84
4. The Return Map and Reduction 87
5. KAM stability 88

3



4 CONTENTS

6. Resonance, twist and an oscillator model. 89
7. Arnol’d diffusion: dodging sticky torii. 91
8. Nekhoroshev Stability 92
9. Application to N bodies. Resonances and necessity of reduction. 93
10. Case Study: the Eight 94
11. More KAM stable celestial situations 97
12. Global Instability with Strong Force 98
13. More approachable Questions. 98
14. Notes. 99

Chapter 3. Is every braid realized? 101
1. Braiding bodies 101
2. Motivation: Variational methods. 106
3. What’s Known? 107
4. The Direct Method. Proofs and collision obstructions. 113
5. A ballet tour 123
6. Dynamical method. 124
7. N=3. Almost solved. 126
8. More questions. 127
9. Notes. 127
10. Exercises 130

Chapter 4. Does a Scattered Beam have a Dense Image? 131
1. Motivation. Rutherford and the discovery of nuclei 131
2. Scattering in the N-body problem. 133
3. What’s Known? 136
4. Building the Scattering Map. 138
5. More questions 142
6. Notes. 143

Part 3. Appendix 145

Appendix A. Geometric Mechanics 147
1. The Lagrangian and Hamiltonian Formalisms 147
2. Symplectic structure: the Hamiltonian side. 149
3. Variational structure: the Lagrangian side. 151
4. Poisson Bracket Formalism and Reduction 153
5. Reduction by the circle 156
6. Noether, Symmetries, and the Momentum map. 161
7. Symplectic Reduction 162
8. Notes 165

Appendix B. The direct method of the calculus of variations 167

Appendix C. Braids, Homotopy and Homology 173

Appendix D. The Jacobi-Maupertuis metric 175

Appendix E. One-degree of freedom and central scattering 181
1. Radial motion as a one-degree of freedom system 181
2. Scattering 184



CONTENTS 5

Part 4. Bibliography 189

Appendix F. Bibliography 191
1. Bibliography 192

Appendix. Bibliography 193

Index 199

Appendix. Index 199



6 CONTENTS

Dedication

This book is dedicated to the memory of Jerry Marsden for introducing me to
geometric mechanics, to Chris Golé for insisting that I must introduce myself to
Alains Albouy and Chenciner, and to my grandson Jude for his unending fascination
and joy at being an intermediary in the interactions of elastic spherical objects with
gravity and pavement.
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1. Preface and book structure
Probably turn this section
1. into a ‘Preface’ -RMWe’ve been working on the N-body problem for more than 330 years. You might

think we’d be done with it. But the problem remains very much alive. Substantial
results have been achieved in the last decade. New open questions continue to arise.
The purpose of this monograph is to illustrate the vibrancy of the classical N-body
problem through four open questions.

Each question gets a chapter. There I explain what the question is asking and
why it is important. I state known partial answers and take a shallow dive into
methods employed in making what progress has been made so far.

My favorite case of the N-body problem is the zero angular momentum planar
three-body problem. All of the questions but the first are open for this case. The
third has been solved for the three-body problem when the angular momentum is
ε, small but nonzero. The first is open for the planar 6-body problem.

This book was inspired by preparing for a talk at Vanderbilt after the collo-
quium chair emailed me the traditional warning research mathematicians seem to
need before giving such a talk: “Remember, this is a general audience talk.” I
wrote this book with colleagues in number theory and algebraic geometry in mind,
and with our stronger undergraduates in mind. I do not expect working knowledge
of introductory physics. I do expect proficiency in linear algebra, and the under-
standing of what a differential equation is. I began with this introductory chapter
to pose the N-body problem and some of the basic results surrounding it.

2. Introduction

Newton (Newton 1667) posited that any two masses in the universe attract
each other by a gravitational force. He took this force to be proportional to 1/r2

where r is the distance between the masses. Supposing the universe to be populated
by a finite number N of point masses subject only to their mutual gravitiational
attractions and his laws of mechanics he formulated a set of differential equations
(eq 5 below) which describe the motions of these N point masses. The classical
N-body problem is the study of this dynamical system.

Newton solved his 2-body problem. Supposing these two masses to be the sun
and a planet he derived Kepler’s three laws of planetary motion and thereby gained
himself a pre-eminent role in the history of science. See tour; figs 2.

More than two hundred years later Poincaré proved that a limiting case of the
3-body problem is unsolvable in a certain technical sense: it admits ‘homoclinic
tangles” and therefore is not “ integrable by analytic functions”. The effect of his
proving unsolvability was analogous to that of Galois’ proving the unsolvability of
the general quintic. Rather than killing their subjects, they developed methods in
establishing their impossibility results which opened up vast and previously unimag-
ined vistas of research. For Galois these vistas included group theory, algebra, and
number theory. For Poincaré the vistas were nonlinear qualitative dynamical sys-
tems (popularly referred to as “chaos theory”) and its interaction with topology
and analysis.





Part 1

Introduction





CHAPTER -1

A Tour of Solutions

ch: tour

The classical planar N-body problem is a system of differential equations (see
equation 5) whose solutions are N parameterized curves in the plane which represent
motions of planets or stars. We tour a few of the solutions, using N as a parameter.
1

1. Two bodies

Figure 1. Equal mass two body problem

The Newtonian two-body problem reduces to an ODE known nowadays as
Kepler’s problem. The vector joining the two bodies moves on a Keplerian orbit.
As a result each body moves on a Keplerian conic about their common center of
mass. The center of mass moves along a straight line at constant speed. In the figure
we show a solution to the equal mass two body problem. In the next subsection we
go over the solutions to Kepler’s problem.

Figure 2. Radial velocity dispersion

2. Kepler

1We often get a better sense of solutions through animations instead of stills, but this here
is a book. Please see WEB PAGE? for animations.

11
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Figure 3. Solutions to Kepler’s Problem

These days Kepler’s problem refers to the planar ODE written here as equation
(28). Kepler never wrote down ODEs. But Newton did and he argued successfully
that this ODE governs the motion of a planet under the gravitational influence of
an infinitely more massive sun. He proved that the solutions to Kepler’s problem
obey Kepler’s three laws and in particular parameterize conic sections with one
focus at the sun. The bounded collision-free Kepler solutions are all periodic and
travel ellipses or circles. As the angular momentum degenerates to zero the ellipses
degenerate to line segments colliding with the sun.
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3. Three bodies
subsec: Euler and Lagrange solutions

3.1. The Central Solutions of Euler and Lagrange. There are exactly
five solutions to the three-body problem for which we have closed-form expressions.
Three were found by Euler in 1767. The remaining two were found by Lagrange
([75], [74]) in 1772. In their solutions all three bodies move along Kepler conics,
in such a way that the “shape” of the triangle formed by the three bodies, viewed
up to similarity, remains constant. The three conics making up a solution are
scaled, rotated versions of the same Kepler conic and this can be any Kepler conic.
Collectively, these five families are known as central solutions.Tour: Lagrange

Figure 4. Lagrange’s solution. Courtesy of an animation made
by Rick Moeckel. See http://www.scholarpedia.org/article/

3-body_problem

3.1.1. Lagrange’s solution. For Lagrange’s solution the three bodies forms an
equilateral triangle at each instant. If we take our Kepler conic to be a circle
then this equilateral triangle simply rotates rigidly about the center of mass of the
triangle. If we take a general Keplerian conic then each body moves in a Keplerian
conic about the center of mass, with the motion on the conics synchronized so
that at each instant they form an equilateral triangle. Included in the family
is the degenerate zero-angular momentum solution where the bodies are dropped
from rest at an equilateral configuration, in which case each body moves on a line
segment ending in simultaneous triple collision at the center of mass. The Lagrange
families exists for all mass ratios. We count the Lagrange solutions as two families
of solutions since we distinguish between ‘right handed’ and ‘left handed’ planar
labelled triangles. See figure 5. The circular Lagrange solutions are linearly stable
only when one of the two masses is much greater than the other two.

Figure 5. The two orientations of a labelled planar trianglefig: trianglesRL

http://www.scholarpedia.org/article/3-body_problem
http://www.scholarpedia.org/article/3-body_problem
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Figure 6. Euler’s Solutionfig: Euler

3.1.2. Euler’s solutions. For Euler’s solutions the bodies are collinear at every
instant, but the line they are on is typically spinning. They comprise three families
labelled according to which of the three bodies sits in the middle during the mo-
tion. Throughout the motion the ratio between the distances of the bodies remains
constants, the ratio being determined as the positive real solution to a fifth order
polynomial whose coefficients depending on the masses. When the masses all equal
then this middle mass must lie at at the midpoint of the segment formed by the
other two. If we choose the circular solution to Kepler’s equations then these two
others simply rotate as the ends of a diameter of a circle about this center. See
the left panel of figure 6. The Euler solutions are linearly unstable for all mass
distributions.

3.1.3. Prelude to Question 1. The ansätz leading to the Euler and Lagrange
solution works for more than three bodies. The resulting families of solutions keep
the same shape over time and these shapes are called “central configurations”.
Question 1 asks if the number of central configurations is finite for all N > 3.

3.2. The circular restricted limit. The Euler and Lagrange solutions per-
sist if we let one of the three masses tend to zero while the other two are fixed.
If we take the circular Kepler element of the family, then these limiting solutions
become special solutions to the circular restricted planar three-body problem which
is the most studied of all three-body problems. In this limiting version, the two big
masses, or “primaries” rotate in a circular Keplerian orbit. Newton’s equations,
written in coordinates rotating at the angular frequency of the primaries, reduces
to a 2nd order autonomous ODE in the rotating plane for the remaining infini-
tesimal mass. The corresponding ODE in the rotating frame has 5 fixed points
corresponding to these 5 limiting central configurations. These fixed points have
named L1-L5 and are indicated in figure ?? Somehow Euler’s name disappeared in
their labelling.
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fig: ccRestricted

Figure 7. The central configurations marked within the circular
restricted three body problem. Courtesy of NASA. https://map.
gsfc.nasa.gov/media/990528/990528b.jpg

A large fraction of the existing work on the three-body problem concerns the
circular restricted planar three-body problem. Figure 3.2 represents some of that
work pre-dating electronic computers. I will return to restricted problems and
perturbation theory at the end of the tour

will you? check? -RM

https://map.gsfc.nasa.gov/media/990528/990528b.jpg
https://map.gsfc.nasa.gov/media/990528/990528b.jpg
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fig: Stromgren

Figure 8. A few dozen periodic orbits for the planar restricted
circular three-body problem in the case where the two primaries
have equal masses, viewed in the rotating frame. The ∗s indicate
the primaries and the xs the central configurations of Euler and
Lagrange. Strömgren [151] found these in 1933 through numerical
integration before digital computers were available.
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tour: eight

fig: fig8

Figure 9. Figure 8.

3.3. The eight. At the other extreme from having one of the three masses
zero, take all three masses equal. In the figure eight solution three equal masses
chase each other around a fixed figure eight shaped curve drawn (here laid on its
side) on the plane. To generate the eight with a numerical integrator take inital posi-
tions as (x1, y1) = (−0.97000436,0.24308753), (x2, y2) = (−x1,−y1), (x3, y3) = (0,0)
with initial velocities (ẋ1, ẏ1) = (ẋ2, ẏ2) = − 1

2
(ẋ3, ẏ3) where (ẋ3, ẏ3) = (0.93240737,0.86473146).

Take all masses and G to be 1. I’m indebted to Carlés Simo for zeroing in on these
initial conditions. (See [144].)

Unexpectedly, the eight is as stable as one can hope for in celestial mechanics:
it is KAM stable. Question 2 of this book asks whether or not there are any periodic
orbits that are Lyapunov stable which is the standard accepted meaning of “stable”
in modern dynamics. See in particular section 2.10 for stability of the eight. Figure
3.3 depicts a perturbed eight, a solution resulting from near-eight initial conditions.
We can imagine this one, which is periodic ‘nestled between” two KAM 2-torii.

fig: near8

Figure 10. A near-eight. Courtesy of C. Simo. See [144] for more details.

3.4. Escape and scattering. Drop three bodies: let them go from rest. Or
throw a binary system at a distant isolated third body. What can happen?

The first case was investigated for nearly a century in a long and convoluted
series of papers for a specific case known as the ‘Pythagorean three-body problem”
For initial conditions place three masses at the vertices of a triangle whose edge
lengths are in the ratio 3 ∶ 4 ∶ 5. Choose the masses to have the same ratio, and
place mass 5 opposite the edge of length 5, etcetera. See figure 3.4. Now drop
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the bodies: take all velocities zero, and numerically integrate. What happens? See
figure 3.4

fig: Pythag0

Figure 11. Initial conditions for the Pythagorean 3 body prob-
lem.Reprinted from Szebehely and Peters [].

fig: Burrau

Figure 12. The Pythagorean 3 body problem. The left panel
depicts the solution from being dropped at t = 0 to time t = 10 with
one body’s curve depicted as a solid line, one as a dashed curve
and the other as a dotted curve. In the right panel the motion
from t = 50 to 60 is depicted. We see that two of the masses form a
tight binary and escape to infinity. Reprinted from Szebehely and
Peters [152].

Hut, and collaborators threw binary stars at isolated stars in order to under-
stand questions regarding the prevalence of binary stars in galaxies and their effects
on galactic evolution. A sample solution is depicted in 3.4.
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fig: interchange

.
Figure 13. Chaotic interchange. Courtesy of P. Hut.

3.5. Schubart and Broucke-Henon. Place three bodies on the line and let
them evolve according to gravity and they are typically forced to collide. Levi-Civita
showed us how to analytically extend the N-body flow through isolated binary
collisions and this allows us to discuss periodic solutions having such collisions. .

appendix on– Levi-Civita
[?] ? etc: Knauf? our pa-
per? Heggie? -RM

In the year I was born Schubart [137] constructed such a solution for the collinear
three-body problem depicted in figure 3.5. His orbit dominates the phase portrait
for the negative energy collinear three-body problem. In 1974 Broucke [16] found

figure of the Finlanders
here? -RMmany new orbits for the three-body problem and the last one he displayed has the

form of the 3rd and 4th orbit in 15. Henon [57] used orbit continuation with the
angular momentum acting as a bifurcation parameter, to follow Schubart’s orbit
through to Broucke’s. continued Schubart’s orbit into the planar problem, thus

find ref -RM
discovering what is now called the Broucke-Henon orbit 15.

discuss Broucke Henon vs
Schubart in the braid
chapter? -RM
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fig: Schubart

Figure 14. Space-time diagram of Schubart’s collinear equal mass
three-body solution.

Figure 15. Broucke and Henon’s continuation of the Schubart
orbit. The orbits are shown in a rotating frame with respect to
which the orbit is periodic. From [57]fig: Broucke
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3.6. A Bestiary. In 2015 Danya Rose [131] combined simultaneous regular-
ization of all binary collisions, shape space thinking, and careful numerical inte-
grations to catalogue 100s of equal mass zero angular momentum solutions to the
three body problem. Figure 3.6 is an unstable orbit that Rose christened F1.2.7.

fig: bestiary
Figure 16. Another equal mass zero angular momentum solution,
one of 100s found by Danya Rose.

In 2013 James Montaldi and Katrina Steckles [106] compiled an artistic bes-
tiary of a different nature, based on equivariant homotopy ideas combined with the
symmetry ideas that led to the figure eight. Below is a representative orbit of theirs
whose existence has not yet been rigorously established.

Figure 17. The three-body ‘Celtic Knot’ choreography denoted
D(3,4) by Montaldi and Steckles [106].
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4. Four bodies

4.1. Central configurations. There are analogues of the Euler and Lagrange
three-body solutions in which the four bodies keep the same shape throughout the
motion. The shapes themselves are referred to as “central configurations”. For the
equal mass planar four-body problem there are precisely four possible shapes. See
figure 18. When the vertices of these 4-gon shapes are labelled with the mass labels
they yield 50 distinct labelled shapes modulo scaling and rotation, and hence 50
families of solutions, the analgues of the Euler and Lagrange three-body solutions.
Counting the number of central configurations for N ≥ 4 is the subject of question
1 of the book. The simplest four-body central solution to visualize is perhaps a
rotating square at whose vertices are placed the four equal masses.

Figure 18. Four body central configurations for equal masses.
Two of the four shapes on the left panel look the same. One of
these two is an equilateral triangle with the fourth body placed at
the center of mass. The other is isosceles but not equilateral. On
the right panel we’ve blown up these two and super-imposed them
after a rotation to show that they are actually different. Courtesy
M. Hampton.fig: 4bdyccs

4.2. Dancing quadrilaterals. A vast array of equal mass periodic orbits
with high symmetry have been discovered in the last 25 years by combining sym-
metry and variational methods. Below are a few. See figure 19, ??
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Figure 19. 4 body choreographies. Courtesy C. Simo.fig: 4bdychoreo

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

-0.08
-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08

Figure 20. The hip-hop solution discovered by Chenciner and
Venturelli [?] has 4 equal masses oscillating between the square
and a tetrahedral configuration and enjoys the symmetry group
Z2 ×Z4. Courtesy, Davide Ferrario.fig: hiphop

4.3. Non collision-singularities. A solution has a singularity if there is a
finite time t∗ beyond which it cannot be continued as a solution. In collision
solutions all bodies have limiting positions as t∗ is approached, and at least two of
them collide. In the three-body problem all singular solutions are collision solutions.
Are there non-collision singularities for the N > 3 body problem? This old question
was resolved by Gerver and Xia (N = 5). In 2022 Gerver et al ?? established
existence of non-collision singularities for the 4 body, following up on earlier work
by XXX. See figure 21.
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Figure 21. Cartoon of a non-collision singularity solutions with
four bodies found by [43]. None of the bodies have finite limit-
ing positions as t → t∗, the singularity time. Q3(t) and Q4(t)
accumulate onto the entire x axis with the distance between them
going to zero, while Q1(t) → (−∞,0) and Q2(t) → (+∞,0). If
rij(t) = ∣Qi(t) −Qj(t)∣ is the distance between bodies i and j at
time t then lim supt→t∗ rij(t) = ∞ and lim inft→t∗ rij(t) = 0 pro-

vided i = 1 or 2 and j = 3 or 4. Think 1
∣t∣ ∣ sin(1/t)∣ with t∗ = 0.

fig: noncollision

5. More.

A number of infinite families of choreographies have been established. Figure
23 is a sample. The chains with an odd number N of bodies travelling a chain of
N − 1 loops has been established for all N , for example.

Figure 22. A sampling of N body choreographies. Courtesy of C. Simo.fig :nbdychoreos
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The variational and symmetry methods which established the existence of the
figure eight solution have allowed researchers to discover and establish the existence
of solutions having the symmetries of each of the Platonic solids. Below is depicted
a 60-body solution enjoying dodecahedral symmetry, 60 being the order of the
subgroup of symmetries of the dodecahedron which are orientation preserving.

Figure 23. A 60-body solution enjoying dodecahedral symmetry.
Associated to each of 12 faces are 5 bodies moving in a choreogra-
phy. Courtesy of Gronchi [48].fig :nbdychoreos

6. Perturbation theory and a return to the Solar system.

Rewrite this ** blah-blah-
blah ** section. Make it
shorter. Less philosophy
and less personal. I think.
-RM

A person has yet to look out into the night sky and find three stars moving
in a figure eight orbit, let alone a constellation of 60 stars moving in the pattern
of the dodecahedral orbit. The vast majority of orbits described by astronomy
are Keplerian or slightly perturbed Keplerian orbits. Keplerian thinking, with a
smattering of GR thrown in, continues to dominate astronomy as it appears that
near Keplerian motions dominate the universe.

Our solar system’s 8 planets move in nearly Keplerian orbits about the sun.
Their motions themselves are almost always described in terms of deviations from
purely Keplerian motion. [Figure XX Laskar ]

The exo-planets were first discovered through a signature of two-body dynam-
ics known as radial dispersion: a close-in Jupiter-mass planet makes its sun’s orbit
wobble enough that Doppler dispersion can detect it, leading to estimates of the
period and planetary mass. Dark matter was originally discovered through dis-
crepancies of stellar motions in galaxes from that of a model Keplerian motion as
inferred by the guessing the density of the galaxy through visible stars.

The moon’s orbital motion is the closest and perhaps most striking situation
in our solar system in which non-Keplerian motion is visible to the naked idea on
a time scale of decades. For the moon the strength of the Earth’s gravitational
force and the Sun’s are comparable, which makes the Earth-Moon-Sun system a
true three-body problem, not amenable to a naive perturbation theory.
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Because of the enormous importance of perturbation theory and averaging to
celestial mechanics, that is where the bulk of the theoretical work has gone, partic-
ularly before high-speed numerical computer simulations.

....
XXX
deviations from purely Keplerian behaviour are well described using perturba-

tion theory. The mass of the heaviest planet, Jupiter, is about 1/1,000 the mass
of the sun, and Jupiter in turn is about 300 times more massive than the Earth.
Trying to understand the effect of these perturbations led to deep and various de-
velopments in differential equations and analysis. vast majority of phenomenon
observed XXX

As evidenced by the tour thus far, and underlined in this subsection, this book
was written by a mathematician, not an astronomer. But the subject, and a great
deal of mathematics developed over the millenia, owes its existence to astronomy
(which in turn, heaven forbid, owes much of its existence to a belief in astrology), so,
in this section we make a nod towards astronomy, and depict the more commonly
described orbits.

Poincaré dedicated much of his famous three volume set [?] towards under-
standing the circular restricted planar three-body problem. In the process of in-
vestigating this problem he planted the seeds for the modern subjects of dynamical
systems, and symplectic topology and made the discovery of what today is called
“chaotic dynamics”, notably “Hamiltonian chaos” by way of heteroclinic tangles.

There have been volumes and volumes written on the problem, so, except for
this brief coverage here in the Tour, I will avoid the circular restricted three-body
problem and all the other restricted three-body problems, almost like I had avoided
crowded mask-free zones during the height of the pandemic while I was writing this
book.

FIGURE ?? chaotic w
tangle .. Simó ? where ??
-RM

[!ht]
Figure 24. The Sitnikov problem

The original Sitnikov problem is a special case of the spatial restricted three-
find Sitnikov Ref -RM

body problem. In this version of the problem the primaries have equal masses but
move on slightly elliptical Keplerian orbits. The infinitesimal mass moves on the
line orthogonal to their plane of motion passing through their center of mass. A
good chunk of the book of Moser [86] is dedicated to this problem. If the primaries
move in circular orbits then the force on the infinitesimal is not time-dependent and
the problem becomes a one-degree of freedom autonomous Hamiltonian system,
hence integrable. Let them move in eccentric orbits and the problem becomes
a non-autonomous time-periodic one-degree of freedom system. Moser uses the
eccentricity of the ellipse as a perturbation parameter away from the integrable case
of circular motion. He uses analysis at infinity and a study of Smale horseshoes to
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prove the following. Let time be counted by full revolutions of the primary once
around their center of mass. For most negative energies, the infinitesimal mass will
cross the plane of motion of the primaries over and over. Every time it crosses,
mark down the integer number of years past since the last crossing. Then there is
a (large) integer N0 such that every infinite sequence n−1n0n1 . . . with ni ≥ N0 is
realized: there is some solution which ticks off this sequence in its travels.

Figure 25. Transit orbit

I am under no obligation
to slog through the re-
stricted problem and hi-
erarchical results. But
should I?? -RM

6.1. Perturbation Theory. Much of the analytic work on the three-body
problem over the 350 years since Newton has centered around the method of Per-
turbation theory. In the solar system the Sun’s mass dominates that of the N
planets. When cases like this, when one mass dominates all the others, and the
others never come too close to hitting each other, then we can treat the problem
as a small perturbation of N uncoupled Kepler problems. Similarly, when sending
space craft from the earth to the moon, we can ignore the effect of the space craft
on the earth and the moon. When the craft is very close to the earth we can treat
its motion as a perturbation of Kepler motion.

In my N-body career I’ve avoided perturbation theory like the plague. I believed
it hopeless to try to compete with its many illustrious practitioners: Lagrange,
Laplace, Poincaré, Arnol’d, Meyer, etc. and have instead settled myself into some
unexplored niches of celestial mechanics, notable variationally motivated crevices
of the subject.

....
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Figure 26. ‘Solar system’: hierarchical 3 body solution.

Figure 27. ??

TOUR NOTES:
The figure 8 orbit first appeared in the literature in the paper of C. Moore

[119]. Chenciner and I rediscovered the eight several years later, not knowing
Moore’s work. (A referee told us about it!) Initial conditions for the eight are as
follows. It used to irk Moore no end that we would get the credit for discovering this
orbit and so we have tried to give Moore his credit where credit is due. Chenciner
and I enjoyed our ‘15 minutes of fame’ [?] thanks to this orbit being featured in a
footnote on p. 199 of the English version of the science fiction novel [?], probably
out as a movie by the time this book is out. Our work using variational methods
to establish the existence of the eight led to a flurry of research on variationally
establishing families of solutions . The eight features in chapters 2 and 3.

Schubart’s orbit. Chenciner drew me this picture of the Schubart orbit in
space-time.
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Gerver’s super-eight. Joseph Gerver predicted this orbit during the question
period at the conference where I presented our work on the figure eight orbit.
Indeed, he asserted that if you drew any (k, `) Lissajous figure and put N = k + `
masses on it, then there was a choreographic solution for the equal mass N body
problem whose N bodies traced out a curve having the ‘topological type’ of that
Lissajous figure. The figure eight is the case (k, `) = (1,2). The Gerver supereight
has (k, `) = (1,3) and its existence was soon established numerically. A rigorous
existence proof took some years to obtain. Gerver’s assertion has largely been
confirmed, although I could not point you to any precise statement or theorem.

Hut’s scattering. In developing theories of galaxy formation and dynamics
astrophysicists have tried to copy statistical mechanics. Crucial processes involved
are the formation of binary pairs through capture in close three body encounters.
Large numerical studies have been implemented to estimate probabilities of capture
or of escape.

Sitnikov. The Sitnikov problem provides one of the easiest situations in which
one can prove Hamiltonian chaos exists in the 3-body problem. See the book by
Siegel and Moser, for example. The two primaries, 1 and 2, have equal mass and
the 3rd is taken as infinitesimal, moving on the line through the center of mass of
1 and 2 and orthogonal to their plane of motion. The eccentricity of the primaries’
conics acts as a perturbation parameter. The system is integrable if this parameter
is zero. Call “one year” one period of the primaries. Every time the 3rd body
crosses the primary plane, list the integer part of the time that has elapsed since
the last crossing. The theorem asserts that there is an N0 such that for any infinite
sequence of integers n−1n0n1 . . ., ni > N0, there is a solution realizing this sequence
of crossing times.





CHAPTER 0

The Problem and its structures

ch: intro

1. The problem, its symmetries, and conservation laws.

1.1. Three. Imagine three point masses, alone in the universe, each exerting
an attractive force on the other two. (See figure 1.) How do they move? Follow
the Newtonian slogan ‘force = mass times acceleration” to arrive at

{N3}{N3} (1)

m1q̈1 = F21 + F31,

m2q̈2 = F12 + F32,

m3q̈3 = F23 + F13,

which is a coupled system of non-linear ordinary differential equations [ODEs] gov-
erning the motion. The bodies are modelled as points labelled 1,2 and 3. The ath
body, a = 1,2,3, has mass ma, position qa = qa(t), and exerts force Fab on body
b. The positions depend on time: qa = qa(t) where t ∈ R is Newtonian ‘universal’
time. The double dots over qa denote acceleration : q̈a = d2qa/dt2.

In order to turn equations (1) into a self-contained ODE we need the forces.
Newton, taking suggestions of Galileo, Hooke and Halley, settled on

Fba = −
Gmamb

r2
ab

q̂ab.

{N2}{N2} (2)

where

(3) rab = ∣qa − qb∣

Figure 1. The three-body problem. The forces are along the
edges of the triangle formed by the masses. fig:triangle

31
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is the distance between bodies a and b, and

{rs}{rs} (4) q̂ab =
qa − qb
rab

is the unit vector pointing to body a from body b. This choice of force law between
two bodies is determined by the conditions that it be attractive and directed along
the line connecting the bodies, with a magnitude inversely proportional to the
square of the distance between the bodies and directly proportional to their masses.
The parameter G is the gravitational constant, a physical constant needed if the
physical units on both sides of equation (1) are to agree. Being mathematicians we
can and generally will set G = 1.

Where do the qa live? In physics and astronomy one takes qa ∈ R3. In this book
we are primarily concerned with the planar three-body problem so that qa ∈ R2.
The planar three-body problem embeds as an sub-problem of the spatial one (see
lemma 0.1 below and exercise 0.2), so can be understood as a special case of the
spatial three-body problem. Most astronomers limit themselves for good practical
reasons to dimensions d = 3,2 and 1 for the dimension d of the universe Rd in which
their stars and planets move. We are mathematicians at heart and can be free with
our dimensions. At a crucial point in chapter 2 we will take qa ∈ R4. You will see.
It will be fun.

We depicted a number of solutions to the planar 3-body problem in the preced-
ing Tour. The last three of the four Open Questions posed in this book are open
for the planar 3-body problem. The reader may want to turn to any one of these
questions now.

1.2. Any number. Any dimension. The reader can now write down the
equations of motion for N point masses moving in Euclidean d-space:

{N}{N} (5) maq̈a = Fa , a = 1, . . . ,N, Fa = Σb≠aFba, qa ∈ Rd.

Definition 0.1. The N-body problem in d-space is the system of ODEs given
by equations (5, 2) with qa ∈ Rd and with ma > 0 fixed parameters called masses.
A solution to the N-body problem is a solution q(t) = (q1(t), . . . , qN(t)) ∈ (Rd)N to
this system of ODEs.

The N-body problem in d-space is not actually one problem, but rather a
family of problems parameterized by the choice of masses ma. Later, the choice
of constant energy and angular momentum act as parameters. See section 0.5.
Sometimes, notably in chapter three, it is useful to think of the force law itself as
a parameter. See 1.5.

1.3. Flows and Phase space. Set

E = E(d,N) = (Rd)N = Rd ×Rd × . . .Rd.
We call this space configuration space . We defined a solution to the N-body problem
to be a curve in configuration space satisfying the ODEs (2 , 5). The letter E
stands for “Euclidean”. See equation (33) for the mass-dependent inner product
on E which plays a central role..

A collision configuration is a point of E at which two masses collide: qa = qb
for some pair a ≠ b. Equivalently, a collision occurs when rab = 0. Since forces
blow up at collision configurations, we expect 1 that solutions are undefined beyond

include appendix on L-C?
-RM
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collisions.

collision locus Definition 0.2. The collision locus ∆ is the subset of configuration space

(6) ∆ = {q = (q1, . . . , qN) ∈ E ∶ qa = qb for some a ≠ b} ⊂ E
where two or more bodies collide.

Set

{collision-free}{collision-free} (7) Ê = E ∖∆.

and call it collision-free configuration space.

Definition 0.3. Phase space for the N-body problem in d-dimensions is the
space

{phase space}{phase space} (8) P = P(d,N) = Ê ×E.
I will use a “P” here in-
stead of P because, later
on, P gets used for linear
momentum -RM

We can rephrase the N-body problem in terms of a vector field on phase space.
Introduce the N velocities va = q̇a ∈ Rd as additional variables, and combine them
together into v = (v1, . . . , vN) ∈ E. Then the equations defining the N-body problem
take the first-order form

{NM0}{NM0} (9) q̇ = v

{NM}{NM} (10) Mv̇ = F (q).
Here F ∶ Ê → E is the vector of forces, F (q) = (F1(q), . . . FN(q)) where Fa is the
force on the ath body as in equation (5 )and( 2). The linear operator M ∶ E→ E is
a diagonal matrix in the standard basis with entries corresponding to the masses:

{M1}{M1} (11) M(v1, . . . , vN) = (m1v1, . . . ,mNvN)
We call M the mass matrix. The mass matrix M is invertible since all the masses
are positive, so we can rewrite these last equations as d

dt
(q, v) = X(q, v) where

X(q, v) = (v,M−1F (q)), thus defining a vector field X on P whose corresponding
ODE is equivalent to Newton’s equations.

We write the flow of the Newtonian vector field X as

{eq: flow}{eq: flow} (12) Φt ∶ P ⇢ P, Φt(q(0), v(0)) = (q(t), v(t))
so that q(t) is the solution to the N-body problem with initial conditions (q(0), v(0)) ∈
P and v(t) = q̇(t). The broken arrow notation for the flow indicates that, for fixed
time t ≠ 0, the domain of the time t flow Φt is not all of P. Some solutions fail to
exist all the way up to time t due to collisions. In other words, the N-body flow
is incomplete 2 By general theory, Φt is a one-parameter family of analytic diffeo-

find Saari ref -RM
morphisms. Φt also depends analytically on t and satisfies the semigroup property
Φt ○Φs = Φt+s on points ζ ∈ P for which t, s, t + s all lie on the interval of existence
of the solution with initial condition ζ. It is worth restating this business about
initial conditions in mundane terms. Initial conditions consist of N initial positions
qa(0) ∈ Rd and N initial velocities va(0) = q̇a(0) ∈ Rd at time t = 0. We put them
all together to get the point (q(0), v(0)) in phase space.

Remark 0.1. about Levi-Civita .. .. yeah .. something ..
Levi-civita -RM

1However, see the remark on the Levi-Civita transformation .. where?
2The set of inital conditions yielding incomplete solutions is non-empty but measure zero.

NOPE! - Knauf. CITE SAARI. Appendix on incompleteness?
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1.4. The planar problem sits in the spatial one. The spatial N-body
problem contains the planar N-body problem.

3to2 Lemma 0.1. Consider R2 ⊂ R3. If initial conditions (q(0), v(0)) ∈ P(3,N)
satisfy qa(0), va(0) ∈ R2 then the corresponding planar solution Φt(q(0), v(0)) is a
curve in P(2,N) which solves the planar N -body problem with these same initial
conditions.

The lemma follows from the fact that under the assumptions of the lemma and
equation (2) the forces Fa(q) = ΣbFba, being linear combinations of the qa, also
lie in the plane R2. For an alternative proof of lemma 0.1 based on reflectional
symmetry see exercise 0.2 below.

A similar lemma holds for the line R ⊂ R2 so that the planar N-body problem
contains within it the N-body problem on the line. More generally, this lemma
holds for any d and m < d by taking Rm ⊂ Rd. The m-dimenionsal N body problem
embeds into the d-dimensional N -body problem as a sub-problem.

subsec: other forces
1.5. Other forces. The Newtonian two-body forces can be written Fba =

∇a Gmambrab
where ∇a means the gradient with respect to the vector variable qa ∈ Rd.

Thus, if we put orthonormal coordinates on Rd so that qa has components qai, i =
1, . . . , d, and if f ∶ (Rd)N → R is a differentiable function then (∇af)i = ∂f

∂qai
.

Definition 0.4. A general N-body problem is one for which the two-body forces
Fab of equation (5) are given by

Fba = ∇afab(rab)(13)

= f ′(rab)q̂ab{N2ALT}{N2ALT} (14)

for some collection of smooth functions fab ∶ (0,∞) → R, subject to fba = fab,
a, b = 1,2 . . . ,N . The negatives of the functions fab are called the pair potentials.

The N-body problem discussed earlier corresponds to fab(r) = mamb/r. We
typically require f ′ab(r) → 0 as r →∞ and ∣f ′ab(r)∣ →∞ as r → 0. The condition at
infinity tells us forces fade away as particles diverge from each other, and suggest
that eventually solutions tend to move along lines. The condition at collision r = 0
tell us we have singularities at collision.

It will be useful to focus on a particular one-parameter family of general N-body
problems whose pair potentials are homogeneous of degree −α:

{homogeneous_force}{homogeneous_force} (15) fab(r) =
mamb

rα
.

so that α = 1 corresponds to the original Newtonian gravity. For the limiting case
α = 0 we set

fab(r) = −mama ln(r);α = 0

which can be justified by noting that

lim
α→0

1

α
(r−α − 1) = − ln(r),

as is seen by differentiating the function x↦ r−x at x = 0.

Definition 0.5. When the pair potential has the form of equation (15) then
we refer to the resulting generalized N-body problem as a power law N-body problem.
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When researchers refer to “the gravitational N-body problem in d dimensions”
they often mean the power law N-body problem in Rd with power and dimension
linked according to

α = d − 2

This linking arises out of the fact that the fundamental solution to the Laplacian
in Rd is a constant times 1/rd−2. For more on this perspective and fundamental
physical principles that follow from it, see section 6.1 below. Despite compelling
reasons for linking dimension and the power law exponent, in this book we will
focus almost exclusively on the N-body problem as defined above, which is to say,
the power law N-body problem with α = 1.

All four Open Questions in this book make sense for the general N-body prob-
lems in the planar case of d = 2. The third open question, which only makes sense
when d = 2, has been solved when α ≥ 2.

1.6. Symmetries. Galileo had argued, decades before Newton, that the laws
of mechanics must be invariant under a transformation group acting on space-time
Rd ×R which now bears his name. Newton designed his equations to be invariant
under the Galilean group. This Galilean group is generated by isometries of space,
isometries of the time-line, and a special class of transformations called Galilean
boosts which mix time with space called “Galilean boosts” 3.

The Galilean invariance of Newton’s N-body equations implies that if q(t) =
(q1(t), . . . , qN(t)) solves the equations then, upon applying any Galilean transfor-
mation simultaneously to each of the component curves qa(t) in Rd , the result is
again a solution. The Galilean transformations are

qa(t) ↦ qa(t) + c (space translation)homogeneous_force (16)

qa(t) ↦ R(qa(t)) (space rotation or reflection)(17)

qa(t) ↦ qa(t − t0) (time translation)(18)

qa(t) ↦ qa(−t) (time reflection)(19)

qa(t) ↦ qa(t) + tv (boost).Galilean_invariance (20)

In the formulae t ∈ R, c, v ∈ Rd while R ∈ O(d), the group of orthogonal transfor-
mations of Rd with its standard inner product. Any general N-body problem also
has the Galilean group as a symmetry group.

ex: 3to2 Exercise 0.1. Check Galilean invariance of Newton’s equations by direct com-
putation, using equations (5, 2).

ex: 3to2 Exercise 0.2. Use the symmetry R ∈ O(3) of reflection about the plane R2 ⊂
R3 to prove lemma 0.1.

sec: conservation laws
1.7. Conservation Laws.

Definition 0.6. A conservation law is a smooth function on phase space which
is constant along any solution (q(t), v(t)) to the N-body problem.

The energy, linear momentum, and angular momentum are the basic conserva-
tion laws for the N-body problem. They can be obtained by applying an algorithm
made explicit by Noether, an algorithm which associates a conservation law to
each continuous symmetry of a “Lagrangian system”. The N-body problem can be

3The boosts of special relativity also mix space with time
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expressed as a Lagrangian system. The isometries of space and time form a contin-
uous symmetry group - a Lie subgroup of the Galilean group. We further break up
this subgroup into time translations, space translations, and space rotations. The
associated conservation laws which follow from Noether are

{energy}{energy} (21)

E(q, q̇) =K(q̇) −U(q)

= 1

2
Σma∣q̇a∣2 −Σa<bfab(rab)

= energy ( for time translations)

{eq:linear momentum}{eq:linear momentum} (22) P = Σmaq̇a = linear momentum ( for space translations)

{eq:angular momentum}{eq:angular momentum} (23) J = Σmaqa ∧ q̇a = angular momentum ( for space rotations) .

We have split the energy E into kinetic ( K(q̇)) and potential ( −U(q)) energy.
We have used U in place of the potential energy −U because U is positive for the
standard N-body problem:

{grav energy}{grav energy} (24) U = Σ
mamb

rab
= −V (standard gravity) .

P and J are vector-valued conservation laws. In the formula for angular momentum
‘∧’ denotes the wedge product on Rd which can be identified with the cross-product
on R3 when d = 3. J takes values in Λ2Rd while P takes values in Rd.

These conservation laws were known well before Noether stated her theorem.

Exercise 0.3. Show that energy, angular momentum and linear momentum are
conservation laws for the general N-body problem by using the equations of motion,
Newton’s equations (5, 2) to compute the time derivatives of these functions along
solutions to Newton’s equations.

One can have forces more general than the general N-body problem and still
get conservation of linear and angular momentum.

Exercise 0.4. Show that “equal and opposite reactions” implies conservation of
linear momentum. In other words, prove that for any forces which satisfy Fab = −Fba
we have dP /dt = 0 along its solutions.

Show that “force directed along lines connecting bodies” implies conservation
of angular momentum. In other words, prove that for any forces which satisfy
Fab = λab(qa − qb) for some symmetric matrix valued function λab = λba of q and q̇
we have that dJ/dt = 0 along solutions. (Symmetry of λab implies that Fab = −Fba.)

Below, in subsection 3.1 we will verify conservation of energy by putting New-
ton’s equations in a particularly simple form.

1.7.1. Planar angular momentum. The expression for angular momentum when
d = 2 deserves special attention. Let e1, e2 be the standard orthonormal basis for
R2. Then

(xe1 + ye2) ∧ (ẋe1 + ẏe2) = (xẏ − yẋ)e1 ∧ e2.

Now e1 ∧ e2 is a basis for the one-dimensional space Λ2R2 ≅ R so we should view J
as a scalar. (Physicists would call it a pseudo-scalar.) Following this computation,
we divide out by e1 ∧ e2 and simply set (x, y) ∧ (ẋ, ẏ) = xẏ − yẋ.
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In physics this expression (x, y) ∧ (ẋ, ẏ) is usually represented as e3 ⋅ (xe1 +
ye2) × (ẋe1 + ẏe2). We will be representing the expression in complex variables:
(x, y)∧ (ẋ, ẏ) = Im(z̄ż) where z = x+ iy, z̄ = x− iy, ż = ẋ+ iẏ. We have identified R2

with C by sending (x, y)↦ z = x + iy. Using this convention we get

{planar N body config space}{planar N body config space} (25) E(2,N) = CN ,

{eq:planar angular momentum}{eq:planar angular momentum} (26) J(q, q̇) = ΣmaIm(q̄aq̇a). the case d = 2

and the action of planar rotations on configuration space is given by : (equation
20)

{eq: planar rotations}{eq: planar rotations} (27) qa ↦ eiθqa, qa ∈ C
where we have identified the planar rotation group SO(2) with the unit complex
numbers S1 ⊂ C.

put Kepler here ?; seper-
ate section or subsection -
RM2. Kepler and the two-body problem.

sec: Kepler
good place to put? add
a section on the circular
restricted three body
problem; mention La
Mecanique Nouvel as
being about this -RM

Newton’s 2-body equations read

m1q̈1 = F21

m2q̈2 = F12

Add the two equations and use F21 + F12 = 0 to obtain Q̈cm = 0 where Qcm =
1

m1+m2
(m1q1 +m2q2) is the center of mass of the two bodies. (Note that Q̈cm is

equivalent to conservation of linear momentum.) Subtract the two equations after
dividing each by its mass to obtain the evolution equation

{Kepler}{Kepler} (28) ¨⃗r = −µ r⃗
r3
, r = ∣r⃗∣, µ = GM.

for the difference vector

r⃗ = q1 − q2.

Here M =m1 +m2.
The ODE (28) is called “Kepler’s problem” nowadays. Its solutions r⃗(t) lies in

a fixed plane within Rd, namely the linear space spanned by r⃗(0) and ˙⃗r(0), a fact
which can be established by verifying that the angular momentum

J ∶= r⃗ ∧ ˙⃗r

is constant along solutions. J is a bivector so defines a two- plane provided it is
not zero. This two-plane is known as the invariable plane. In the usual spatial
treatment, d = 3, J ∈ R3 under the identification Λ2R3 ≅ R3 and the invariable
plane is the plane J⊥ ⊂ R3. Up to a mass-dependent constant, this J is the angular
momentum described above (section 1.7), provided Qcm = 0. See section 1.7 for
more on angular momentum.

If J ≠ 0, then the solution curve describes a conic section in the invariable plane
defined by J . This conic section has one of its foci at the origin r⃗ = 0 of the plane.
This assertion contains Kepler’s first law of planetary motion. Assuming that r⃗(t)
solves the Kepler probem we form the general solution to the gravitational two-
body problem by adding constant multiples of r⃗(t) to the motion of the center of
mass Q(t). Specifically, we have that the general solution is given by q1(t) = Q(t)+
m2

M
r⃗(t); q2(t) = Q(t) − m1

M
r⃗(t) where Q(t) = tV +Q0 with V,Q0 constant vectors in

Rd and where r⃗(t) is any solution to Kepler’s problem. By this ‘center of mass trick’
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we have reduced the study of the two-body problem to that of Kepler’s problem.
Kepler’s problem itself is identical to the two-body problem upon imposing Qcm = 0.

Assuming that Qcm = 0, the conserved energy E is given by

E

M
=1

2
∣⃗̇r∣2 − µ

r
(29)

=1

2
(ṙ2 + ∣J ∣2

r2
) − µ

r
(30)

Kepler’s three laws, K1-3 below, summarize the most important features of the
solutions to Kepler’s problem. All three laws are clarified by using energy E and
angular momentum J .

K1. The solutions lie on conics within the plane determined by the angular
momentum. Each conic has one focus at the origin of the plane.

These conics are ellipses or circles when the energy E is negative, parabolas if
E = 0, and hyperbolas if E > 0. See equation 21 regarding energy. In the Kepler
problem the energy is given by H = 1

2
∣ ˙⃗r∥2 − µ

r
. In the bounded, negative energy

case, the energy H and size a of the orbit are related by

H = −µ
2a

where ‘size’ means semi-major axis of the ellipse. In the case of a circle a is the
radius. The conics degenerate to rays (E ≥ 0) or line segments (E < 0) having one
endpoint collision with the sun (r = 0) if and only if J = 0.

K2. “Equal angles in equal times”. Let e1, e2 be an orthonormal basis for
the invariable plane and introduce polar coordinates r, θ on the invariable plane
by r⃗ = r cos(θ)e1 + r sin(θ)e2. Then we compute that J = r2θ̇(e1 ∧ e2). Since J is
constant we can rewrite this r2dθ = ±∣J ∣dt. Integrating along an arc of a solution
we find that the angle ∆θ swept out by a fixed counterclockwise moving solution
in time ∆t is ∆θ = ∣J ∣∆t.

K3. Is a period-size relation:

{eq: Keplers3rd}{eq: Keplers3rd} (31) T 2 = µa3.

where T is the period and a is the size, as per K1. Recall a ∼ −1/∣H ∣.
correct units -RM

A remarkable thing about Kepler’s problem is that for fixed negative energy all
its orbits are periodic with the same period. This fact and K3 play a particularly
important role in question 3 on braids. In chapter 3 it will be important that the
action of the periodic orbits also depends only on the energy, or, what is the same,
the period. The Kepler problem appears in a central way in every open question
on our list. One could say that the Kepler problem is to the N-body problem as
planar Euclidean geometry is to differential geometry.

The limiting case of angular momentum zero is worth focusing on for a moment,
as it will come up several times, most notably in chapter 3. J = 0 if and only if the

.. something on eccentric-
ity, limits here .. -RM space spanned by the vectors r⃗(0) and ˙⃗r(0) is one-dimensional which in turn is true

if and only if the solution is a solution to the one-dimensional Kepler problem, and
thus travel along the ray joining r⃗(0) to the origin r⃗ = 0. Let us fix the two-plane,
say e1 ∧ e2 and the energy at some negative value and let the angular momentum
go to zero by setting J = Le1 ∧ e2 and letting L→ 0. In this way we get a family of
ellipses crunching down to line segments. .....
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Exercise 0.5. Figure out the units of the Kepler constant µ. Compare with
K3.

Exercise 0.6. Consider the general 2-body problem as per subsection 1.5 where
the negative of the pair potential is −f(r) with f21(r) = −f12(r) = f(r). Show that

the relative motion vector r⃗ evolves according to ¨⃗r = f ′(r) r⃗
r

. This ODE is refered
to as the central force problem. It’s potential function is V (r⃗) = −f(r).

check signs -RM

include effective poten-
tial; discussion of bound-
edness etc for f = r−α. -
RM

3. Metric structure, boundedness, center-of-mass, scaling
sec: mass metricsec: mass metric

3.1. Mass metric. The kinetic energy K = 1
2
Σma∣q̇a∣2 is half the quadratic

form associated to mass-dependent inner product on configuration space E = RdN .
Thus

{KE}{KE} (32) K(q̇) = 1

2
⟨q̇, q̇⟩

where

{mass_innerproduct}{mass_innerproduct} (33) ⟨q, v⟩ = Σmaqa ⋅ va
where qa ⋅va is the standard inner product on Rd. The mass inner product can also
be written as

{eq: intertwine}{eq: intertwine} (34) ⟨q, v⟩ = ⟨q,Mv⟩1
where M ∶ E → E is the mass metric defined in equation (11) above and where
⟨q, v⟩1 = Σqa ⋅ va is the ‘standard’ inner product, that is to say, the mass inner
product we get on E = RdN when we take all the masses equal to 1.

Definition 0.7. We call the above inner product (33) the mass inner product
on configuration space.

Lemma 0.2. The general N-body equations can be rewritten

{N_Condensed}{N_Condensed} (35) q̈ = ∇U(q)
where ∇ is the gradient of U = Σfab(rab) with respect to the mass inner product.
We will call this equation the “condensed form” of Newton’s equations .

Proof. Equations (9, 36) show us that we can write the N-body problem as

{NM}{NM} (36) Mq̈ = F (q)
where M is the mass matrix and F ∶ Ê→ E is the vector of forces. Thus q̈ =M−1F (q).
Now F (q)a = Fa(q) = ∇aU(q) where ∇a is the usual gradient with respect to qa ∈ Rd.
It follows that F (q) = ∇(1)U where ∇(1) is the gradient with respect to the standard
inner product, which is to say, the mass metric in the case m1 =m2 = . . . =mN = 1.
Recall, in general, the relation between the differential and the gradient of a function
on an inner product space: dU(q)(h) = ⟨∇U(q), h⟩. The intertwining relation,

equation 34 implies that our two gradient operators ∇(1) and ∇ on E are related
by raising and lowering of indices with respect to the mass metric: ∇(1) = M∇ or
∇ =M−1∇(1), so that M−1F (q) = ∇U(q).

QED
Using the mass metric we have that the energy is given by

E = 1

2
⟨q̇, q̇⟩ −U(q).
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Exercise 0.7. Use the condensed form of the general N-body equations (35) to
prove that energy is conserved.

The mass metric gives geometric meaning to the vanishing of linear and angular
momentum. Recall that “the infinitesimal generator” of a Lie group action on a
manifold is the map from the group’s Lie algebra to the space of vector fields on
the manifold which we get by differentiating the action with respect to the group
elements. The space of infinitesimal generators evalutated at a given point of the
manifold spans the tangent space to the group orbit through that point.

Exercise 0.8. Show that the space spanned by the infinitesimal generators (see
equations 20) of the translation action of Rd on E consist of all vectors of the form
(c, c, . . . , c), c ∈ Rd.

Show that space spanned by the infinitesimal generators for the rotation action
of SO(d) on E (see equations 20) at q = (q1, q1, . . . , qN) consists of all vectors in E
of the form (ξ(q1), ξ(q2), . . . , ξ(qN)) for some ξ ∈ so(d). Note that in case d = R3

we can write ξ(qa) = ω⃗ × qa for some angular velocity vector ω⃗ ∈ R3.

Exercise 0.9. Show that v = q̇ is mass-metric perpindicular to the infinitesimal
generators of translation if and only if the linear momentum P = Σmaq̇a is zero.

Show that v = q̇ is mass-metric perpindicular at q to the infinitesimal generators
of rotation through q if and only if the angular momentum J(q, q̇) is zero.

We pause to recall:

def: rigid motion Definition 0.8. The group G of rigid motions of a Euclidean space is the
group of orientation preserving isometries of the plane. It consists of compositions
of translations and rotations (no reflections).

Thus linear and angular momentum are zero if and only if the solution curve is
everywhere orthogonal to the orbits swept out by the group of rigid motions acting
on configuration space.

put Saari velocity decomp
here -RM

3.2. Getting rid of translations: Center-of-Mass. In arriving at the Ke-
pler problem, (section 0.2) we separated the two-body problem into that of its
center of mass, which is linear, and the relative motion which is described by Ke-
pler’s problem. The same trick works for any number of masses, except that the
relative motion problem is no longer solvable in closed form when N > 2.

Write Qcm = 1
M

Σmaqa for the center of mass of an N-body system where

M = Σma is the total mass. Then V ∶= Q̇ = 1
M
P is constant by conservation of

linear momentum so that Q̈ = 0. The general solution of Q̈ = 0 is a straight line so
we have that the center of mass travels at uniform speed along a straight line in
d-space:

Q(t) = Q(0) + tV.
Now take a solution qa(t) and look at it from the center of mass frame. By

this we mean look at it relative to the inertial frame whose origin is Q(t). This
amounts to making the time dependent change of variables qa ↦ q̃a given by qa(t) =
Q(t) + q̃a(t). The inverse transformation

q̃a(t) = qa(t) − tV −Q(0)
is a Galilean boost followed by a translation so the new curve q̃a is again a solution,
but now its center of mass zero is zero as its linear momementum.
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We have shown that we can reduce the general N-body problem to the sub-
problem in which the center of mass is zero for all time. We will call this reduction
the center of mass trick. It reduces the dimension of phase space by 2d dimension.
We will say that a solution q̃a(t) to the zero-center-of mass subsystem is ‘in center
of mass frame” or “center of mass coordinates”. Write

{eq: centered config space}{eq: centered config space} (37) E0 = {q ∈ E ∶ Σmaqa = 0} ≅ Rd(N−1)

for the center-of-mass zero subspace of configuration space. We have just argued
that we may assume that q(t) ∈ E0 when working on the N-body problem. We will
do so whenever it is more convenient or more illuminating than working on the full
configuration space.

Set

Ê0 = E0 ∖∆.

and

{eq: centered phase space}{eq: centered phase space} (38) P0 = Ê0 ×E0

P0 ⊂ P is invariant under the N-body flow. We have just shown that solving the
general N-body problem is equivalent to solving it on the subspace P0 which we will
call either “center-of-mass phase space” or just “centered phase space”. Similarly we
call E0 or “center-of-mass configuration space” or “centered” configuration space.

What we have just done is closely related to (but not quite the same) as what
is called “reduction by translation” in symplectic geometry. We have gotten rid
of d “translational degrees of freedom”. The number of degrees of freedom of a
mechanical system is defined to be the dimension of its configuration space, or
half the dimension of its phase space. We have reduced the number of degrees of
freedom by d in going from P to P0.

While we are on the center-of-mass subject it is worth recording an identity
attributed to Lagrange.

Lemma 0.3.

{eq: Lagrange identity}{eq: Lagrange identity} (39) ⟨q −Qcm, q −Qcm⟩ = 1

Σma
Σa<bmambr

2
ab, q ∈ E0

Proof. First assume that q ∈ E0 so that Qcm = 0. Write Σ′ for the sum over
all pairs a < b and Σ for the sum over all pairs. The sum in the lemma is a Σ′.
By symmetry and the fact that raa = 0 we have, on the one hand, Σmambr

2
ab =

2Σ′mambr
2
ab, On the other hand,

Σmamb∣qa − qb∣2 = Σmamb∣qa∣2 − 2Σmambqa ⋅ qb + 2Σmamb∣qb∣2.
The first and last term equal MI where

{eq: I}{eq: I} (40) I = Σma∣qa∣2 = ⟨q, q⟩.
The second, cross term equals Σmaqa ⋅Σmbqb which is zero since we have assumed
Qcm = 0 and MQcm = Σmaqa. Thus 2Σmambr

2
ab = 2MI.

To establish (39) in the general case observe that both sides of the equation
are invariant under Galilean translation qa ↦ qa + c.

QED

Definition 0.9. The quantity I = I(q) of equation (40) is called the moment
of inertia of q.
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Moment of inertia measures resistance to spinning. To understand how I arises
in this context compute the kinetic energy associated to spinning a planar N-gon
with constant angular velocity ω. Use the notation around equation (26) so that
E(2,N) = CN . In order to rotate the planar N-gon q ∈ E we form the curve
exp(iωt)q. The curve’s derivative is q̇ = iωq. It follows that

K(q̇) = 1

2
Σmaω

2∣qa∣2 =
1

2
Iω2

exhibiting I as a kind of mass associated to angular velocity ω. The rotational
equivalent of mass is moment of inertia.

insert into next section,
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3.3. Jacobi vectors. Any two real inner product spaces of the same dimen-
sion are linearly isometric. It follows by a dimension count that

E0 ≅ (Rd)N−1,

where the squared inner product on (Rd)N−1 is such that if q corresponds to
(Q1, . . . ,QN−1) then I(q) corresponds to Σ∣Qa∣2. The Qa ∈ Rd are called nor-
malized Jacobi vectors after Jacobi who described the now-standard method for
constructing this isomorphism in the three-body problem. The Jacobi vectors are
not unique! Any linear isometry R ∈ O(d(N − 1)) of (Rd)N−1 will take one system
of Jacobi vectors to another.

fig: Jacobi vectors

Figure 2. Jacobi vectors.

For N = 3 write Q0 for Qcm. Then, if q ∈ E0 write

{Jac1}{Jac1} (41) Q1 = q2 − q1,Q2 = q3 − (m1q1 +m2q2)/(m1 +m2).
See figure 3.3 for the meaning of the Jacobi vectors. NoteQ2 is the vector connecting
the center of mass of 12 to mass 3. One then computes that

(42) I(q) =M ∣Q0∣2 + µ1∣Q1∣2 + µ2∣Q2∣2

where

{Jac_constants}{Jac_constants} (43)
1

µ1
= 1

m1
+ 1

m2

1

µ2
= 1

m1 +m2
+ 1

m3
.

It follows that if Q0 ∶= Qcm = 0 then I(q) = µ1∣Q1∣2 + µ2∣Q2∣2. The normalized
Jacobi vectors are then

√
µ1Q1 and

√
µ2Q2.

An iterative binary tree algorithm for computing Jacobi vectors for any N is ex-
plained nicely in wiki. (See https://en.wikipedia.org/wiki/Jacobi_coordinates

https://en.wikipedia.org/wiki/Jacobi_coordinates
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as of November 2021.) This algorithm yields the standard N = 3 Jacobi vectors just
given. Alternatives to this binary tree algorithm are achieved by realizing that, as
an inner product space, E = Rd⊗RN provided we give Rd its standard inner product
while giving RN the mass-induced inner product. Write ε = (1, . . . ,1) ∈ RN and
observe that the generator of the translation space is Rd ⊗ ε so that E0 = Rd ⊗ ε⊥.
Find an orthonormal basis ε1, ε2, . . . , εN−1 for ε⊥ ⊂ RN by any method you like. You
could, for example, fill out ε to a basis (ε, f1, f2, . . . , fN) for RN by any method
and then apply Graham-Schmidt to this basis. Then any q ∈ E0 can be expanded
uniquely as ΣN−1

a=1 Qa ⊗ εa with Qa ∈ Rd. The Qa are then normalized Jacobi vec-
tors. The basis corresponding to the original N = 3 (non-normalized) Jacobi vectors
Q1,Q2 is ε1 = ( 1

m1
, −1
m2
,0), ε2 = ( −1

m1+m2
, −1
m1+m2

, 1
m3

).
put as finals subsection of
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subsec: scaling
3.4. Scaling symmetry. The N-body problems with α- power law potential

admit an additional space-time scaling symmetry

{scaling}{scaling} (44) q(t)↦ λq(λ−βt);β = α
2
+ 1..

which takes solutions to solutions and which arises from the homogeneity of U .
This scaling transforms velocities according to v ↦ λ−α/2v and energy and angular
momentum according to E ↦ λ−αE,J ↦ λ1−α/2J .

In the Newtonian case of α = 1 we have β = 3/2. Write qλ(t) = λq(λ−3/2t) for
the transformed solution of a solution q(t). If q(t) is periodic with period T and

typical size a then qλ(t) is periodic with period λ3/2T and size λa. The quantity
a3T −2 remains invariant under scaling. This invariance yields Kepler’s 3rd law for
the case N = 2. See K3 and the associated equation (31) above.

Energy and angular momentum for the Newtonian case scale according to E ↦
1
λ
E,J ↦ λ1/2J so that the quantity

{Dziobek}{Dziobek} (45) Dz ∶= E∣J ∣2

is invariant under scaling. This quantity is called the Dziobek constant and is
really?? “DZIOB”?
pretty ugly notation -RMthe basic bifurcation parameter for the planar N-body problem. For the planar

three-body problem, it, along with the mass distribution m1 ∶m2 ∶m3 are the only
parameters.

subsec:LagrangeJacobi
3.5. Boundedness, Relative Periodic Orbits and the Lagrange-Jacobi

identity. An enormous body of work has gone into finding, counting, and classify-
ing periodic orbits in dynamical systems generally and the N-body problem specif-
ically. Poincaré’s famous quote spurred us on, a quote we mangle by paraphrasing
it as saying “ periodic orbits are the only breach with which to enter the almost
impenetrable fortress of the three body problem”. Poincaré was actually referring
to relative periodic orbits.

Definition 0.10. We say that a curve q ∶ R → E0 in the centered N-body
configuration space is relative periodic if there exists a T > 0 and a g0 ∈ O(d) such
that q(T + t) = g0q(t). We will call T the period and g0 the monodromy of the orbit.

God has not painted Cartesian axes onto the fabric of the universe. This
makes it difficult to impossible to observe honest periodic orbits out in the universe.
Relative periodic orbits can be observed when mutual distances can be deduced
from measurements.

The notion of a curve being periodic or bounded are standard notions. With
these definitions in mind we have the following proposition.



44 0. THE PROBLEM AND ITS STRUCTURES

Proposition 0.1. Let q ∶ R → E0 be a solution to the general N-body problem
defined for all time and viewed from center-of-mass frame. Let rab(t) = ∣qa(t)−qb(t)∣
be the mutual distances along the curve. Then

● (i) the rab(t) are bounded if and only if q is bounded
● (ii) the rab(t) are periodic if and only if q is relative periodic.

Proof. For (i) we use equation (39) above: ⟨q, q⟩ = 1
M

Σmambr
2
ab valid for

points with center of mass zero.
One direction of (ii), that relative periodic curves have periodic mutual distance

functions follows immediately from the definition of being relative periodic. For
the other direction, use that two labelled N-gons in Rd have all of their mutual
distances equal if and only if there is an element of Iso(d) taking one N-gon to
the other. If their centers of mass are zero then this g must lie in O(d). It follows
that rab(T + h) = rab(h) implies that there is a smooth curve gh ∈ O(d) such that
q(T + h) = ghq(h). I claim gh is independent of h: gh = g0. For this purpose,
observe that g0q(t) is another solution to Newton’s equations having the same
initial position as t↦ q(T + t). If the initial velocities g0q̇(0) and q̇(T ) of these two
curves agreed we would be done: they would be equal curves. To this purpose I
will assume that d = 2 and leave the general case to the reader. Identify E with CN
as above so that SO(2) acts by complex multiplication by unit complex numbers.
See around equation (26). By doubling the period if necessary, we can assume
that g0, gh ∈ SO(2) = U(1) and write gh = exp(i(ah + O(h2))g0 and differentiate
q(T + h) = ghq(h) at h = 0 to get q̇(T ) = iaq(T ) + g0q̇(0) = (iag0q(0) + g0q̇(0).
Assume, for simplicity, that g0 ∈ SO(2) so that g0 = eiθ0 . Now use the formula (26)
for planar angular momentum to compute J(q(T ), q̇(T )) = J(q(0), q̇(0)) + aI(q(0)
where I is the moment of inertia. By conservation of angular momentum we must
have a = 0 so that q(t + T ) = g0q(t) as claimed. QED

A less well-known notion is that of a curve being quasi-periodic. The canonical
example of a quasi-periodic curve is any integral curve for irrational flow on a torus:
θ̇1 = ω1, θ̇2 = ω2 with ω1, ω2 constants and ω1/ω2 irrational. Every such curve is
dense in the two torus coordinatized by θ1, θ2. More generally we have irrational
flow on an n-torus. We will say that a smooth curve is quasi-periodic if it is the
image of an integral curve for irrational flow on some torus under some smooth
immersion of the torus. Quasi-periodic curves play a central role in the N-body
problem and Hamiltonian mechanics due to the infamous KAM theorem described
in chapter 2 on Stability. We have the following implications for the standard
N-body problem

Theorem 0.1. The following implications hold for solutions to the standard
N-body problem in the center-of-mass frame

periodic Ô⇒ rel. periodic Ô⇒ quasi-periodic Ô⇒ bounded Ô⇒ negative energy

thm: orbit types

Contrast these implications with what we know about the Kepler problem, which
is to say, the non-collision solutions to the two-body problem in the center of mass
frame:

periodic ⇐⇒ rel. periodic ⇐⇒ quasi-periodic ⇐⇒ bounded ⇐⇒ negative energy

For N > 2 none of these reversed implications hold.



3. METRIC STRUCTURE, BOUNDEDNESS, CENTER-OF-MASS, SCALING 45

We can define relative periodicity, boundedness, etcetera in purely Galilean
invariant terms, using only the mutual distances rab.

def: distance properties Definition 0.11. Suppose that q(t) is a solution to the N-body problem Form

its (N
2
) mutual distance functions rab(t) = ∣qa(t) − qb(t)∣. Then the solution is

● relatively periodic if the rab(t) are periodic functions of t
● quasi-periodic if the rab(t) are quasi-periodic functions of t
● bounded if the rab(t) are bounded functions of t
● unbounded if the rab(t) are unbounded functions of t
● a relative equilibrium if the rab(t) are constant functions of t

Proof of theorem 0.1 All the implications of the theorem are obvious except
for rel. periodic Ô⇒ quasi-periodic and bounded Ô⇒ negative energy .

We prove relative periodic Ô⇒ quasi-periodic for the planar case at the end of
the next section. See 5.0.1. We give a similar proof valid for d > 2 in the appendix
on reduction.

Really? where?; maybe
two sections down.. -RMTo establish bounded Ô⇒ negative energy we differentiate I twice along a

solution q(t).
I(q) = ⟨q, q⟩

so

İ = 2⟨q, q̇⟩
and

(46)
Ï = 2⟨q̇, q̇⟩ + 2⟨q, q̈⟩
= 4K(q̇) + 2⟨q,∇U(q)⟩

This identity for general potentials U is called the “virial identity” . The gravita-
tional potetial −U is homogeneous of degree −1 so by one of Euler’s many identities
we have ⟨q,∇U(q)⟩ = −U(q). It follows that Ï = 4K−2U . Since the energy E =K−U
this yields

{eq:LagJac}{eq:LagJac} (47) Ï = 4E + 2U,

an identity known as the Lagrange-Jacobi identity . The implication “bounded
implies negative energy” follows now from its contrapositive which is a corollary of
the Lagrange-Jacobi identity.

lemma: LagrangeJacobi Lemma 0.4. [Corollary to Lagrange-Jacobi] If a solution q(t) to the gravita-
tional N-body problem has energy E ≥ 0 and is defined for all time then its motion

is unbounded in both forward and negative time and it size ∣q(t)∣ =
√
I(q(t)) achieves

a minimum value at a unique time.cor:LJ

Proof of lemma. U > 0 everywhere. If E > 0 then the Lagrange-Jacobi
identity gives the strict convexity Ï > 4E > 0 proving that I is unbounded in both
time directions with a unique minimum.

If E = 0 we just get Ï > 0 and a bit more work is required. We still get that I is
a strictly convex non-negative function of time defined for all time. Such a function
either limits monotonically to a finite value at one end of the line or the other, (like
e−t) or is unbounded in both directions with a unique minimum in between. We
must eliminate the possibility that I(t) tends to a finite value I∗ at t = ±∞. In
order to do so we introduce a normalized version of U .
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def: normalized potential Definition 0.12. The normalized potential Ũ is the function

{def: normalized potential}{def: normalized potential} (48) Ũ =
√
IU.

In other words, Ũ is the function U , the negative of the Newtonian potential,
made homogeneous of degree 0 and hence scale-invariant by multiplying U by r =√
I. Identify the sphere S ⊂ E as the set of rays through the origin of E. so that Ũ

becomes a function on the sphere with poles at the collision locus. It is positive and
continuous (as a function with values in R ∪ {∞}) and since the sphere is compact

there is a positive constant c such that Ũ > c everywhere. Since U = Ũ/
√
I it follows

that if I(t) → I∗ as t → +∞ then U > c/
√
I∗ > 0 in some neighborhood of t = +∞,

so that by the Lagrange-Jacobi identity Ï ≥ 2c/
√
I∗ near t = +∞ This inequality is

inconsistent with I(t)→ I∗, a contradiction implying that the finite limit I∗ cannot
exist. A similar argument holds as t→ −∞. QED

Exercise 0.10. For power law potentials with exponent α derive the variant of
the Lagrange-Jacobi identity

{eq:LagJac_alpha}{eq:LagJac_alpha} (49) Ï = 4E + (4 − 2α)U.

Exercise 0.11. Use the Lagrange-Jacobi identity to show that if q(t) is a pe-
riodic solution for the standard N-body problem then its energy E satisfies

E = −1

2
< U >

where < U >∶= 1
T ∫

T
0 U(q(t))dt is the average of the negative of the potential energy

over one period T of the orbit.

Exercise 0.12. In the case of the power law potential in the limit α = 0 appro-
priate to ‘real’ planar gravity, we have U = −Σmamb log(rab). Show that regardless
of energy every solution is bounded over its entire interval of existence.
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4. The Shape Sphere for three bodies.

word ‘reduction’ not used
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The three masses of the three-body problem form the vertices of a moving triangle.
Galilean invariance (see figure 1) suggests the triangle’s motion depends only on
its congruence class. The three side lengths r12, r23, r31 fix this congruence class
so we expect there to be a 2nd order differential equation in sidelengths which
is equivalent to the equations defining the planar three-body problem. Such an
equation, depending parametrically on the value J of the angular momentum, exists
away from collinearity. We can avoid the problems at collinearity by working with
oriented congruence classes rather than congruence classes of triangles.

Definition 0.13. Two configurations (points of C3) are ‘oriented congruent’
if a rigid motion (see definition 0.8) takes one to the other.

Definition 0.14 (Shape Space). Shape space for the planar three-body problem
is the space of oriented congruence classes of triangles, endowed with the quotient
metric as inherited from the mass metric on C3.
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When we use oriented congruence instead of congruence then triangles related to
each other by a single reflection are considered to be distinct, or have different
‘shapes’.

The oriented congruence class of a triangle (q1, q2, q3) ∈ C3 is specified by fixing
its signed area A in addition to its three side lengths. The signed area is given by

(q2 − q1) ∧ (q3 − q1) = 2Ae1 ∧ e2.

Shape space is three-dimensional so there is a relation between these four numbers.
That relation is given by Heron’s formula:

A2 = p(p − r12)(p − r23)(p − r31), where p = 1

2
(r12 + r23 + r31).

Theorem 0.2. (See figure ??.) Shape space is homeomorphic to R3, with itsthm: shape space
origin corresponding to triple collision. The quotient map π ∶ C3 → R3 from config-
uration space to shape space is real quadratic homogeneous. The linear coordinates
(w1,w2,w3) on R3 can be chosen so that

w2
1 +w2

2 +w2
3 = (1

2
I)2

where I is the moment of inertia as defined above, and so that

w3 = (
√

m1m2m3

m1 +m2 +m3
)A

where A is the signed area of the corresponding triangle q with π(q) = (w1,w2,w3).

A formula for the wi in terms of the vertices qa of a located triangle can be
found in the appendix. From this formula one sees that reflections act on shape

okay? then needs to
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space by (w1,w2,w3)↦ (w1,w2,−w3). Consequently, the ‘unoriented shape space’
which is to say, the space of usual congruence classes of triangles in the plane, is
diffeomorphic to the closed half space w3 ≥ 0 within shape space R3.

The relation between objects in shape space and configuration space C3 is
usually best understood through the medium of the shape sphere.

Definition 0.15. The shape sphere is the unit sphere w2
1 + w2

2 + w2
3 = 1/4 in

shape space.

We will now show that shape sphere realizes the space of oriented similarity classes
of triangles.

def: oriented similar Definition 0.16. Two planar triangles q, q′ ∈ C3 are ‘oriented similar’ if there
is an orientation-preserving similarity -a rigid motion composed with a scaling –
which takes q to q′.

In forming the space of oriented similarity classes of triangles we do not allow triple
collision triangles to count as viable triangles. Triple collisions are excluced for the
same reason that we exclude the origin of a vector space when we projectivize the
vector space to form the corresponding projective space. Triple collision triangles
are all of the form q = (z, z, z) = z1 where 1 = (1,1,1).

Proposition 0.2. The shape sphere is diffeomorphic to the space of oriented
similarity classes of non-triple collision triangles, which is to say, it is the quotient
space of C3 ∖C1 by the group of orientation-preserving similarities.
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Figure 3. The shape sphere. The points marked B12,B23,B31
represent the three binary collisions. The points marked
E1,E2,E3 represent the three Euler configurations. fig:shape sphere

Proof. Scaling a triangle q ∈ C3 by λ > 0 sends q ↦ λq and hence sends the
corresponding shape w ∈ R3 to λ2w. It follows that the oriented similarity classes
of triangles are in bijective correspondence with the rays through the origin (triple
collision!) of shape space. As with any real vector space, this set of rays is in
turn in bijective correspondence with the sphere about the origin. We could use
any non-zero radius, relative to any norm to define this sphere. We use the sphere
w2

1 +w2
2 +w2

3 = 1/4 for this sphere and call it S2. The metric rationale behind the
1/4 and this choice will be given later.

We have drawn the shape sphere in figure 3. Its equator w3 = 0 represents the
collinear configurations. The three binary collision points r12 = 0, r23 = 0, r31 = 0
are three special points which lie on the equator of the shape sphere. Euler’s three
collinear configurations are three other special points, and they are interleaved with
the collision points. Finally we have Lagrange’s two equilateral triangles, a ‘right
handed one’ and a ‘left handed one’ which we may think of as the North and South
pole of the shape sphere.

The mass inner product induces a metric on shape space to be described mo-
mentarily. In this metric, the distance of a triangle to the origin (triple collision)
is

r =
√
I.

We will use (r, s) ∈ [0,∞) × S2 as spherical coordinates on R3, so that

w = ∥w∥s, r2 =
√

2∥w∥

U , the negative of the potential, is invariant under isometries of the plane, so
induces a function U = U(w1,w2,w3) on shape space. Being homogeneous of degree
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Figure 4. Contour plot for the shape potential. The absolute
minimum occurs at the Lagrange points at the north and south
poles. The binary collisions are poles where the potential tends to
infinity. The red curve is a saddle curve which passes through all
three Euler points if the three masses are equal. fig: shapePotential

−1 with respect to scaling we have, in spherical coordinates

U(r, s) = 1

r
Ũ(s), s ∈ S2.

where
Ũ ∶ S2 → R,

the homogenized version of U will be called the shape potential. Our eight marked
points are special points for the three-body problem precisely because they are
critical points of Ũ . The binary collision points are the poles of Ũ , the three
points where it achieves its maximum of ∞. The Lagrange points are the absolute
minimum points of Ũ and the Euler points are its saddle points. See figure ??.

4.0.1. Shape Metric. Shape space inherits a metric from the Euclidean struc-
ture (mass metric) of configuration space. The group of rigid motions of the plane
acts on configuration space by isometries. The quotient of any metric space by a
‘nice’ 4 group of isometries inherits a metric. The distance on the quotient is defined
by declaring that the distance between two points of the quotient is the distance

4‘nice’ means all orbits are closed
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between their corresponding orbits in the original metric space. Shape space is such
a metric quotient.

The shape space metric is Riemannian away from the origin. Its associated
kinetic energy will be denoted by Ksh = Ksh(w, ẇ). If we know the angular mo-
mentum J of a curve q(t) in configuration space, then its kinetic energy K = 1

2
⟨q̇, q̇⟩

is given by

K =Ksh(w, ẇ) + 1

2

J2

r2
, w(t) = π(q(t)).

It follows that the energy associated to q(t) is

{eq: energy decomp}{eq: energy decomp} (50) E =Ksh +
1

2

J2

I
− 1

r
Ũ(s)

The explicit expression for the shape kinetic energy is

Ksh(w, ẇ) = 1

2

∥ẇ∥2

4∥w∥
where ∥w∥2 = w2

1 +w2
2 +w2

3 is the standard Euclidean length squared. Said in other
terms, the corresponding Riemannian metric is

ds2
shape =

∥dw∥2

4∥w∥ .

Let ∇ be the corresponding Levi-Civita connection. In the appendix we show that,
which appendix? - or
maybe the section on Nat-
ural Mech systems w sym-
metry? -RM

at fixed total angular momentum J the 3-body equations, projected to shape space,
become :

{eq: Wong 3bdy}{eq: Wong 3bdy} (51) ∇ẇẇ = −∇(V + 1

2

J2

I
) − 2J

∥w∥2
w × ẇ

We call these the reduced equations after the notion of “symplectic reduction”. See
equation (108) of our first appendix and the paragraph following that equation for
a derivation of these reduced equations. The reduced equations have been most
useful to date in the case J = 0 where they become:

∇ẇẇ = ∇U.

4.1. The case of equal masses and its subproblems. When the masses
are all equal then their permutations induce isometries of C3 and hence of shape
space. For example, to interchange 1 and 2 is the map (q1, q2, q3) ↦ (q2, q1, q3).
Combined with reflection (q1, q2, q3) ↦ (q̄1, q̄2, q̄3) these isometries generate the
action of the 12-element dihedral group D6 of a hexagon on shape space. This
action is best seen through its induced action on the shape sphere. There, the
group action is generated by reflections about 4 great circles, the three isosceles
great circles rab = rac and the collinear equator w3 = 0.

These four circles correspond to four planes through the origin in shape space.
Solutions tangent at any non-collision instant to any one of the planes remains
within that plane. In this way we can see that the equal mass zero angular mo-
mentum planar three body problem contains within it four subproblems. These are
the three isosceles subproblems and the collinear three-body subproblem. These
subproblems are two-degree of freedom problems so are simpler to analyze and
understand than the full problem.
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Figure 5. The Hill region in shape space for values DZIOB =
HJ2 below the minimum value of Ũ corresponding to the Lagrange
configurations. fig:HillRegion2

In the equal mass case, the Euler and binary points are equally spaced on the
equator while the Lagrange points are placed at the geometric North and South
pole, as far as can be from the collinear equator.

4.2. Morse theory and dynamics. Figure 6 depicts the basic picture of
Morse theory for Ṽ = −Ũ where Ũ is what we have called the normalized potential.
This picture govern many of the global features of planar three-body dynamics.

A function is called “Morse” if all its critical points are non-degenerate, meaning
that the Hessian of the function at these points is a non-degenerate quadratic form.
Morse theory [98] reconstructs the topology of a manifold from that of the sublevel
sets f ≤ c of a Morse function f on the manifold, doing so by paying careful attention
to how these sets change as one passes through critical values of the function. Ũ
is a Morse function for the three-body problem, which means so is Ṽ = −Ũ . The
sublevel sets Ṽ ≤ −c are the super-level sets Ũ ≥ c and are the shaded domains
in figure 6 for three values of c, the value decreasing as the panels descend. To
understand what these pictures tell us about dynamics, fix the values of the energy
E and angular momentum J , thus defining a subvariety

PE,J ⊂ P0

invariant under the planar three-body flow.

Proposition 0.3. Consider the projection P0 = P0(2,3) → S2 of the centered
planar three-body phase space to its shape sphere, namely the map which sends a
phase point to the shape of its configuration. Under this projection the energy-
momentum level set PE,J , E < 0, projects onto the super-level set Ũ ≥ c ⊂ S2 where
c = ∣E∣J2 is the Dziobek value above. If E ≥ 0 then the level set projects onto all of
S2.

include a proof, or a refer-
ence to a proof. -RMThe proposition provides dynamical constraints on the possible shapes that

might arise during evolution. For example, if −EJ2 ∶= c >> 1 corresponding to the
top panel of figure 6 then the shape region of the proposition consists of three small
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disjoint discs, one centered at each of the three collisions. The disc about collision
1, that is, the collision of masses 2 and 3, is characterized by r23 << r13, r12. It
follows that for c in this range the dynamics is always that of a “tight binary”:
two close masses, spinning fairly quickly about each other, with the third mass
remaining relatively far away throughout the evolution. Which pair is tight cannot
change with time since the discs are disconnected.

Definition 0.17. The Hill region for energy E and angular momentum J is the
projection of PE,J to configuration space E0. The Hill shape region is its projection
to shape space. The normalized Hill shape region is its further projection to the
shape sphere.

Thus, the proposition describes the normalized Hill shape region in terms of Ũ .
The middle panel of figure 6 depicts a bifurcation occuring at the value of c for

which Ũ = c passes through the three Euler points. The critical values of Ũ are the
Euler points and the Lagrange points: the central configurations of the Tour. These
critical values are precisely those for which the topology of PE,J changes, and are
simultaneously the values of c = −EJ2 for which PE,J is not a smooth manifold.
These critical values, generalized to higher N , are the concern of question 1, chapter
1 of this book.

some words on sundman’s
zero ang mom theorem-
forbids regions from con-
necting through the cone
point... ? -RM

Figure 6. Bifurcations of the normalized Hill Shape Region as
a function of the Dziobek parameter ∣E∣J2. The top panel is for

Dz >> 1. Bifurcations occur in the shape as the value of Ũ at the
Euler configurations are crossed, and again, as the Lagrange value
is passed. The bottom panel is for Dz small. fig: shape sphere morse

FROM RICK W CREDIT : Hill regions over shape sphere
as functions of Dz -RM
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5. Reduction and a shape sphere for more bodies
sec: reduction0

The Morse-theoretic picture just described for the planar three-body problem
generalizes to the N-body problem. The perspective to take is that the N-body
problem is not one problem, but rather a family of problems parameterized by
energy and angular momentum. We want to get a sense of changes in dynamics
due to topological changes in the corresponding phase space occuring as we vary
energy and angular momentum.

We focus on the case of the planar N body problem, where this picture is
most complete. Our first task is to find the analogue of the shape sphere as the
arena for drawing our pictures. When we think of points of the shape sphere as
oriented similarity classes on triangles, the correct analogue becomes clear: the
space of oriented similarity classes of planar N-gons. Group-theoretically this space
is formed by letting the group of rigid motions act on configuration space, deleting
the total collisions, and forming the quotient. We can form the quotient in stages,
first by translation, then by rotations, then by scaling. The quotient by translations
has already been achieved by going to center-of-mass coordinates, and brings us to
E0(2,N) = CN−1 with origin representing total collision. When combined, the
group of rotations and scalings forms the group C∗ of nonzero complex scalars
acting on on CN−1 by scalar multiplication. Upon deleting the origin and forming
the quotient we get the standard representation of projective space. In this way we
are led to the higher N-version of the shape sphere as CPN−2 = (CN−1 ∖ {0})/C∗.
Note that CP1 = S2, thus recovering the shape sphere for N = 3. We record the
preceding discussion as a definition.

Definition 0.18 (Normalized Shape Space). Normalized shape space for the
planar N-body problem is the space of oriented similarity classes of planar N-gons,
identified with CPN−2, as just described.

As we have seen, upon going to center-of-mass coordinates the phase space P0

of the planar N-body problem becomes T ∗(CN−1 ∖ ∆). We then have the shape
projection

π ∶ P0 = T ∗(CN−1 ∖∆)→ CN−1 ∖∆)→ CPN−2 ∖∆.

(In the last line ∆ denotes the projectivized collision locus.) Now the N-body flow
leaves invariant the functions of total energy E, and angular momentum J , so that
P0 is foliated by invariant codimension two-subvarieties PE0,J0 = {E = E0, J = J0} ⊂
P0. Consider their images under shape projection :

ΩE,J ∶= π(PE,J) ⊂ CPN−2

The Morse-theory inspired question we want to ask is: How do the domains ΩE,J
depends on E and J? And how does this dependency affect dynamics on the PE,J?

Inspired by the usual notion of “Hill region” in classical mechanics, we will
call ΩE,J the ‘normalized Hill shape region” for the given choice of E and J . We

will describe these regions in terms of the normalized potential Ũ defined earlier
(definition 48). We recall that U = 1

r
Ũ where r2 = ∥q∥2. This function Ũ is in-

variant under rotations and scalings so can be viewed as a continuous function on
normalized shape space:

Ũ ∶ CPN−2 → R ∪∞.
Here we added in ∞ to the range of the potential so that Ũ(∆) =∞. (Ũ is analytic
away from ∆.) Recall (equation (45) the scale-invariant Dziobek constant.
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Theorem 0.3. The normalized Hill shape regions are superlevel sets of the
normalized potential Ũ as follows. If EJ2 < 0 then

ΩE,J = {s ∈ CPN−2 ∶ +∞ > Ũ(s) ≥
√

2∣E∣J2}.
If EJ2 ≥ 0 then ΩE,J = CPN−2 ∖∆

Figure 7. A slice through the 4-body Hill region for c large. The
slice represents RP2, the collinear 4-body problem. The 6 lines
are the intersections of ∆ with the collinear slice. The region is a
deleted neighborhood of ∆. fig: 4bdyHill

Remark. It can be useful to include ∆ in to the Hill region at times so that

ΩE,J ∪∆ = {s ∈ CPN−2 ∶ Ũ(s) ≥
√

2∣E∣J2} for E < 0.
Proof. The decomposition (50) remains valid, where Ksh is now a positive

definite quadratic form in shape momenta and energy is E =K −U and U = 1
r
Ũ(s).

The shape variables themselves are coordinatized by (r, s)(0,∞) ×CPN−2 with rs
playing the role that w ∈ R3 played in describing three body shape space. Shape
space itself is the quotient of configuration space by rigid motions. (In an appendix
we explain these coordinates in more detail and verify that shape space is the cone

over CPN−2. See appendix XX for details. ) Freeze J = J0 and set Veff = 1
2

J2
0

r2
−U

fill in ref; or fill in early
Saari decomp ref and refer
to that ... -RM

so that, with J frozen we have that E =Ksh +Veff(r, s;J0). If we now fix E = E0 =
const then we must have that Veff(r, s;J) ≤ E0 since Ksh ≥ 0. Conversely, since the
shape momenta vary over a vector space, we can always arrange that Ksh = E0−Veff
provided E0−Veff ≥ 0. This proves that ΩE0,J0 = {s ∈ CPN−2 ∶ ∃r Veff(r, s, J0) ≤
E0}. Now freeze s as well as E0, J0 and look at the condition Veff(r, s, J0) ≤ E0

as a constraint on the positive radial variable r. Multiplying through by r2 and
rearranging yields E0r

2 + rŨ(s) − 1
2
J2

0 ≥ 0. The left hand side of this inequality is
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a quadratic polynomial in r whose discriminant is ∆ = B2 − 4AC = Ũ2 + 2E0J
2
0 . If

E0 ≥ 0 the polynomial is eventually positive provided we take r sufficiently large
and hence every s ∈ CPN−2 lies in ΩE0,J0 . On the other hand, if E0 < 0 then
this polynomial tends to negative infinity with increasing r and there may or may
not be solutions to the inequality. By plotting the parabola which is the graph of
r ↦ E0r

2 + rŨ(s) − 1
2
J2

0 we see that there are positive solutions to the inequality if
and only if the roots to this quadratic polynomial are real, which is to say if and

only if ∆ ≥ 0. The latter holds if and only if Ũ(s) ≥
√

2E0J2
0 , establishing the

claimed characterization of ΩE0,J0 . QED

Corollary 0.1. The normalized shape Hill regions change topology only at
values c = −EJ2 which are critical values for Ũ . The corresponding critical points
are the only possible points at which {Ũ = c} might fail to be a smooth hypersurface.

Proof. The proof is application of the basic ideas of Morse theory. See [98].

Set Σc ∶= {Ũ ≥ c} ⊂ CPN−2 and look at how these sets change as a function of c.
We have c1 < c2 Ô⇒ Σc1 ⊃ Σc2 , Σ0 = CPN−2 and Σ∞ = ∆. As we drop down from
c = +∞ to c = 0 the subsets are diffeomorphic as long as we do not encounter any
critical values of Ũ . In other words, if the interval [a, b] is free of critical values, then
all the sets Σc, c ∈ [a, b] are diffeomorphic. So, every time the Dziobek parameter

c = −EJ2 crosses a critical value of Ũ , we expect a topological change in ΩE,J and
hence in PE,J . That the hypersurfaces are if c is not critical is just the implicit
function theorem. QED

In the next section we will see that the seeds of these topological changes,
namely the critical points of Ũ , have their own dynamical importance. They are
relative equilibria, the higher N analogue of the solutions of Euler and Lagrange
described in the Tour. Counting them is the subject of our first open problem.

END ...
add some more on Saari
decomp; bifurcations,
perhaps Smale results
-RM

include here or in appen-
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rel periodic implies q periodic

5.0.1. Quasi-periodicity. Proof that ‘relative periodic implies quasiperi-
odic”.

We give the proof in the planar case.
Step 1. Getting the monodromy to be orientation preserving. Suppose that

q(t + T ) = g0q(t). We may assume that g0 ∈ SO(2), for if g0 ∈ O(2) ∉ SO(2) then
g2

0 ∈ SO(2) and we have q(t + 2T ) = g2
0q(t). So we just go ‘twice around” q.

Step 2. E0 ≅ CN−1 in the planar case and the projection π ∶ E0 → E0/S1 =
Cone(CPN−2) gives E0 the structure of a principal circle bundle away from 0.
Our solution curve q(t) avoids total collision by assumption. If our curve is rela-
tively periodic then its projection to shape space is periodic so yields an an em-
bedded S1 ⊂ Cone(CPN−2). Restricted to this shape curve, our projection π yields
a principal circle bundle over a circle. Any such bundle is trivial, so we can iden-
tify π−1(shape curve) with S1 × S1 In these coordinates q(t) is coordinatized as
(θ1(t), θ2(t)) with θ1(T ) = θ1(0) while θ2(T ) = ω + θ2(0). A bit of work now yields
that we can find a diffeomorphism of the two torus S1×S1 turning this curve into one
for which θ2(t) = t+ω t

T
and so q(t) is quasi-periodic with at most two frequencies.

I removed the section
“perturbation theory”; it
was just 6 lines , one para-
graph. I’ve relegated it to
the Appendix and proba-
bly will leave it out of the
book -RM

moved section on La-
grangian and Hamiltonian
formalism to the appen-
dix. -RM

6. Limitations
sec: finite size

6.1. Finite size, harmonic functions and 1/r. Planets and stars are balls
of matter, not points. It is a remarkable and beautiful theorem of Newton that the
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combined gravitational forces exerted by the masses of a spherical mass distribution
on a point exterior to the distribution is exactly what we would get if we simply
placed all of the mass at a point at the sphere’s center. (See Chandrasekhar, chapter
15. Newton, Prop. LXX1, Theorem XXX1.) This theorem is basic to the power
of Newton’s law of gravitation and is essentially equivalent to the fact that the
fundamental solution to the Laplacian in R3 is a constant times 1/r.

The fundamental solution for the Laplacian in Rd is c/rd−2 and so one arrives
at the same theorem regarding spherically symmetric mass distributions in Rd,
provided the gravitational force is taken to be F (x, y) = −mamb∇a(1/∣x − y∣d−2),
which is to say, a 1/rd−1-force. For this reason, many people object to power law
potentials with arbitrary exponents α in arbitrary dimensions d. They exclaim to
me that if you insist on working in d dimensions then you have to take

α = d − 2

Exercise 0.13. Suppose we take the pair potential between two bodies in Rd to
be of the form mambf(rab) so that the force on body a is −ma∇aΣmbf(rab). Replace
the finite collection {mb, b ≠ a} of masses by a a mass distribution ρ(b)db so that
the force of the mass distribution on a body x exterior to the mass distribution
is, up to a constant, minus the gradient of W (x) = ∫B f(∣x − b∣)ρ(b)db. Suppose
that the distribution is spherically symmetric so that ρ(b)db = ρ(∣b∣)db with db being
Lebesgue measure in d-dimensions. Prove that ∇W (x) = c∇f(r) for some constant
c if and only if f = c2rd−2.

With this perspective taken, we could formulate the N-body problem on any
non-compact symmetric space, taking the pair potential to come from the funda-
mental solution to the Laplacian. Lobachevsky himself stated the Kepler problem
on hyperbolic space. See [83].

Exercise 0.14 (Open problem? ). Investigate the Kepler problem in complex
hyperbolic space

6.2. Relativitistic limitations. Special relativity tells us the speed of a
massive object must be less than the speed c of light. But as our point masses
approach each other the forces between them increase so that as they tend to col-
lision, their velocities tend to infinity, in clear violation of the dicates of special
relativity. To be concrete, consider N equal masses with mass m engaged in a
zero energy solution. From H = K − U we get K = U . Now K = m

2
Σ∣va∣2 while

U = ΣGm2/r2
ab. If vmax is the maximum velocity of the bodies and rmin is the

minimum of the interbody distances rab then Nmv2
max ≥ 2K while U ≥ Gm2/r2

min

so that 2Nmv2
max ≥ Gm/r2

min, or v2
max ≥ Gm/2Nr2

min. The relativistic constraint

c2 ≥ v2
max yields rmin ≥

√
G/2N(m/c). Imposing special relativity limits approach

to collision in gravity. This discussion ignores the relativistic coupling of mass
with velocity as measured in a fixed inertial frame. As the velocity of a massive
particle increases so does mass, increasing without bound as the speed of light is
approached. We will not even bother trying to figure out what to do with that
massive can of worms in relation to any N-body type equations.

A more serious philosophical objection to Newtonian gravity raised by special
relativity is that forces cannot be transmitted instantaneously. This is the property
of “action at a distance”. In equation 5, 2 a tiny change in the position of one body
instantaneously affects the forces on all bodies, even those light-years away. It seems
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to be impossible to write down N-body type ODEs which are invariant under the
Lorentz transformations of special relativity. One can imagine trying to pose N-
body type problems using differential delay equations, staggering the time at which
forces are applied according to the speed of light. This has never been done in a
useful consistent way. (The interested reader may wish to consult Feynman and
Wheeler [41] who argue that one must apply a “Jacob’s ladder” of retarded and
advanced potentials -forward and backwards delays as it were– in order to formulate
Maxwell’s equations as an N-body variational principle.)

Finally, Newton’s N-body equations are a limiting case of general relativity
to which we refer the interested reader to the beauiful short book by Einstein
[33]. The equations describing general relativity are PDEs known as Einstein’s
equations. The general relativistic two-body problem is that of two black holes
moving under each other’s gravitationally fields and cannot be solved in closed
form. Numerical solutions for this two-body problem proved crucial in interpreting
the LIGO observations of gravitational waves from a pair of black holes merging.

7. Notes.

Pollard. Singer. Landau-Lifshitz.
The collision locus ?? is often called the fat diagonal.
In my N-body career I’ve avoided perturbation theory like the plague. I believed

it hopeless to try to compete with its many illustrious practitioners: Lagrange,
Laplace, Poincaré, Arnol’d, Meyer, etc. and have instead settled myself into some
unexplored niches of celestial mechanics, notable variationally motivated crevices
of the subject.

incompleteness:
The flow is incomplete: some solutions fail to exist for time t due to collisions.

The set of inital conditions yielding incomplete solutions is non-empty but measure
zero. CITE SAARI.

Shape space and Iwai. Clearly stated in [?] : Topology and Mechanics II.
Quotients: Bierstone.
Center-of-mass frame. Albouy advocates for a different way to quotient out by

translations which he has christened the method of “dispositions”. See [?], [?], [7].
His method is based on intrinsic linear algebra. It has proved especially well-suited
for attacking open question 1 here, that of counting central configurations.

Formalisms of classical mechanics. The Lagrangian and Hamiltonian formalisms
are covered in most books on classical mechanics. For treatments with significant
mathematical depth I recommend [?] and Arnol’d.
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CHAPTER 1

Is the Number of Central Configurations Finite?

Open Question 1.1. Is the number of central configurations (mod symmetries)
finite?

1. Why care?

When teaching dynamics I will hand my students a polynomial vector field to
analyze for their homework. I teach them to start by locating the zeros of the
vector field - its equilibrium points. Once found, linear analysis comes to the fore
and a whole game unfolds.

Newton gave us homework in 1687 in the form of equation (5). But the N-body
system has no equilibria. N stars cannot just sit in space, unmoving. They attract
each other! It seems that we cannot start the game.

The next best thing to an equilibrium is a relative equilibrium : an equilibrium
modulo symmetries. Upon forming the quotient of phase space by the symmetry
group of Galilean motions (section ??) the relative equilibria project to equilibria
for the quotient dynamics. We can use these quotient equilibria as replacements
for equilibria, and can begin Newton’s homework assignment.

def:relative equilibrium Definition 1.1. A relative equilibrium for the N-body problem is a solution to
the problem having the form

q(t) = g(t)q∗
where q∗ ∈ Ê is a fixed collision-free configuration and where g(t) ∈ SO(d) is a
one-parameter group of rotations of Rd. A relative equilibrium configuration q∗ is
a configuration through which passes a relative equilibrium.

We have already the seen relative equilibria for the 3-body problem. They are
contained in the solutions found by Euler and Lagrange as described in the Tour
in subsection 3.1.

On the other hand

def:cc Definition 1.2. A central configuration for the N-body problem is a configu-
ration which, dropped from rest, evolves by shrinking to total collision at its center
of mass point, all the time remaining in its same shape and orientation. In other
words, if the initial configuration q∗ has center of mass is zero, then q∗ is a central
configuration if and only if the solution q(t) to the N-body equations having initial
conditions (q, v) = (q∗,0) has the form

{ansatz_cc}{ansatz_cc} (52) q(t) = r(t)q∗, r(t) ∈ R

We sometimes refer to such solutions as “dropped central solutions”.

61
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In the planar N-body problem central configurations are the same as relative
equilibrium configurations.

prop: CCS=REs Proposition 1.1. For the planar N-body problem the set of central configura-
tions coincides with the set of relative equilibrium configurations.

For the proof of Proposition 1.1 see subsection 3.1 below.
Due to the rotational and scaling symmetries of Newton’s equations, if q∗ is a

central configuration then so is any rotate or scaling of q∗. Central configurations
come in whole orbits with respect to the action of the Lie group of rotations and
scalings and so cannot form a finite set. When counting central configurations we
must count each orbit as a single point in order to have a chance of getting a finite
number. Our open question asks:

Completed Open question. Is the set of similarity classes of central
configurations a finite subset of its normalized shape space?

1.1. Relations between CCs and REs for higher d. For dimensions d ≠ 2,
the central configurations and relative equilibrium configurations are no longer
equal. The relations between these two sets of configurations for the N-body prob-
lem in d dimensions are as follows.

prop: CCS=REs2 Proposition 1.2. Write RE for the set of relative equilibrium configurations
and CC for the set of central configurations for the N body problem in d-space.
Then

a) If d is even then CC ⊂ RE.
b) If d is odd then CC ∖RE ≠ ∅.
d) If d ≥ 4 then RE ∖CC ≠ ∅.

The proof of Proposition 1.2 is scattered through the chapter and help serve as
a kind of guide to the chapter. For the proof of (a) go to the subsection 3.3. For the
proof of (b) see Proposition 1.5 below where we show that the regular simplex in
any dimension is a central configuration. In odd dimensions the simplex cannot be
rotated so as to yield a relative equilibrium. For example, the regular tetrahedron
cannot be a relative equilibrium for the 4 body problem in 3 space since any one-
parameter subgroup of rotations has an axis of rotation and hence is the rotation
of some plane. The entire simplex does not sit in the plane so one of the bodies
is left doing circles above or below the plane which contradicts the laws of gravity:
the result cannot solve the 4 body problem. For (c) see section 1.6.

Remarks on terminology. 1. In chapter 0 we gave another definition of “rel-
ative equilibrium” : a solution under which the mutual distances remain constant.
See 0.11. It is a simple exercise to show that these two definitions are equivalent.

2. Albouy and Chenciner [7] wrote a seminal work on expressing the N-body
problem solely in terms of mutual distances. There they introduced the phrase
“balanced configuration” as a synonym for “relative equilibrium configuration”,
part of the idea behind the word “balance” being that gravitation and centrifugal
forces must “balance” in order to be able to spin such a configuration and get it to
be a solution.

subsec: motivations

1.2. More reasons to care.reasons
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● (1) Central configurations correspond to the actual equilibria of a partial
compactification of the N-body problem known as the McGehee blow-up.
See theorem 1.2.

● (2) Central configurations are the only roads in and out of total collision.
See proposition ??

● (3) Relative equilibria are the critical points of the energy-momentum
map. Consequently, the behaviour of these maps at relative equilibria
provide the dominant input as to the topology of these manifolds and the
corresponding symplectic and contact reduced spaces.

● (4) Central configurations and relative equilibria generate the only solu-
tions to the N-body problem for which we have explicit formulae.

Reason (3) is explained in proposition ??. Reason (4) is explained below in lemma
1.1. For explanations of reasons (2)-(4) go to section 1.4 for details.

start off refering to CCs as
being critical pts.. refer
chapter 0 re U -RM1.3. CCs as critical points. We have seen (equation (35) that Newton’s

equations are succinctly encoded by the function U , the negative of the potential.
U has no critical points, however, the normalized potential of definition (48

{eq: scaled U}{eq: scaled U} (53) Ũ =
√
IU ∶ Ê0 → R

has critical points and these critical points are precisely the central configurations
whose center of mass is at zero. Here I(q) = ∥q∥2 is the moment of inertia. See
exercise 1.1 below.

Ũ is invariant under scaling and rotation and hence descends to yield a function
on the normalized shape space, the quotient of E0 by scalings and rotations. (See

so: have to define normal-
ized shape space in intro
ch -RM

figures 4 and 6 for depictions of its contours when N = 3). The open question then

asks: Does Ũ , viewed as a function on the normalized shape space, have a finite
number of critical points?

2. What’s known?

We saw all of the central configurations for the planar three-body problem in
the tour of chapter -1. Modulo oriented similarity there are five: the three collinear
solutions of Euler and the two equilateral solutions of Lagrange.

Moczurad and Zgliczyński [99] compiled the table below for the equal mass case
up to N = 7. The table lists the number “#’ of oriented similarity classes of central

N unlabelled # labelled #
2 1 1
3 2 5
4 4 50
5 5 354
6 9 3624
7 14 53640

Table 1. Counting central configurations in the equal mass case.
See [99]. The middle column is the number of unlabelled distinct
configurations. The last column counts the number after labelling.tab:equalmassCCs

configurations in the equal mass planar N-body problem as a function of the number
N of bodies. When the masses are all equal we can permute the masses of a central
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configuration to get another central configuration. The middle column “unlabelled
# ” of table 1, counts oriented similarity classes of central configurations modulo
this action of the permutation group: it counts the number of distinct shapes of
N-gons in the plane, ignoring the mass labels at the vertices. The second column
“labelled # ” accounts for labelling. Euler and Lagrange found the 2 shapes for
N = 3. Albouy [2] established the four unlabelled shapes as depicted in figure 18
and the 50 labelled shapes for N = 4.

The next table summarizes known finiteness results for the planar N-body
problem.

N # authors year
2 1 Newton; Kepler 1667
3 5 Euler, Lagrange 1767, 1772
4 ≤ 50∗ Hampton-Moeckel; Simo 2006 ;1978
5 generically finite Albouy-Kaloshin 2012

Table 2. Established bounds for the number of planar central configurations.tab:label

N= 4. The asterisk by the result “50” for N = 4 in the table is there to indicate
that the rigorously established upper bound ( [52] ) is not 50. Simo, [99], Moeckel,
and others have done careful numerics which make it nearly certain that 50 is the
actual least upper bound. But the rigorously established upper bound is 8472.

N = 5. In the table’s last row “generically finite” means that the number
of central configurations mod symmetry is finite provided the vector of masses
m⃗ = (m1, . . . ,m5) comes from a generic set, specifically from a Zariski-dense subset
of the positive part of R5. masses.

The following counterexample discovered by Gareth Roberts [?] underlines the
difficulty of the problem.

Theorem 1.1. In the five body problem if we allow one of the five masses to
be negative then the answer to the open question is no. Specifically if the mass
distribution is (4,4,4,4,−1) then there exist a curve’s worth of inequivalent central
configurations within the planar 5-body normalized shape space.

Robert’s example is not a counterexample to the conjectured finiteness since
for gravity we require masses to be positive. Understanding Robert’s example in a
deep way proved essential to Albouy and Kaloshin [6] for their N = 5 result.

2.1. A few general results.

Definition 1.3. Write #(N,m, d) for the number of central configurations for
the N body problem with mass distribution m, and the bodies moving in d space.

subsubsec: Moulton
2.1.1. Moulton’s Collinear result.

#(N,m,1) = 1

2
N !

Moulton [120] established this fact by showing that there is exactly one linear
central configuration for each ordering of the N masses on the line. See proposition
1.4 below for a restatement and a proof. There are N ! such orderings, hence the
count. If we view these collinear central configurations within the plane instead of
the line then an extra symmetry acts: rotation of the line by 180 degrees within
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the plane which acts by O(1) = Z2 on the line, flipping the ordering of the masses
on the line. It is standard to count a linear central configuration and its flip as the
same. We thus get N !/2 linear Moulton central configurations for any given mass
distribution. When N = 3 these are the 3!/2 = 3 central configurations found by
Euler.subsubsec: Xia

2.1.2. Xia’s open finiteness results. Xia [?] has established, for any N , the
existence of an open set of mass distributions m = (m1, . . . ,mN) such that

∃m1, . . . ,mN ∶ #(N,m,2) = (N − 2)!((N − 2)2N−1 + 1),
thus establishing finiteness for an open set of mass distributions. Xia’s construction
is iterative, assuming m1 and m2 are close to equal, then imposing conditions of
the form mi >>mi+1 on successively introduced masses.

2.1.3. Palmore’s Morse estimates. As described above (see also exercise 1.1)

central configurations can be characterized as the critical points of the function Ũ
on shape space. (See equation (53). This function depends parametrically on the
mass distribution m = (m1, . . . ,mN).

Proposition 1.3 (Palmore; see Moeckel, Prop. 25). Suppose that for some

mass distribution m the scaled potential Ũ is a Morse function on the planar N-
body shape space CPN−2 ∖ ∆. Then, for that mass distribution, the answer to the
Open Question is ‘yes’ and, moreover, we have the Morse lower bound

3

4
N ! − 1

2
(N − 1)! ≤ #(N,m,2)

for the number of central configurations.

For example, for N = 10 the Moulton number is 1,814,400, while the Morse
lower bound of Palmore is 2,540,160.

3. Central Configurations as Critical Points
sec:CC eqns

We derive the fact that central configurations are critical points of functions
built from U and I (equations 24, 40).

View equation (52) from Definition 1.2 as an ansätz for a solution to Newton’s
equations and plug it into the condensed form (35) of the N-body equations to get

{cc0}{cc0} (54) (r̈)q∗ =
1

r2
∇U(q∗)

where we used r2 = ∥q∥2 and that ∇U is homogeneous of degree −2. Take the mass
inner product of both sides of this equation with q∗ to arrive at

{cc1}{cc1} (55) r̈ = − µ
r2

where

{KeplerConstant}{KeplerConstant} (56) µ = U(q∗)
I(q∗)

In arriving at (56) we’ve used r2 = I(q) = ⟨q, q⟩ and −U(q) = ⟨q,∇U(q)⟩ the latter
following from U being homogeneous of degree −1 and Euler’s identity. Equation
(55) is the 1-dimensional Kepler problem. (See section 0.2.) If r(t) solves equation
(55) then r̈r2 = −µ = const so equation (54) yields

{cc2}{cc2} (57) ∇U(q) = −µq; for q = q∗.
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We will call this equation the central configuration equation .
These steps are reversible. Suppose that q = q∗ solves the central configuration

equation (57). Form the one-dimensional Kepler problem (55) with Kepler constant
µ given by equation (56) and take the solution r(t) having inital conditions r(0) =
1, ṙ(0) = 0 to arrive at a dropped central solution as per definition 1.2. Thus central
configurations are the solutions to the central configuration equation (57).

We can rewrite the central configuration equation (57) as the Lagrange multi-
plier equation

{cc3}{cc3} (58) ∇U(q) = −λ∇I(q) λ = µ/2
since ∇I = 2q. Equation (58) says that q is a critical point of the function U
restricted to the sphere I = I(q∗).

We have just shown that central configurations are critical points of the function
U upon restricting it to a sphere I = const.. Here are two additional characteriza-
tions of central configurations as critical points.

ex: CC1 Exercise 1.1. A. Show that the central configurations are the critical points
of the normalized potential Ũ =

√
IU . (See definition 48.)

B. Show that critical points of the function U + I are central configurations
and that any central configuration can be scaled so as to be a critical point of this
function.ex: CCs

subsec: planar case
3.1. The planar case. Proof of Proposition 1.1. By making slight varia-

tions in the derivation just given of equations 58 and 57 we will prove Proposition
1.1 which says that central configurations and relative equilibrium configurations
are the same thing in the planar N-body problem.

Identify R2 with C in the usual way, so that (x, y) is sent to (x+iy) and rotation
by θ becomes multiplication by λ = eiθ. Then E ≅ CN . Replace the real scalar λ(t)
in our ansätz with the complex scalar λ(t) ∈ C. Observe that ∇U(λq) = λ

∣λ∣3∇U(q)
for λ ∈ C. Now go through precisely the same manipulations as we went through
above, to see that our modified ansätz with λ(t) ∈ C satisfies Newton’s equations if
and only if equation 57 is satisfied together with the 2-dimensional Kepler problem
λ̈ = −µ λ

∣λ∣3 . The Kepler constant µ is still given by equation (56). Since our planar

Kepler problem admits the circular solution λ(t) = eiωt with frequency ω satisfying
ω2 = µ we have proved the proposition. QED

A moment’s reflection shows we have proven more:

lem:CCtoRE Lemma 1.1. In the planar N-body problem a complex one-dimensional family
of solutions of the form q(t) = λ(t)q∗ passes through each central configuration

q∗ ∈ CN where the λ(t) solve the corresponding planar Kepler problem λ̈ = −µ λ
∣λ∣3

described above. The complex parameter can be taken to be the initial Keplerian
velocity λ̇(0) at time 0 of the initial conditons (λ(0), λ̇(0)) to our Kepler problem,
where we take λ(0) = 1 to insure the family passes through q∗ at time t = 0.

These Kepler families are the exact solutions which central configurations give
rise to, referred to as the 4th ‘reason to care] in subsection 1.2.

If, instead, we label the central configurations by their shapes [s] ∈ CPN−2

then we get a 3-parameter family of solution curves (modulo time translation) for
each central configuration shape [s]. As parameters we can use the energy, angular
momentum, and orientation of the solution.
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3.2. Consequences of Criticality. The characterization of central configu-
rations as critical points has a number of consequences. We describe three now.

prop: Moulton Proposition 1.4 (Moulton). Considered modulo scaling and translation, the
collinear N-body problem has exactly N ! central configurations one for each choice
of orderings of placements of the masses on the line, and hence N !/2 when viewed
as planar CCs modulo rotations, translations and scalings.

In order to describe the next consequence we introduce the rank of a configu-
ration. This rank of a configuration q = (q1, . . . , qN) ∈ E(d,N) is the dimension of
the affine span A ⊂ Rd of its vertices q1, . . . , qN ∈ Rd. Recall that A is the smallest
affine subspace of Rd containing the N points qa and can be characterized as the
collection of all points P expressible in the form P = Σtaqa as (t1, . . . , tN) varies
over RN . We can find an isometry of RN whose fixed point set is A. It follows that
any solution to the N-body problem with initial condition (q,0) lies in A. The rank
of q is an integer which is less than or equal to both d and N − 1.

prop: simplex Proposition 1.5 (simplex). The only central configuration for the N-body prob-
lem which has rank N −1 is the regular N −1-simplex, the unique-up-to-similarities
configuration for which all side lengths rab are equal. The regular simplex is a central
configuration regardless of the mass distribution ma, a = 1, . . . ,N , and the exponent
α of the power law, for any power law N-body problem, including the gravitational
one.

In order to state the third consequence we recall that a critical point of a
smooth function is called non-degenerate if its Hessian - that matrix of second
partial derivatives - is non-degenerate. A Morse function is a smooth function all
of whose critical points are non-degenerate. Morse theory [98], one of the most
important developments of 20th century mathematics, relates the topology of a
manifold to the nature and number of critical points of a Morse function on the
manifold.

prop: Palmore Proposition 1.6. If, for a given choice m = (m1, . . . ,mN) of masses, Ũ is
a Morse function on the normalized shape space for N -bodies in d-space, then the
answer to the open question of this chapter is ‘yes’ for these masses: #(N,m, d) <
∞. Moreover, in the case d = 2 of the planar N -body problem, we have Palmore’s
lower bound

#(N,m,2) ≥ 3

2
N ! − 2(N − 1)!.

We now prove these consequences of criticality.

Proof for Proposition 1.4 [ on the Moulton configurations]. We
make use of the function U + I of part (B) of exercise 1.1.

The configuration space of the collinear N-body problem is RN . RN∖∆ consists
of N ! components, corresponding to the N ! possible orderings of N points on the
line. Each component is itself convex. The restriction of U+I to a single component
is easily checked to be convex and since it blows up on ∆ it blows up on the boundary
of any component. (See the proof of Moulton’s theorem on p. 33-35 of [101] for the
computation showing that this function is strictly convex.) A convex function on a
convex domain which blows up on the domain’s boundary has a unique minimum
in the interior of the domain. QED
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Proof of Proposition 1.5 [on the regular simplex]. We do the proof
in the power law case of U = GΣmamb/rαab

We may suppose that q is centered and that d ≤ N − 1 since the space in which
the dropped solution q(t) with initial condition (q,0) evolves is the affine space A
whose dimension is rank(q) ≤min(d,N − 1). That is, we may assume that Rd = A.
If the configuration q has rank N − 1 we have that d = N − 1 and no element of
the linear isometry group O(d) leaves q fixed. It follows that the rotational orbit
SO(d)q of q admits a neighborhood U on which O(d) and consequently SO(d)
acts freely. We may take U = SO(d)U to be an SO(d)-invariant neighborhood.

Then U/SO(d) ⊂ E/SO(d) has dimension (N
2
) and the (N

2
) side lengths rab form a

set of coordinates for this neighborhood U/SO(d) of the quotient space. We have
U = GΣmamb/rαab while I = 1

M
Σmamb(rab)2. Writing out the Lagrange multiplier

equation dU = −µ
2
dI in these variables we get

−αΣmambr
−α−1
ab drab =

−µ
2

2

M
Σmambrabdrab,

or Σmamb(αr−(α+1)
ab − µ

M
rab)drab = 0 Since the drab are linearly independent of

U/SO(d) we can cancel the common factor of mamb and are left with the (N
2
)

equations αr
−(α+1)
ab − µ

M
rab = 0. This leaves us with Mα

µ
= rαab so that all the rab

must have the same length (Mα
µ

)1/α.

QED

Sketch of proof of Proposition 1.6 [on Morse and Palmore’s esti-
mate].

By the Morse lemma ([98]), the critical points of a Morse function are discrete.

Hence to show that the critical points of a Morse Ũ are finite it is enough to
show that the critical lie in a compact subset of the normalized shape space minus
collisions. This fact was proved by Shub.

Shub Lemma 1.2 (Shub). For fixed positive masses m = (m1, . . . ,mN) there is a
conical neighborhood of the collision locus in configuration space which is free of
collisions.

For a proof Shub’s lemma see Proposition 15 on p. 29 of [101] or the original
work [143].

To prove Palmore’s estimate one combines the Morse inequalites with Moulton’s
theorem. The Morse inequalities are inequalities between weighted sums of critical

add on theorem 2: Pal-
more’s index ≤ N−2 result
? -RM

points of a Morse function and sums of Betti numbers of the underlying manifold.
Moulton asserts that Ũ has exactly N !/2 critical points within the collinear config-
urations RPN−2 ∖∆ ⊂ CPN−2 ∖∆. They are all absolute minima for the restrictiion
of Ũ to the collinear space. In the orthogonal directions iT[s]RPn−2 = (T[s]RPN−2)⊥
to the collinear space the critical points are all local maxima. This proves that the
number of minus signs - the index of the critical points - are N − 2. One puts this
data into the Morse inequalities to achieve the result. See Moeckel [101], p. 45,
the proof of Proposition 25, or the original reference [124] for details.

Remark. A generic smooth function is Morse. This implies, in particular, that
arbitrarily close to any function is a Morse one. Thus we expect Ũ to be Morse
for most masses. Being Morse is an open condition, and Xia established that the
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set of masses for which Ũ is Morse is non-empty. We expect that the subset of
the mass distribution space PRN−1

+ on which Ũ fails to be Morse is an algebraic
subvariety - in the usual spirit of singularity theory. If true, this would establish
generic finiteness. Apparently, this expectation is hard to prove and is probably
the wrong approach to the problem.

subsec: even ds
this subsection seems mis-
placed. where to put it?
-RM

3.3. Even-dimensions and almost complex structures. The planar re-
sults extend to the even-dimensional N-body problem by viewing multiplication by i
acting on R2 ≅ C ias an “almost complex structure” and generalizing appropriately.
Recall that an almost complex structure on Rd any skew-symmetric transformation
J ∶ Rd → Rd such that J2 = −I. We will insist that J be skew-symmetric as well
so that exp(tJ) is a one-parameter subgroup of SO(d). If Rd admits an almost
complex structure then d = 2k is even, and the structure yields an isomorphism
Rd ≅ Ck. Return to the proof of (a) of Proposition 1.2 given above. Replace i
everywhere by this J. The solution ansätz is then q(t) = exp(ωJt)q∗ where ω is
a scalar. We have proven (a) of Proposition 1.2: central configurations in even
dimensions yield relative equilibria.

Example 1.1. The regular tetrahedron is a central configuration for the 4-body
problem in R3. See proposition 1.5. The regular tetrahedron cannot be made into a
relative equilibrium for the problem: it cannot be spun about an axis in space and
turned into a solution to Newton’s equations. However R4 = C2 admits an almost
complex structure. By taking the standard embedding R3 ⊂ R4 we promote the reg-
ular tetrahedron from a central configuration to a relative equilibrium configuration
for the 4-body problem in R4. A similar trick works for the regular N simplex for
any even N .

4. Exploring the Motivations
motivation

In the beginning of this chapter (subsection 1.2) we listed four reasons, labelled
(1)-(4) there, for studying central configurations. We gave a detailed exploration
of reason (4) in lemma 1.1 Here we go into some detail regarding the other reasons.

4.1. Equilibria out of blow-up. This was the first reason we listed. Write

r =
√

⟨q, q⟩
so that r = 0 corresponds to total collision and set

q = rs; ⟨s, s⟩ = 1.

We call s the normalization of q and (r, s) ‘spherical coordinates’ on configuration
space. The McGehee blow-up is the change of variables:

q = rs(59)

v = r−1/2y(60)

dt = r3/2dτMcGehee (61)

These relations define a transformation (q, v; t) ↦ (r, s, y; τ) which is invertible
and well-defined as long as r > 0. McGehee’s blow-up changes both the dependent
((q, v)) and independent (t) variables of Newton’s equations. The McGehee process
creates, as if by magic, equilibria for Newton’s equations on the previously invisible
collision manifold r = 0.
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thm: McGehee Theorem 1.2. When rewritten in McGehee variables the vector field defining
the N-body equations extends to an analytic vector field (62) defined on the colli-
sion manifold r = 0. Equilibria arise on the collision manifold and are in 2-to-1
correspondence with normalized central configurations. Each dropped central solu-
tion (definition 1.2) is associated to a pair of equilibria, being heteroclinic between
the pair.

This theorem enables us to return to the start of Newton’s homework for us. At
last we have equilibria. We can linearize about them. The linearized flow governs
near-collision honest (r > 0) solutions to Newton’s equations. Linearization and
stable-unstable manifold results so obtained have been among the deepest results
achieved in the last 40 years on the N-body problem.

The idea behind the McGehee transformation is to make Newton’s equations
scale invariant. The idea cannot literally succeed since the equations are not in-
variant under scaling, but we can isolate all scale information into the single radial
variable r = ∥q∥. Scaling by λ > 0 acts by q ↦ λq, λ ∈ R so that the basic vari-
ables r and q ∈ E are homogeneous of degree 1. The variable s is scale invariant.
Under scaling U → λ−1U . The variable guiding principle for the remainder of the
transformation is that the total energy E =K(v)−U(q) must scale homogeneously.
Since K is homogeneous of degree +2 in velocities v the guiding principle requires
that v ↦ λ−1/2v so that K is also homogeneous of degree −1. (For α-force laws we

would get v ↦ λ−α/2v. ) We can effect this scaling of v by insisting that time scale

according to t ↦ λ3/2t, for then v = dq
dt
↦ λdq

λ3/2dt = λ
−1/2v. This leads directly to the

transformation equations (61) of McGehee.

The variable s lies on the unit sphere S = {r = 1} ≅ Sd(N−1)−1 ⊂ E0 of configu-
ration space.

s ∈ S = SdN−1 = {r = 1} ⊂ E

Exercise 1.2. Write ′ for d
dτ

= r3/2 d
dt

. Show that McGehee’s transformation
transforms Newton’s equations (35) to the equations

{blowup}{blowup} (62)

r′ = rν
s′ = y − νs

y′ = ∇U(s) + 1

2
νy

where ν = ⟨s, y⟩. These equations are the McGehee blown-up equations. In the
blown up variables the energy is given by H = r−1(K(y) − U(s)), and the angular

momentum by r1/2J(s, y).

Proof of theorem 1.2. A glance at the equations shows that they make sense
when r = 0 and that r = 0 is an invariant submanifold. To find their equilibria set
the left hand sides of the three equations of (62) to zero. Get rν = 0, y = νs and
∇U(s) = − 1

2
νy. These last two equations combine to give ∇U(s) = −( 1

2
ν2)s which is

the equation for s to be a central configuration with eigenvalue parameter µ = 1
2
ν2.

The energy equation yields rE = K(y) −U(s) which, upon setting r = 0 yields
1
2
ν2 −U(s) = 0. It follows that ν = ±

√
2U(s) at the equilibria which established the

claimed 2:1-ness. (Recall U > 0 on the sphere S.) The − root represents collisions,
since r′ < 0 nearby according to the first equation of equations (62). The + roots
are time-reversed collsions: explosions.
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Re-iterating, the equilibria are at(r, s, y) = (0, s, νs) where s is a normalized cen-

tral configuration and ν = ±
√

2U(s). The dropped central configuration solutions
having normalized shape s and energy E < 0 are heteroclinic connections between
these two equilibria. This can be seen directly from the definition of dropped cen-
tral configuration solution and the one-dimensional Kepler equation. The energy
E = − 1

rM
U(s) where rM is the maximum of r achieved along the dropped orbit.

QED

4.2. Saari decomposition and the homographic family. The dropped
central configurations and relative equilibria associated to a normalized central
configuration s0 form two extremes of the three-parameter family of homographic
planar N -body solutions λ(t)s0 described by the ansätz of lemma 1.1. In this
section we will visualize this family as it sits within the McGehee phase space. See
figure 4.2. This visualization will be very useful later on

put ref in:chapter braids,
section..? -RMThe three parameters of the homographic solutions are the energy, angular

momentum and inertial orientation of the Keplerian ellipses defining the solution.
If we fix the energy E < 0 and mod out by rotations we are left with one-parameter
family parameterized by angular momentum J . A one-parameter family of curves
forms a surface. The closure of our surface is the disc depicted in figure 4.2 with
the curves foliating it. This disc contains one new orbit which is not part of the
ansätz: the heteroclinic connection at the bottom of the disc, lying on the collision
manifold and joining the two equilibrium points associated to s0.

fig: rnuplots

Figure 1. A central configuration family with fixed energy pro-
jected onto the ν, r plane. The arch and ‘floor’ r = 0 comprise the
rest cycle
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The energy equation

{eq: ccEnergy}{eq: ccEnergy} (63) rE = ν
2

2
+ J

2

2r
−U(s0),

valid for the curves in the ansätz of lemma 1.1 for s0, allows us to draw the figure.
We will establish this equation as a special case of the “Saari decomposition” below.
To understand how the equation 63 leads to the figure, fix E and s0 in the equation.
Now the equation defines a one-parameter family of curves in the (τ, r) plane, J
being the parameter. These are the curves plotted in figure 4.2. The bounding top
arch corresponds to J = 0 which is the dropped solution. The fixed center, looking
like a stable equilibrium, corresponds to the relative equilibrium.

4.2.1. Velocity (Saari) decomposition. For the planar N-body problem, recall
that we identifyE with CN and thence E0 with the codimenson one complex sub-
space Σmaqa = 0 of CN . We can multiply any q ∈ E0 by a complex number λ,
yielding the subspace Cq ⊂ E0.

Definition 1.4. The horizontal space at q, also called the space of shape di-
rections, is the orthogonal complement (rel. the mass metric) of the C-span of
q.

Cq further splits into the orthogonal direct sum of two real lines, namely Rq
and Riq. The line Rq is tangent to scalings of q. The line R(iq) is tangent to the
circle eiθq, θ ∈ R of rigid rotations of q. We call these lines (scale) and (rotation).
In this way get the orthogonal decomposition:

TqEcm = (scale) + (rotation) + (horizontal )eq: ccEnergy (64)

= Rq ⊕ iRq ⊕ {v ∶ J(q, v) = 0, ν(q, v) = 0}(65)

where in the last term we used that ⟨q, v⟩ = r1/2ν(s, y) while ⟨iq, v⟩ = J(q, v).
Apply this decomposition to a vector v = q̇ ∈ E0, viewed as a tangent vector at

q = rs, we get the orthogonal decomposition:

v = λs + iωs + vhor
with λ = ⟨v, s⟩ and ω = ⟨v, is⟩. Use the McGehee relations v = r−1/2y and q = rs to

see that λ == r−1/2ν(y, s) and ω = 1
r
⟨iq, v⟩ = 1

r
J(q, v). (Recall that ⟨s, s⟩ = 1.) It

follows that the kinetic energy K = 1
2
⟨v, v⟩ decomposes as

{KEdecomp}{KEdecomp} (66) K(q, v) = 1

2

ν2

r
+ 1

2

J2

r2
+Kshape(vhor)

The final term Kshape is formed by computing the squared length of vhor. It turns
out be equal to the kinetic energy of the standard (Fubini-Study) metric on the
shape space CPN−2 times the factor r2.

Establishing the energy relation, equation (63). For any one of the
solutions q(t) = λ(t)s0 coming from our central configuration, the shape [q(t)] =
[s0] ∈ CPN−2 does not change, hence the shape velocity vhor and Kshape are both-

zero. This yields K = 1
2
ν2

r
+ 1

2
J2

r2
and thence, using E = K − U to our energy

relation.
Remark on notation We call this composition the “Saari decomposition”

after work of Don Saari [135] pointing out the importance of this group-induced
ref?? -RM

splitting to celestial mechanics. The last factor is called the horizontal space be-
cause if we look at the projection E0 → P(E0) as a Riemannian submersion, then
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the family of horizontal spaces is precisely the family corresponding to the standard
connection for the Hopf fibration S → CPN−2. Under the differential of the projec-
tion the horizontal space maps linearly isomorphically onto the tangent space to
the normalized shape space CPN−2.

4.3. Roads to total collision. We explore reason (2) of the four motivations
listed in subsection 1.2: the fact that as we tend to total collision we do so along
central configurations.

A centered solution q(t) suffers a total collision at time t = 0 if limt→0 q(t) = 0.
What is its limiting shape? The question is best answered by using McGehee
blow-up. We note that it requires infinite McGehee time τ to reach collision.

thm: Sundman Theorem 1.3. Suppose q(t) is a total collision solution and let (r(τ), s(τ), y(τ))
be the solution written in McGehee variables so that r(τ) → 0 as τ → ∞. Then
the accumulation points of the normalized configuration s(τ) as τ → ∞ form a
closed connected subset of the set of normalized central configuratons. If all cen-
tral configurations for the given mass distribution are non-degenerate then this
subset is a singleton: there is a normalized central configuration s0 such that

(s(τ), y(τ))→ (s0, ν0s0) as τ →∞, with ν0 = −
√

2U(s0).

It is unknown whether there exist total collision solutions for which s(τ) does
not have a unique limit, i.e. has more than one accumulation point as τ →∞. This
question is intimately linked with the question of infinite spin to be described later.
The last part of the theorem asserts that as long as Ũ is Morse, s(τ) does have a
unique limit and it is one of the finite number of central configurations.

PICTURE IN the N = 3 case here!
Sundman was the first to prove a version of theorem 1.3. In the process of

obtainining his theorem he proved an important auxiliary result.

Theorem 1.4. Any solution suffering total collision has zero angular momen-
tum.

Sketch of proof of theorem 1.3. As q(t) comes in to total collision,
where can s(τ), y(τ) go? Common sense suggests that if they settle down, then
they must do so onto a particular equilibrium. But do they settle down? The first
part of the theorem asserts that the ω-limit set of (r(τ), s(τ), y(τ)) lies within the
equilibria. Recall that the equilibria consist of two branches according to whether
ν < 0 or ν > 0. Ours must lie in the negative branch since as we approach collision r
decreases and we have r′ = rν. To verify that the ω-limit set in fact does lie in the
equilibrium manifold one uses the fact, easily verified, that −ν acts like a Liapanov
function on the collision manifold. In other words, upon restricting the dynamics
to the collision manifold we have −ν′ ≥ 0 with ν′(0, s, y) = 0 ⇐⇒ (0, s, y) is an
equilibrium. See MY BLOW UP TEXT ... or Rick or Alain ...

If all the central configurations are non-degenerate, then, viewed on normalized
shape space, they form isolated points. It follows that the projection [s(τ)] of s(τ)
to normalized shape space has a unique limit. (The set of accumulation points
forms a connected set.) Then the set of accumulation points of s(τ) must be a

find a theorem in a dyn
sys book asserting this
connectedness assertion -
RM

connected set in the rotation-group fiber over [s0] relative to the fibration S →
π(S) ⊂ Sh. In order to proceed to existence and uniqueness of the limit we will use
the nondegeneracy assumption. There are two ways to proceed.
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Way 1. Invoke Hirsch-Pugh-Shub theorem 4.1, (e) ‘Lamination’, p 39. The
non-degeneracy assumption implies that the fiber is a normally hyperbolic set of
rest points. This theorem then asserts that its unstable manifold, W s(fiber) fibers
as W s(p), p ∈fiber. Now our solution lies in W s(fiber), hence in some particular
W s(p).

Way 2. Invoke the theorem of Sundman on zero angular momentum and use
that imposing zero angular momentum defines a connection for S → π(S). We can
form the reduced McGehee dynamics by dividing out by rotations. The reduced
collision manifold r = 0 = H̃ has dimension 2(N −2) the topology of T (CPN−2 ∖∆).
The nondegeneracy assumption implies that the equilibrium points, viewed in the
reduced dynamics, are hyperbolic. Indeed, following a trick by Devaney, Moeckel

shows that the eigenvalues of the linearized matrix are k = 1
4
(−ν0±

√
ν2

0 + 16λ) where

the λ are the eigenvalues of the Hessian of Ũ relative to the Fubini-Study (shape)
double check eigenvalue
equations -RM metric on CPN−2. (See p. 229 eq 3.5 in [?] and correct for a typo in applying the

quadratic formula to a quadratic expression for the eigenvalues k two lines above.)
Since ν0 < 0, and nondegeneracy is equivalent to λ ≠ 0, the real part of µ is never

saved reference on
correceted evalues
from Rick in file BookN-
body/Correspondences/RickEvalcomps.pdf
sent to me 3/29/22. Put
in an appendix? or ?
-RM

zero. A curve tending to total collision along [s0] must be in the stable manifold of
the fiber over [s0] which means that Re(µ) < 0 and, since ν0 < 0 that consequently
λ > 0. Thus, the eigenvalues of interest for us are of the form −a + ib with a > 0.

It follows that projected shape curve of our collision solution has the complex
coordinate form c(τ) = (Z1(τ), Z2(τ), . . . , ZN−2(τ)) + O(∣Z ∣2) with the Zi(τ) ∈ C
being real linear combinations of curves W (τ) = Aexp(kτ) with k = −a + ib, a > 0.
The Euclidean length of any positive infinite end (τ > τ0) of a spiral of the form
W (τ) = exp((−a+ib)τ) with a > 0 is finite as is a linear combination of such spirals.
The shape space metric is a metric, so locally Lipshitz equivalent to Euclidean space
and this same finiteness thus holds for our projected shape curve. The horizontal
lift of a smooth curve with finite length has a well defined limit as τ → ∞. This
endpoint is our desired point limτ→∞ s(τ).

QED
In case the Hessian is degenerate, for example at one of Palmore’s 4 body

central configurations, the argument falls apart. There could be collision curves
whose projection to normalized shape space have infinite length -something like a
spiral of Archimedes. The horizontal lift of such a curve could have ω-limit set the
entire circle fiber over [s0]. Whether such curves exist is one aspect of the problem
of infinite spin. The other aspect is present only if the answer to the Open Question
here is ‘no’ and there exist continua of central configurations in normalized shape
space.

4.4. Bifurcations. Here we explore reason (3) of the four motivations listed
in subsection 1.2: bifurcations of the energy-momentum map. We explored this
reason earlier on in the book around figure 6 for the case N = 3, d = 2. The
Morse-theoretic perspective expressed in that picture persists for N > 3 and, with
numerous complications, for d > 2.

We will limit ourselves to the planar case, leaving the general case to some
remarks at the end. We work with the centered problem. The phase space P =

ok , then you best make
those remarks at the end!
-RM

P(2,N) is the open set (CN ∖ ∆) × CN of R4N = C2N .The energy E and angular
momentum J are conserved, so that for each choice of E and J , we get an invariant
subsystem PE,J ⊂ P of codimension 2. Put the energy and angular momentum
together to form a map P → R2, the energy-momentum map. Then PE0,J0 is
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the inverse image of a poin (E0, J0) ∈ R2 under this map. As long as E0, J0 are
a regular value of the energy-momentum map then PE0,J0 is a smooth manifold.
And if E,J vary over a connected open set of regular values then all the PE,J ’s
are diffeomorphic. The bifurcation set is the set of singular values of the energy-
momentum map. A point (E0, J0) is a singular value if and only if it is the image
of critical point z0 of the energy momentum map, i.e. if and only if there is some
z0 ∈ PE0,J0 with dE(z) = λdJ(z) and E(z0) = E0, J(z0) = J0.

Lemma 1.3. A point is a critical point for the energy momentum map if and
only it is a relative equilibrium.

Proof. Let ω be the symplectic form so that the Hamiltonian vector field
is XH = ω−1dH. By definition of momentum map, ∂

∂θ
= ω−1dJ where ∂

∂θ
is the

infinitesimal generator of rotation. For the sake of clarity we have used H for E,
the energy viewed on the cotangent side. We then have, by linearity dE(z0) =
λdJ(z0) ⇐⇒ XH(z0) = λ ∂

∂θ
∣z0 which in turn says that the time t dynamical

evolution of the state z0 is the same as rotation of the configuration by exp(iλt).
QED

Since in two-dimensions relative equilibria and central configurations are the
same, we have shown that

Consequently, to understand the topology of PE,J subvariety of phase space
where energy and angular momentum have these given values. We can quotient
PE,J by the action of the rotation group and we get a variety on a contact manifold
of dimension 4N − 7 on which the dynamics lives and where all indications suggest
that we cannot further reduced the dimension. Scaling takes E,J to 1

λ
E,λ1/2J ,

leaving J2E =Dz invariant.
we cannot subset of and s, which, as we have seen , is the same as forming

the quotient by translations and Galilean boosts. As we Smale XXX pushed us to
think of the N-body problem as a family of dynamical systems depending paramet-
rically on the energy E and angular momentum J . Write ME,J for the subspace
of phase space at which the energy has the value E and the angular momentum
has the value J . The map (E,J) ∶ P → R2 is called the energy momentum map.
As Sard guarantees, almost every value of the plane R2 is a regular value of the
Energy momentum map. The scaling symmetry (q, p) ↦ (λq, λ−1/2p) maps ME,J

diffeomorphically onto Mλ−1E,λ1/2J .
(2). The topology of a manifold strongly influences the type of dynamics it

can support. Because energy and momentum are conserved, we have, with N-body
dynamics, a family of dynamical systems for each choice of energy and momentum.
It is of interest then, to understand how the topology changes as we change energy
E and angular momentum J . Values of E and J where such a change occurs
are bifurcation values. As in Morse theory, we expect bifurcations to happen in
concert with critical values of the energy momentum map (E,J) ∶ P̂ → R × Λ2Rd.
As we will see momentarily, the critical points of the energy momentum map are
relative equilibria, so, at least in the planar case, they are associated to central
configurations. (Because P̂ is non-compact we must also worry about “critical
points at infinity” in addition to finite critical points. See Albouy REF )

(3). We already saw this for N = 3 with the Euler and Lagrange solutions. The
explicit 1-parameter family of solutions associated to any planar central configura-
tion is described below in lemma 1.1.
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5. Some words on the Hampton-Moeckel and Albouy-Kaloshin proofs

Both papers begin by rewriting the conditions to be a central configuration
as a system of real polynomial equations. They then complexify their systems by
allowing the variables to be complex, and in this way arrive to a complex affine
algebraic variety. Their goal is to show that this variety is a finite point set. The
method of achieving that goal boils down to proof by contradiction.

5.0.1. Hampton-Moeckel. Albouy and Chenciner wrote down the following re-
markable set of (N

2
) equations in the (N

2
) mutual distance variables rij which are

equivalent to the condition of being a central configuration [7].

{eq: Albouy-Chenciner}{eq: Albouy-Chenciner} (67) [ΣkmkSik(r2
jk − r2

ik − r2
ij)] + (i↔ j) = 0

where ‘+(i ↔ j) means add the same expression but with the roles of i and j
switched. Here S is the matrix with entries

Sik =
1

r3
ik

− λ

M
, i ≠ k, Sii = 0

while Sii = 0, and where M = Σmi is the total mass. The parameter λ is the
same eigenvalue parameter of equation (58). Since λ = U/I it is of degree −3 with
respect to scaling so that we can fix the size of the configuration by insisting that
λ/M = +1. (The λ used by [52] in their formulation is the negative of ours, so they
write λ/M = −1.) One remarkable thing about the Albouy-Chenciner equations
(67) is that the dimension d in which the bodies move is nowhere to be seen. Only
the number N of bodies occurs as a finite parameter.

Hampton and Moeckel [52] take the Albouy-Chenciner equations (67) as the
starting point to describe their N = 4 algebraic variety, and add to them equations
specifying that the dimension d of the affine space within which the bodies are
collapsing is 2. The logic goes like this. Recall (proposition 1.5) that for N =
4 bodies all central configurations have rank ≤ 3 and there is only one central
configuration of rank 3: the regular tetrahedron. On the other hand, by Moulton,
there are precisely 4!/2 = 12 central configurations of rank 1. It remains then to
deal with the rank 2 configurations. Dziobek came up with Plucker-type relations

S12S34 = S13S24 = S14S23

which characterize rank two-ness for four bodies. By adding in these equations to
the 6 Albouy-Chenciner equations they get a system of 9 polynomial equations in
the 6 unknowns rij and this defines their algebraic variety.

From here they proceed by contradiction. They allow the rij to be complex.
If their variety is not a finite point set then it forms an affine variety of positive
dimension in C6. A general fact about an affine algebraic variety A ⊂ CM of positive
dimension is that its projection onto almost any line C ⊂ CM is ‘dominant’ - meaning
that the image of A on the line is the entire line minus a finite set of points. One

check if this fact is true.
?? and if this is the fact
that they use -RM

can then use the parameter t of this line to ‘parameterize’ the variety using Puiseux
expansions. Think of the variables as (t, z2, . . . , zM) ∈ CM . The space of rational
functions in z2, . . . , zM is an algebraically closed field K. We can then view the
defining polynomials for A as polynomials in t, i.e. p(t) ∈ K[t]. Following another
one of Newton’s great ideas - what is today called the Newton-Puiseux expansion,
one can iteratively solve the equations p(t) = 0 getting an expansion describing
parts of A. A beautiful involved set of ideas ensues from here, ideas based on the
Newton polytopes built from the 9 defining polynomials (the p(t)’s) which define
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their A. The methods include what is known as BKK theory, the Minkowski mixed
volumes of convex sets and, at the end of the day, extensive computer algebra as
their polytopes have 1,000s of vertices. We leave the intrigued reader to further
pursue the topic by refering to the original paper.

5.0.2. Albouy-Kaloshin. If a complex affine algebraic variety is not finite, then it
must be non-compact. One can think of this assertion as a version of the maximum
principle from complex analysis. This non-compactness is the basic principle used
by Albouy and Kaloshin. In both this paper, and the Hampton-Moeckel paper one
must, by some method, work on the quotient space by rotations, translations and
dilations. Hampton-Moeckel, achieve the quotient by rotations and translations
by working with the mutual distance rij variables. Albouy-Kaloshin instead work
with the original configuration variables q1, . . . , qN and impose the slice condition
that q1 − q2 lie along the x-axis to get rid of rotations. They get rid of translation
by imposing the center of mass condition Σmaqa = 0. In addition to these now
2(N −1)−1 variables ( 2 being the ‘d’ of the planar N-body problem) they throw in

(N
2
) variables corresponding to 1

rij
. They rewrite the condition of being a central

configuration, equation (58) in terms of these variables. To proceed further they
suppose that N ≤ 5. They show, by a kind of combinatorial analysis of cases
involving plane diagrams, that it is impossible for any one of their variables to tend
to infinity while remaining on their variety. According to the basic principle then,
this completes the proof of finiteness. In their combinatorial analysis they run into
a few impossible special cases corresponding to Gareth Robert’s counterexample,
or generalizations of it. These are cases where some variables might go to infinity.
They then exclude these special cases by imposing polynomial conditions on the
masses, hence their “generic finiteness”. Again, I refer the intrigued reader to the
original paper.

5.1. Stable and Unstable manifold controlling the flow. What is more
important about all this work is what flows out of total collision. Recall that the
stable manifold ... XXX....

ete etc .. . hint of Moeckel thesis At fixed energy ........
A bit more work, using the property that XX is a Liapanov function on the

total collisionmanifold. With a little bit of work then one can show that if q(t)
tends to total collision then it must approach the manifold of equilbria i.e. the
locus of central configurations. If this locus is finite, mod G, then it limits onto a
particular central configuration, thus proving the theorem of Sundman.

problem of infinite spin...

6. Relative equilibria in four dimensions
sec: higher ds

In dimension d = 4 and higher there exist relative equilibria that are not cen-
tral configurations. This possibility was investigated by Albouy and Chenciner
[REALLY?] and in dimension 4 is based on the normal form:

Ω =
⎛
⎜⎜⎜
⎝

0 −ω1 0 0
ω1 0 0 0
0 0 0 −ω2

0 0 ω2 0

⎞
⎟⎟⎟
⎠

for skew-symmetric 4 by 4 matrices. If we identify R4 with C2 then this is the
matrix for the real linear transformation (z1, z2)↦ (iω1z1, iω2z2).
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Perhaps the simplest family of examples of relative equilibria that are not cen-
tral configurations occurs for the equal mass three-body problem (1, 2 in 4 dimen-
sions.

Proposition 1.7. Every isosceles triangle is a relative equilibrium configura-
tion for the equal mass 3-body problem in R4. In the corresponding relative equi-
librium solution the two Jacobi vectors travel in orthogonal two-planes at different
frequencies, the ratio of these frequencies being a function of the ratio of the side
lengths of the isosceles triangle as described by equation (75) below. (See figure.)

Proof of Proposition. The proof can be achieved by a direct computation.
Take m1 =m2 =m3 = 1. Then we can write the equations defining this equal mass
three-body problem as :

{N3R4}{N3R4} (68)

q̈1 =
q2 − q1

r3
21

+ q3 − q1

r3
31

,

q̈2 =
q1 − q2

r3
21

+ q3 − q2

r3
32

, ,

q̈3 =
q1 − q3

r3
13

+ q2 − q3

r3
23

, .

Suppose the triangle to be isosceles with vertex 3 so that r23 = r13. Set

a = r23 = r13 and c = r12.

The two Jacobi vectors corresponding to the choice of vertex 3 are ξ1 = q1 − q2 and
ξ2 = q3 − 1

2
(q1 + q2). If we subtract the second equation of (68) from the first and

use the isosceles condtion we get

(69) ξ̈1 = −(
2

c3
+ 1

a3
)ξ1

If we add the first equation to the second and subtract that half that result from
the third equation of (68) we get

(70) ξ̈2 = −
3

a3
ξ2.

These pair of equations suggests the ansätz

{ansatz_RE4}{ansatz_RE4} (71)
ξ1(t) = eiω1tξ1(0)
ξ2(t) = eiω2tξ2(0)

which solves Newton’s equations, rewritten in Jacobi vectors, provided that

{freqs}{freqs} (72)
ω2

1 = ( 2

c3
+ 1

a3
)

ω2
2 =

3

a3
.

and that a, c remain constant. To guarantee this constancy recall that ξ1(0), ξ2(0) ∈
C2 = R4. Take the two vectors to lie in Hermitian orthogonal complex subspaces:

{ansatz_RE4b}{ansatz_RE4b} (73)
ξ1(0) = (z1,0),
ξ2(0) = (0, z2).

so that at every instant ξ1(t) and ξ2(t) are perpindicular. Then

c = r12 = ∣ξ1∣ = ∣z1∣
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while

a =
√

∣z1∣2 +
1

4
∣z2∣2

which are indeed constant. The equation for a is seen by noting that

(74)
q3 − q1 = q3 −

1

2
(q1 + q2) −

1

2
(q1 − q2)

= ξ2 −
1

2
ξ1

and similarly

q3 − q2 = ξ2 +
1

2
ξ1

and then using the orthogonality of ξ1, ξ2 and the fact that ∣ξi∣ = ∣zi∣ to compute

a2 = 1

4
∣z1∣2 + ∣z2∣2.

Summarizing, the solution ansätz defined equations (71) and (73) yields a relative
equilibrium solution to Newton’s equations provided the frequencies satisfy relations

(72) with c = ∣z1∣, a =
√

1
4
∣z1∣2 + ∣z2∣2.

If we divide the two frequency relations we get

{freq_ratio}{freq_ratio} (75)
ω2

1

ω2
2

= 1

3
(2a3

c3
+ 1)

Note, in particular, that ∣ω1∣ = ∣ω2∣ if and only if a = c, which is to say, if and only
if the triangle is equilateral (and thus central).

QED
******
More generally, suppose that g(t) = exp(tΩ) for the old ansätz in the definition

of a central configuration: q(t) = g(t)q∗, with Ω ∈ so(d) a skew symmetric matrix.
Plugging this in to Newton’s equations and usign F (gq) = gF (q) we get

−Sq∗ = F (q∗);S = −Ω2 = ΩΩT

These are the general equations for a relative equilibrium. Note that S is symmetric
positive semi-definite, but is not an arbitrary matrix of this type. Due to the normal
form for a skew-symmetric matrix, the positive eigenvalues of S all have multiplicity
two, corresponding to the two-by-two rotational blocks of Ω.

7. Other questions and projects

1. This conjecture was posed by Rick Moeckel.
Moeckel’s conjecture. For all N there is a neighborhood of equal masses in

the space of mass distributions for the planar N-body problem with the property
that no relative equilibria is linearly stable for the masses in this neighborhood.

In the three-body problem, the conjecture is established. The Euler relative
equilibria are never linearly stable. The Lagrange relative equilibria are only stable
when one mass is dominant. See FIGURE where the shaded region indicates the
set of masses for which the Lagrange relative equilibrium is linearly stable.

2. Do the Albouy-Chenciner isosceles relative equilibria generalize to four bod-
ies forming a tetrahedron? To N bodies? The regular tetrahedron with all side
lengths equal is a central configuration for the 4-body problem in 3-space. (See
1.5.) We saw that it can be made into a relative equilibrium in R4 = C2. Can we,



80 1. IS THE NUMBER OF CENTRAL CONFIGURATIONS FINITE?

instead, ‘spin it’ within a 6-dimensional space R6 = C3 (a two-plane C for each of
its three Jacobi vectors), and then deform it so as to arrive at tetrahedral relative
equilibria whose side lengths are not all equal? Do we really need to go to 6 dimen-
sions, or does 4 dimensions provide enough space to spin and deform the regular
tetrahedron?

8. Historical notes.

mostly refer to Albouy and to Moeckel
I learned of this theorem from the beautiful paper ‘A l’infini en temps fini’ by

Chenciner REF. The idea is based on McGehee blow-up.



CHAPTER 2

Are there any stable periodic orbits?

Open Question 2.1. Are there any stable periodic orbits?

1. Really?!

How could such a basic question remain un-answered? But if “stable” means
“Lyapunov stable” then this question is wide open for the planar 3-body problem.

Definition 2.1. An orbit for a dynamical system is Lyapunov stable if every
neighborhood U1 of the orbit contains a neighborhood U2 such that all solutions
starting in U2 remain in U1 for all future times.

figure here... -RM
We must interpret the open question in the center-of-mass frame or upon re-

duction by the Galilean group. Otherwise, the answer becomes an immediate ‘no’.
Take any periodic solution qa(t) and boost it by adding the same v ∈ Rd with ∣v∣ ≤ ε
to all its initial velocites. We get a new solution qa(t) + tv which linearly diverges
from our starting solution with time, despite having arbitrarily close initial con-
ditions. Also, let us recall that a relative periodic solution is one for which the
relative distances rab(t) are periodic functions of t. Such an orbit is periodic or
quasi-periodic in the center-of-mass frame. Reformulating the question then:

Are there any Lyapunov stable relative periodic orbits for the planar
three-body problem when viewed in the center of mass frame?

◇
Quite close to the open question above is the

Oldest question in dynamical systems: Arbitrarily close to any relative peri-
odic solution for the planar three-body problem are there initial conditions whose
corresponding solutions are unbounded?

An orbit is unbounded if at least one of its mutual distances rab(t) is an unbounded
functions of t. (See definition 0.11.) In terms of the Hill region picture at negative
energy for the planar three body problem as depicted in figure 5, these are solutions
whose projections to shape space wind down one of the three arms of our plumbing
fixture, heading off to infinity down that arm. A ‘yes’ answer to the oldest question
would give a dramatic ‘no’ to our open question.

2. What’s known?

2.1. Weaker types of stability. If solutions cannot be shown to enjoy Lya-
punov stability, what types of stability can they have? The main types of stability
achievable for solutions arising in celestial mechanics are linear, KAM and Nekhoro-
shev stability. We will sketch these notions of stability below. The implications

81
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amongst them are

(76) Nekhoroshev Ô⇒ KAM Ô⇒ linear

Usually, when a celestial mechanician says that an orbit is stable they mean that
it is linearly stable. For example, the figure eight orbit is Nekhorshev stable, hence
KAM stable and linearly stable.

2.2. Instabilities.
2.2.1. Arnold Diffusion. “Arnol’d diffusion” is the catch-all phrase for mecha-

nisms for escaping arbitrarily small neighborhoods of KAM stable orbits. . A “no”
answer to the open question would imply that every KAM stable periodic orbit
for the N-body problem admits Arnol’d diffusion. A ‘yes’ answer to the Oldest
Question would go further and imply that each of these Arnol’d diffusions actually
diffuses all the way out to infinity. Arnol’d diffusion is believed to occur generically
in Hamiltonian systems. But the vector field defining the N-body problem is just
itself, a particular vector field, not a generic one. Generic forays into the empire of
Arnol’d diffusion do not seem to offer any help in answering the open question.

2.2.2. Varying the power law: strong force instability. If α = 2 in the power
law potential , then the Lagrange-Jacobi identity for that case (see equation (49))

asserts that Ï = 4H where H is the energy. It follows that periodic orbits only exist
when H = 0 and İ(0) = 0. If either condition is violated then I either increases
without bound or goes to zero indicating total collision. Since small perturbations
change the energy and İ(0) we can say that we’ve answered the oldest question in
this case: a small perturbation can make a zero energy initial condition positive and
hence arbitrarily nearby to any periodic solution there is an unbounded solution.

We can keep the α = 2 problem interesting by restricting our perturbations to
those which respect H = 0 and İ = 0. There are many relative periodic orbits having
H = 0 and İ = 0. They play important role in the next chapter. If we further fix the
angular momentum J to be zero, and if all of the masses are equal, then we have
shown that all of these solutions are linearly unstable. In a sense then, even here
all orbits lead to unbounded solutions , but now “unbounded” means, somewhat
paradoxically, some pair tends to collision. In the instability, the REF

Following Moore [119] we can wonder at the panoply of behaviour as we vary
the power law exponent through the interval [−2,2], sweeping α from the integral
case f(r) = r2 of the harmonic oscillator where α = −2 and all periodic orbits are
Lyapunov stable, to the strong force case α = −2 where f(r) = 1/r2 and all orbits
are unstable. In between we hit the Newtonian case. As we do so, periodic orbits
come and go, disappearing and colliding. Is any of this any help in understanding
stability in the Newtonian case? So far, not so much.

2.3. And our solar system? Is our solar system stable? Read [77] for a
short engaging and personal history of this problem. Quoting : “ The question of
the stability of the Solar System was thus a question of limiting or not the divine
power, and was one of the main scientific questions of the 18th century.” Laskar’s
work itself [77] demonstrated that the dynamics in our solar system is actually
chaotic, with a Lyapanov time scale of .5× 10−6 in units of 1/year. One has mixing
and indeterminacy of of some of the basic coordinates describing the orbital motions
on that time scale. Indeed, there is no one single periodic orbit to talk about for
the system to to be “stable about”! One can go on with the question though and
ask, for instance, will the earth be at roughly the same distance from the sun, in,
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say 3 billion years? Lagrange argued, based on using averaging to write down an
approximating system, that the semi-major axes of the planets vary much less and
much slower than their orbits’ eccentricites. To get significant drifts in semi-major
axes takes 100s of millions of years, and then it only happens in the inner solar
sytem. To get planetary orbits to cross and hence completely disrupt the inner
solar system takes on the order of the age of the solar system on numerical runs,
and due to the intrinsically chaotic nature of the dynamics, that question has to be
approached statistically.

2.4. 4 dimensions stablize. Allow our bodies the freedom to move in 4
dimensions and we get a surprise.

Albouy-Dullin Theorem 2.1. Some of the relative equilibria for the three-body problem in 4-
space described at the end of the previous chapter are Lyapunov stable.

The proof of this theorem was published in 2020 by Albouy and Dullin [3] and
2020? 2015? -RM

Dullin and Scheurle [32] REF.

A philosophical rationale underlies the appearance of stable orbits for the three-
body problem in d = 4 dimensions and their apparent lack when d = 2 or 3. A
general physical principle asserts that solutions seek out states of lowest energy. In
celestial mechanics both angular momentum and energy are conserved but angular
momentum beats out energy.

Proposition 2.1. In the 2-body (Kepler) problem, at fixed non-zero angular
momentum, the energy is bounded below and the solutions which minimize energy
are the circular orbits.

This proposition is held responsible for the near-circular nature of the orbits
of the planets. The idea is that during planetary formation, dissipative forces were
involved, but ones which conserved angular momentum, so that over millions of
years the orbits of the planets around the sun settled down to near circular orbits.
REFER TO GRAPH OF EFFECTIVE POTENTIAL

put graph here or earlier
-RM

Proposition 2.2. Fix the value of the angular momentum J0 ∈ Λ2Rd for the
three-body problem in d-space. Write PJ0 ⊂ P for the subvariety of centered phase
space P having angular momentum J0. If d = 2,3 then the energy is unbounded
below on PJ0 : its infimum is negative infinity. However, if d = 4 and if the rank of
J0 is 4 then the energy is bounded below on PJ0 .

The Lyapunov stable relative equilibria of theorem 2.1 correspond to absolute
minima of the restricted energy of this proposition. This is a beautiful, simple and
surprising result. It does not seem to help us at all with the real question, Lyapunov
stability for orbits in the spatial or planar three-body problem.

◇

2.5. Chapter plan. I will define and explain the other types of stability in
the rest of this chapter, focusing on the fact, not evident in the literature, that the
stability criteria are finite in nature and so can be verified by good numerics. After
our discovery of the eight it took me months to properly digest the stability type
of the eight and what others were telling me about it, particularly Carles Simó.
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Simó’s pictures of the KAM torii near the figure eight, and staring at pictures of
the standard map were especially helpful. For the reader interested in a broad
yet succinct outlook on stability in celestial mechanics and KAM I cannot hope to
equal [87] and highly recommend it.

3. Linear Stability
sec: linear stability

This section is inspired in good measure by chapter 6 of Meyer [94].

Suppose γ(t) is a periodic orbit for a vector field X on a manifold P. Let Φt be
the flow of the vector field so that γ(t) = Φt(z0) where z0 = γ(0) and ΦT (z0) = z0

where T is the period of γ. The linearized flow map

A = dΦT (z0) ∶ Tz0P → Tz0P
contains crucial stability regarding the orbit.

Definition 2.2. The linear map A just defined is called the monodromy matrix
of the periodic orbit.

We can compute A by linearizing our nonlinear vector field z ↦ X(z) along
the orbit. Write our original ODE as ż = X(z) where, for simplicity, P = Rm so
that X ∶ Rm → Rm. Consider a family of solutions zε(t) to this ODE depending
smoothly on some parameter ε. For example, ε might parameterize a curve of initial
conditions. Setting δz(t) ∶= d

dε
∣ε=0zε(t) and differentiating the ODE we arrive at

the linear time dependent ODE

δż =DX(z(t))δz(t)
which governs the variation of solutions and supplements our original ODE. If
Φt ∶ Rm → Rm is the time t flow of our ODE then zε(t) = Φt(z(0) + εδz0) is such
a family of solutions. Differentiating this last relation with respect ot ε shows that
the linearization of the flow is given by

DΦt(z(0))(δz0) = δz(t)
where δz(t) solves the linearized ODE and has initial condition δz0. Thus A(δz0) =
δz(T ). This relation between the linearized ODE and linearized flow provides
a useful numerical trick for computing linearizations of orbits on the fly and is
essential for estimating linear stability.

Since A is linear, the zero vector is a fixed point for A, viewed as a map. The
Lyapunov stability of the zero vector for A relates to the Lyapunov stability of our
non-linear orbit γ. The following fact plays an organizing role:

Proposition 2.3. If A has an eigenvalue, complex or real, with modulus greater
than 1, then the orbit is not Lyapunov stable.

Observe that such an eigenvalue guarantees the Lyapunov instability of 0 for A
as a map. Indeed, supposing this eigenvalue λ > 1 positive real for simplicity and
let v be its eigenvector. We get Anv = λnv → ∞ as n → ∞. Since the linearized
flow is a first order approximation to the flow, it is not a surprise that the flow
itself moves away from the orbit in the direction of v. This intuition is turned into
a proof through the magic of the “unstable manifold”. The eigenspace for such
an unstable eigenvalue corresponds to a growing mode for the dynamics and and
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lies in the tangent space to the unstable manifold to this orbit. For a full proof
of the proposition and the notion of unstable manifold see any graduate book in
dynamical systems.

In our situation ΦT is symplectic so A is a linear symplectic map. The spectrum
σ(A) ⊂ C of such a map enjoys the symmetries: λ ∈ σ(A) ⇐⇒ 1

λ
, λ̄, 1

λ̄
∈ σ(A).

See for example section 42, p. 226 of [10]. It follows that if our vector field X is
autonomous Hamiltonian then the spectrum of the orbit’s monodromy σ(A) must
satisfy σ(A) ⊂ S1 if the orbit has a chance of being stable. Hence the following
definition is reasonable.

Definition 2.3. The periodic Hamiltonian orbit is called spectrally stable or
elliptic if all the eigenvalues of its monodromy lie on the unit circle.

If our orbit is elliptic then we can write the eigenvalues of its monodromy as

λj , λ̄j = exp(±i2πωj).
We call ωj the frequencies of the orbit.

3.1. Symmetry-induced 1’s in the spectrum. Having 1’s in the spectrum
of a linear map are an indication of instability, even though 1 lies on the unit circle.
The hypothesis of the standard version of the KAM stability theorem require no
1’s in the spectrum of a linear operator closely related to the monodromy operator
A described above, namely the differential of the return map described in the next
section. But several 1’s always occur in the spectrum of the monodromy map A for
any periodic orbit of the N-body problem. We will need to understand how these
potentially unstabilizing 1’s arise from symmetries in order to dispense with them
and proceed to a reasonably useful version of KAM stability.

To see that we have at least one 1 as an eigenvalue, use the definition of the
period T of our orbit γ(t+T ) = γ(t), which is to say ΦT (γ(t)) = γ(t). Differentiate
this last identity with respect to t at t = 0 to obtain Av = v where v = γ̇(0) =
X(z0) ≠ 0. Thus any monodromy A for the periodic orbit of any autonomous flow,
symplectic or not, has at least one occurrence of 1 as an eigenvalue.

We will now show that A has a Jordan block of the form

( 1 0
−3/2 1

)

associated to energy-time. Such a block guarantees that 0 is not Lyapunov stable
for the linear map A, indicating subtleties in the relation between the stability of
a flow and that of its linearization, subtleties we will need to understand.

AX(z0) = X(z0) (see two paragraphs up) accounts for the last column of our
claimed Jordan block. The vector (0,1) relative to that block structure represents
X(z0). To account for the first column of the block, we will show that the scal-
ing symmetry of Newton’s equations leads to a vector field V having AV (z0) =
V (z0) − 3

2
X(z0) which is the information encoded in the first column of the block

structure. The space-time dilational symmetry as described in subsection 3.4
is q(t) ↦ λq(λ−3/2t). At the phase space level this symmetry is Sλ((q, p)) ∶=
(λq, λ−1/2p). If ΦT (z0) = z0 then the flow through Sλz0 is periodic with period

λ3/2T , which is to say that Φλ3/2T (Sλz0) = Sλz0. Now set λ = exp(ε) and dif-
ferentiate this identity at ε = 0 to find that AV (z0) + 3

2
X(z0) = V (z0) where

V (z) is the infinitesimal generator of the dilation, ie. V (z) = d
dε

∣ε=0Sexp(ε)z or

V ((q, p)) = (q,− 1
2
p).
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An analogue of the generalized eigenvector V which is ‘dual’ to the time di-
rection X exists for periodic orbits in any autonomous Hamiltonian system. This
additional vector corresponds to the fact that we can usually continue the periodic
orbit on to nearby energy levels. As long as the period of the continued orbit changes
to first order with the change in energy level then the corresponding two-by-two
matrix has such a non-trivial Jordan block.

We have just instantiated an instance of a theorem in symplectic linear al-
gebra: if 1 is an eigenvalue of a linear symplectic map then it comes with even
multiplicity. The proof of this simple theorem proceeds by verifying that the gen-
eralized eigenspace for 1 is a symplectic subspace. For the N-body problem these
pairs of 1’s correspond to conjugate pairs of the symmetry-related variables. We
just constructed the time-energy pair above, with its Jordan block displayed. The
remaining pairs for the centered N-body problem are rotation-angular momentum
pairs.

These pairs of 1’s for Hamiltonian systems with symmetry like the N-body
problem are a kind of linear shadow of Noether’s theorem. Recall that associated
to each infinitesimal symmetry of such a system there is a conservation law. Write
an infinitesimal symmetry as V and the corresponding conserved quantity as f .
They commute: df(V ) = 0. Assume that V is independent of X a at the base point
z0 of our periodic orbit. Since the Hamiltonian flow commutes with the flow of V
and preserves f , we have that A(V (z0) = V (z0) and A∗df(z0) = df(z0). Our linear
algebraic situation is that A preserves the nonzero vector V (z0) and the nonzero
covector df(z0) whose kernel contains v. We can choose a basis e1, . . . , en for our
vector space such that e1 = v and df(z0) = θ2 where θ1, θ2, . . . , θn is the dual basis
to our chosen basis. In this basis A has the form

A =
⎛
⎜⎜⎜
⎝

1 ∗ . . . ∗ ∗
0 1 ∗ . . . ∗
⋮ ∗ ⋯ ⋮ ∗
0 ∗ ⋯ ∗

⎞
⎟⎟⎟
⎠

exhibiting 1 as a double root for A’s characteristic polynomial, and the possibility
of a corresponding two-by-two Jordan block. This Jordan block is distinct from the
one exhibited for time-energy described above. So it yields another pair of 1’s.

Concretely, consider the case of the planar N-body problem. We can ro-
tate our periodic solution q(t) to form Rθq(t) without changing its period T .
Here Rθ denotes rotation about θ radians. Differentiating the consequent relation
ΦT (Rθ(z0)) = Rθ(z0) with respect to θ leads to A(Jz0) = J(z0) where z ↦ J(z)
is the infinitesimal generator of rotation. As we have seen earlier, we can identify
the planar N-body phase space with center-of-mass fixed with C2(N−1), writing its
points as z = (q, p) ∈ CN−1 × CN−1 = C2(N−1) and CN−1 = {q = (q1, . . . , qN) ∈ CN ∶
Σmaqa = 0}. Then Rθ(z) = eiθz so that J(z) = iz is the infinitesimal generator
of rotation in the plane. The generalized eigenvector ‘dual’ to iz0 corresponds to
conservation of angular momentum.

For the centered planar N-body problem there are only these 4 mandatory
symmetry induced 1’s: the time-energy pair and the rotation-angular momentum
pair. For the centered N-body problem in d-dimensions, d > 2 there are more
mandatory 1’s corresponding to the rest of SO(d). This total number of mandatory
1s can be computed from the dimension of the symplectic reduced space and is given
in section 6.7 of [94].
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4. The Return Map and Reduction

The return map, appropriately adapted to the notion of symplectic reduction,
allows us get rid of all of the mandatory symmetry-induced 1’s in the spectrum of
the monodromy. Consequently a deeper understanding of the return map and its
symplectic properties is mandatory for stating the hypothesis of the KAM stability
theorem. We proceed to its description.

Let γ be a periodic orbit of the smooth vector field X as before. Choose a
small disc D transverse to the orbit at the point z0 = γ(0). View the points of D as
initial conditions for the flow and flow forward around until the orbits first pierce
the disc again, thus defining the return map

R ∶ (D, z0)⇢ (D, z0).

which has z0 itself as a fixed point. We use the broken arrow notation for the map
R to indicate that its domain U and range V need not be all of D but rather open
neighborhoods of D containing z0. Other names for the return map are Poincaré
return map, Poincaré section or section map.

Since X is nonzero near z0, the flow-box theorem tells us that D × I provides
a model for the flow near z0, with X tangent to the direction of the interval I.
Recall that X(z0) is an eigenvector for the monodromy map A. It follows that A
induces a linear map Tz0P/RX(z0) → Tz0P/RX(z0). The differential dR0 realizes
this quotient map, with T0D realizing the quotient vector space.

There were two 1’s in A corresponding to energy-time. We just got rid of one
of them. To get rid of the other 1 in our Hamiltonian setting, we choose a D of
one less dimension, one which lies in the energy level h0 of the orbit, and remains
transverse to the orbit. ( We could, for example, intersect our previous disc with
the energy level set.) Thus D ⊂ {E = h0} ⊂ P. We will call such a D a symplectic
slice.

In symplectic reduction, as explained in appendix A, we fix the value of the
momentum map and quotient out the result by the group action. We can view
E as the momentum map for the R-action which is the Hamiltonian flow, so that
the corresponding reduced space is, formally {E = h0}/R. This space is rarely a
manifold, but , by the flow-box theorem it is locally a manifold near points such as
z0 where X(z0) ≠ 0. Since the disc is transverse to the flow and lies in the energy
level set, it forms a realization of this local quotient. In particular, the symplectic
form, restriced to the disc, is symplectic and the return map R is a symplectic map
of a disc whose codimension is 2 within the full phase space.

We saw that the other mandatory symmetry-induced 1’s for the N-body prob-
lem were associated with rotation and angular momentum. We can get rid of these
by working in a local realization of the symplectic reduced space. Again, an appro-
priate disc passing through z0 will do the trick. Generally speaking, suppose we
have conservation laws f1, . . . , fk which fit together so as to form the momentum
map f = (f1, . . . , fk) for some G action on our phase space. Suppose also that
f is equivariant, as is angular momentum. Then elements of G move f around,
typically. Write µ = f(z0) ∈ g∗. Let Gµ be the Lie algebra of the stabilizer of µ.
The standard Marsden-Meyer-Weinstein construction (section A.7 of Appendix A)
of the symplectic reduced space tells us that this reduced space is f−1(µ)/Gµ. As a
local model for this reduced space we take a disc D ⊂ f−1(µ) which is transverse to
the Gµ-orbits. Intersect this disc with our energy disc from the previous paragraph
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and we get a symplectic disc and a symplectic return map R as above, which locally
respects reduction, energy and the conservation laws. (Compare with subsection
7.2 of Appendix A.) This is our final disc, and on it dR0 represents the linear map
A modulo the generalized eigenspace of all of our “mandatory 1’s.

Instead of proceeding as above, in some instances it is preferable to work di-
rectly on the reduced space, with its flow. Suppose that the orbit through z0

upstairs in the full phase space is not periodic, but rather is relatively periodic.
Then downstairs on the reduced space it is represented by a bona-fide periodic
orbit. If z0 is not a relative equilibrium then the downstairs orbit is not a zero of
the vector field. We then take our disc to be in the the reduced space, within the
reduced energy level there, and transverse to the reduced vector field near the image
of z0. We thus get a symplectic return map R as above and proceed as before.

5. KAM stability

The KAM stability theorem as we describe it requires some knowledge of the
Poincaré return map associated to a periodic orbit. Unfamiliar terminology used
in the theorem will be described immediately following.

KAM Theorem 2.2. [KAM] Suppose that a periodic orbit for a smooth autonomous
Hamiltonian system has return map which

● (L) is linearly elliptic with eigenvalues which satisfy no resonance condi-
tions of order 4 or less (see equation (77 below) and

● (T) is such that its third order Taylor expasion at the origin satisfies the
twist condition (see equation (83 below)

Then that orbit lies in a tubular neighborhood inside its energy level which is par-
tially filled by irrational Lagrangian torii invariant under the flow. These are the
“KAM torii”. The Lebesgue measure of the union of these torii is positive and their
density tends to 1 as we approach the orbit.thm:KAM

FIGURES HERE
The hypothesis of the KAM stability theorem, conditions (L) and (T) are

detailed in the next section. They are conditions on the Taylor expansion of the
return map R at the origin, the origin representing z0, the point where the orbit
crosses the section D. Condition (L) (for linear) is a condition on R’s first derivative.
Condition (T) (for twist) is a condition on R’s third jet. Both are open conditions.

def: KAM stable Definition 2.4. An orbit satisfying the hypothesis of the theorem is called a
KAM stable orbit.

We pause to describe some of the terminology used in the conclusion of the
KAM stability theorem above. Phase space P comes with a symplectic form ω
and the N-body vector field is a Hamiltonian vector field relative to this form. See
section A.1. Let 2m be the dimension of P . Then m is called the number of degrees
of freedom of the system. We call a submanifold of a phase space “Lagrangian”
if its dimension is m and if the restriction of ω to the submanifold is zero. (A
submanifold on which ω = 0 must have dimension m or less.) This gives meaning
to the term “Lagrangian torii”. We say that a flow on a torus is “linear” if there
exist angular coordinates θi for the torus such that the defining vector field is
θ̇i = νi = const. If the list of frequencies (ν1, . . . , νm) is independent over Q we
say that the linear flow, or by abuse of notation, the torus, is “irrational”. Here,
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that flow is the restriction of the given vector field to the invariant torus. If U is a
measurable set and γ ⊂ U is a smooth curve then the “density of U as we approach
γ is limε→0 v(Nε(γ)∩D)/v(Nε(γ) where v denotes volume, i.e. Lebesgue measure,
and Nε(γ) means the ε neighborhood of the set γ, with respect to any distance
which gives the same topology as the manifold topology.

KAM stability is a kind of probabalistic form of Lyapunov stability. Suppose
that you start within ε of a KAM stable orbit. With high probability you will land
on a a KAM torus and then you stay on it for all time. Thus the probability that
you wander away from your ε-neighborhood tends to 0 with ε.

We cobbled together the statement of theorem 2.2 primarily from section 6, p.
411 of Appendix 8 of Arnol’d’s mechanics book, [10] with some help from section
5 as well as conversations and other sources. See the notes section near the end of
this chapter.

6. Resonance, twist and an oscillator model.

We now state the two KAM hypothesis (L) (for ‘Linear’) and (T) (for Twist),
and provide a local picture of the KAM torii. Identify the KAM orbit in question
with the circle S1 and the transverse symplectic disc with a 2n-dimensional disc
D ⊂ Cn = R2n where 2 + 2n is the dimension of the phase space and the disc lies
in an energy level. A tubular neighborhood of the orbit within the energy level
set is diffeomorphic to S1 × D2n with S1 × 0 corresponding to the orbit, and with
D2n symplectically diffeomorphic to the slice. The symplectic structure on the
disc D2n is the standard one induced from by Cn, namely ω = 1

2i
Σdz̄j ∧ dzj . The

‘linearly elliptic condition” implies that we can coordinatize the Cn factor so that
the linearized return map at the origin takes the form

dR0(z1, . . . , zk) = (λ1z1, . . . , λnzn), where λj = exp(2πiωj) ∈ S1

(Recall that dR0 can be viewed as arising from the monodromy map A by a quo-
tient.)

Condition (L). Condition (L) in theorem 2.2 is the condition that there are no
nonzero integer vector solutions (k0, k1, . . . , kn) to the linear equations:

{resonance}{resonance} (77) k1ω1 + k2ω2 + . . . knωn = k0 having 0 < Σnj=1∣kj ∣ ≤ 4,

A linear equality among frequencies ωj involving integer coefficients kj is called a
“resonance”. The size of the integers involved is the ‘order’ of the resonance. So
condition (L) asserts that there are no resonances of order 4 or less. In particular
condition (L) excludes any of the λj from being 1, hence all our discussion around
“mandatory 1’s.

For any choice of positive real constants cj , the linearized return map dR0

leaves the polydiscs

z ∶ ∣zj ∣ ≤ cj
invariant, together with their “boundaries” the n dimensional torii given by ∣zj ∣ = cj .
Then these torii are all Lagrangian. A subcollection of these torii will correspond
to the KAM torii of the KAM theorem.

Oscillators and Normal Forms. The Harmonic oscillator with frequencies ωj
is encoded by the quadratic Hamiltonian Hosc(z1, . . . , zn) = 1

2
Σωj ∣zj ∣2 where the zj

are as above and zj = qj+ipj with qj , pj Darboux coordinates so that ω = Σdqj∧dpj .
The Hamiltonian vector field for the harmonic oscillator is linear with eigenvalues
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±iωj and its time 2π flow is dR0 above. Define new coordinates Ij , θj on Cn called
“action-angle coordinates” so that

(78) Hosc = ΣωjIj .

The explicit change of coordinates is

Ij =
1

2
∣zj ∣2, θj = Arg(zj)

These are Darboux coordinates: ω = ΣdIj ∧ dθj . Their Darboux nature is seen
by recalling that dx ∧ dy = d( 1

2
r2) ∧ dθ expresses the planar area form in polar

coordinates. Then qj , pj play the role of the Cartesian coordinates (x, y) while
(Ij , θj) of polar coordinates r, θ.

If a Hamiltonian H = h(I1, . . . , In) on Cn is a function of actions alone then
its time t flow leaves the Ij invariant and acts on the θj by θj ↦ θj + tνj(I) where

νj = ∂h
∂Ij

. We still call the νj frequencies. We call the map I = (I1, . . . , In)↦ ν(I) =
(ν1(I), . . . νn(I)) the frequency map. We will call a symplectic map obtained by
setting t = 1 in such a flow “an integrable oscillator map”. The integrable oscillator
maps relevant for (T) are those whose Hamiltonian H = Hmodel is quadratic in
actions: Hmodel = h(I1, . . . , In) where

{eq: modelOsc}{eq: modelOsc} (79) Hmodel =Hosc + h2

where

(80) h2 =
1

2
ΣajkIjIk

and the ajk are the entries of a symmetric matrix. Its corresponding frequency map
is νj(I) = ωj +ΣajkIk. Let us write Rmodel ∶ D → D for the time 1 map associated
to Hmodel. Then we have:

{eq: BirkN1}{eq: BirkN1} (81) Rmodel ∶ (Ij , θj)↦ (Ij , θj + νj(I)) where νj(I) = 2πωj +ΣajmIm.

The Birkhoff normal form theorem is, at its core, a constructive iterative algo-
rithm for getting an elliptic Hamiltonian maps into the above model integrable form
plus a higher order error. Under our non-resonance hypothesis (L) the algorithm
yields a symplectic polynomial diffeomorphism fixing the origin and converting the
3rd jet of our given return map R to that of an integrable oscillator map of the
above quadratic type of Hmodel. See Arnol’d [10], Appendix 7 B, particularly p.
388 and Theorem 3 there regarding the Birkhoff normal form. So what this theorem
says is that by a polynomial change of variables we can put R into the form:

{eq:BirkNormForm}{eq:BirkNormForm} (82) R = Rmodel +O(r3);
where Rmodel is as above. The term h2 of Hmodel is called the 2nd order Birkhoff
invariant. [REF?? Sternberg Cele Mech? Guill-Stern?] The ‘r3’ of the error
term refers to the r of r2 = 2ΣjIj = Σ∣zj ∣2. Under assumption (L) the spectral
invariants of the symmetric matrix ajk become symplectic invariants – unchanged
by symplectic conjugacies, which is to say, by choice of Darboux coordinates.

Condition (T).
The ‘twist’ condition (T) is the condition that the matrix arising in the 2nd

order Birkhoff normal form h2 be non-degenerate

{twist}{twist} (83) det(ajm) ≠ 0.
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Physically, the twist condition asserts that the frequencies vary with amplitudes and
that this variation is non-degenerate: the frequency map is a local diffeomorphism
near I = 0.

Exercise 2.1. Show that relative to Cartesian coordinates the twist condition
is a condition on the 3rd order Taylor expansion of R at the origin. Hint: trace
through the changes of variables qj =

√
2Ij cos(θj), pj =

√
2Ij sin(θj) and lookk at

the normal form in Cartesian coordinates.

Chenc suggests emphasiz-
ing the philosophy under-
lying KAM. KAM torii
being CLOSURES of or-
bits, are hard to destroy.
Rational torii, not being
closures of any one of
their orbits are easily de-
stroyed by perturbation -
RM

The KAM torii guaranteed to exist correspond to those for which the frequen-
cies ν(I) are “sufficiently irrational”. (See [10], [37]). This condition of being
“sufficiently irrational” selects out a frequency set F ⊂ Rn of positive measure.
On these torii the Hamiltonian flow becomes, after a time reparameterization, the
flow governed by θ̇0 = 1, θ̇j = νj(I), where θ0 is the coordinate around the orbit
circle S1. The corresponding flow, restricted to such a torus is the standard irra-
tional linear flow on a torus, an ergodic flow all of whose orbits are dense in the
torus. This explains the meaning of “irrational torii” in the theorem statement.
The non-degeneracy condition on the frequency map guarantees that the inverse
image K ∶= ν−1(F ) of this frequency set in action space continues to have positive
measure. K has the structure of a fat Cantor set in action space, that is, topolog-
ically a Cantor set, but one whose Lebesgue measure relative to dI1dI2 . . . dIn is
positive. The set of invariant torii whose existence the KAM theorem guarantees is
diffeomorphic to S1 ×K ×Tn =K ×Tn+1 where the torus Tn is coordinatized by the
θj , j > 0 now. We call these the “surviving torii”. Lebesgue measure on the energy
surface is dI1 . . . dIndθ1 . . . dθndθ0, showing that the measure of the set of surviving
torii is positive. Divide the measure of set of surviving torii having ∣I ∣ ≤ ε by the
measure of the subset of phase space having ∣I ∣ ≤ ε. The assertion of “density 1” in
theorem 2.2 is the assertion that this relative measure tends to 1 as ε→ 0.

7. Arnol’d diffusion: dodging sticky torii.

Lagrangian manifolds have half the dimension of the phase space P within
which they sit. Let us write 2(n+ 1) for the dimension of this phase space, so that
n + 1 is the number of degrees of freedom, or half the dimension of phase space.
Now suppose we have a KAM stable periodic orbit for an autonomous Hamiltonian
system on P. Since the KAM torii are Lagrangian and live inside the same energy
level as their mother orbit, they form a family of n + 1 dimensional submanifolds
embedded within that 2n + 1-dimensional energy surface containing the orbit. If
n = 1 each torus is 2-dimensional within its 3-dimensional energy level set and
separates the energy level into two components, one containing the orbit , thereby
preventing escape from the orbit and the concentric family of torii force Lyapunov
stability. The circular restricted three-body problem has 2 degrees of freedom and
Lyapunov stability has been established by this means for some of its orbits. See for
example [97] and references therein. As soon as the number of degrees of freedom
is greater than 2 this topological separation and blocking of motion by torii fails.
For example, if n = 2 then the torii are 3-dimensional within a 5-dimensional energy
level set and the complement of any torus will be a connected subset of the energy
level set. A clever trajectory can wind around and dodge all the many KAM torii,
eventually escaping any given neighborhood of the orbit. This escape process,
this evading the Cantor net of KAM torii is known as “Arnol’d diffusion” and is
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currently the only approach towards a “No” answer to our Open Question, or its
unbounded variant.

8. Nekhoroshev Stability

Although escape from the KAM torii surrounding an orbit can happen, when
it does it takes a long long time. An imprisoned orbit may eventually escape the
jail of its stability but a Great Escape may take many lifespans.

Theorem 2.3 (Nekhoroshev). Assume that a periodic orbit is KAM stable and
that moreover the twist matrix of hypothesis (T) for the orbit’s return map (equation
(83) is positive definite. Let d be a Riemannian distance on phase space and 2n the
dimension of phase space. Then there is an ε0 > 0 and a positive number C with the
following signficance. Any solution starting within a distance ε of the orbit, with
ε ≤ ε0, stays within Cε1/2n of the orbit over a time interval ∣t∣ ≤ Cexp(ε−1/2n).

Oft-stated versions of the theorem says that the initial actions, as per our
oscillator model above, assert that the individual action Ij as per our oscillator

model do not vary by more than Cεa over times of order ε−b. Pöschel and others
got these bounds so that a = b = 1/2n. The distance of a point from the orbit is

of order
√

ΣIj , and in the theorem is assumed to initially be ε. Since ε << ε1/2n,
these oft-stated versions of Nekhoroshev’s theorem imply that the distance from
the orbit remains of order ε1/2n for t of order ε−1/2n, as we have stated.

Proofs of the theorem are based on estimating travel time near “resonance
webs” -collections of hypersurfaces where the resonance conditions Σkaνa(I) = k0

hold with ka, k0 integer. All escaping orbits must escape by travelling near reso-
nance webs. The analysis is deep and complicated and I refer interested readers to
the literature, particularly [127].

8.1. KAM Heuristics. Irrational tori are hard to destroy. This principle
drives KAM. The Birkhoff normal form Rmodel (81) leaves each of the tori Ij = const
invariant. Thanks to the Birkhoff normal form theorem, (81), ( ??) our return map
R is a perturbation of this normal form. As we get closer to the orbit (r → 0) the
perturbation R −Rmodel tends to zero. The principle tells us to expect that more
and more of the normal form’s irrational torii to survive as r → 0.

What makes irrational torii hard to destroy while rational torii are relatively
ephemeral? Each irrational torus comes to us as a solid block, being the closure of
any one of its orbits. In contrast, each orbit on a rational torus is already closed,
making the whole n−1-parameter ensemble of these orbits which make up a rational
n-torus rather floppy and weakly held together.

The principle that irrational torii are sturdier than rational ones is best illus-
trated by the theory of circle diffeomorphisms and how it relates to area preserving
maps R of the disc which take the origin to the origin. When n = 2 we just have one
action I = I1 and one angle θ = θ1. We can view the model map Rmodel as a one-
parameter family of circle maps θ ↦ RI(θ) = θ+ν(I) parameterized by I. The circle
labelled by I is irrational or rational depending on whether or not ν(I) = ω + aI
is. In the theory of circle diffeomorphisms every circle map f has attached to it a
rotation number ν. If ν is irrational and f is sufficiently smooth then the theory
supplies us with a a change of variables turning f into the map fν ∶ θ ↦ θ + ν of
irrational rotation by ν. On the other hand, if the rotation number is rational so
that ν = p/q with p, q ∈ Z then typically the map f has a finite number of of period-q
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orbits, alternating around the circle between being stable and unstable. The points
between these periodic orbits, upon being iterated under the rational circle map,
accumlate onto one or another of the finite number of stable periodic orbits.

Now we turn our perturbation on, replacing the normal form Rmodel of the
2-disc by the actual map R. We try to think of R as a one-parameter of circle
maps, knowing that this is putting the horse before the cart -assuming existence of
invariant circles – but let us see where it takes us. The circle theory above would
tell us that each irrational circle gets perturbed to a nearby circle which is conjugate
to it, and hence on which the map yields one conjugate to irrational rotation by
ν = ν(I). Thus the irrational circles near the origin wiggle a bit, but mostly remain.
At this point, the circle theory suggest a key idea occuring in the proofs of KAM:
focus on the rotation number and not the action. As we turn the perturbation on,
try to follow the invariant circles according to their rotation number labels, not the
values of their actions.

What happens to the rational circles upon perturbation? They do not remain
whole, but instead, their fictitious ‘perturbed circle maps” have split up into a
finite number of orbits some of which are stable and some unstable. Being in the
symplectic world, we have restrictions on the eigenvalues at these finite number
of orbits. If an orbit has an unstable direction (eigenvalue outside the unit circle)
it also has a stable one (eigenvalue inside the unit circle). The rational circle has
bifurcated, splitting up into a finite number of elliptically stable periodic orbits and
an equal number of hyperbolic ones. The dynamics near the hyperbolic ones, by
necessity, must wander off into two dimensions and cannot stick to any one curve.
The rational circles have been destroyed.

More happens with the hyperbolic ones. Typically they have homoclinic or het-
eroclinic tangles associated to them – intersections of stable and unstable manifolds,
leading to Hamiltonian chaos in the interstices away from the allegedly surviving
irrational circles. The elliptic periodic orbits on the other hand provide us with op-
portunities to try out KAM again and are typically surrounded by what are called
“elliptic islands”. We can try applying KAM to these, and the pattern repeats
around each of them, leading to an overall fractal type of structure.

The cartoon model for all of this is the standard map pioneered by Chirnikov.
Pictures of standard map.
REcommended REFS: Moser. Arnold. De la Llave .... and unstable ones, with

most orbits of neither type. Meiss ... Fejoz

9. Application to N bodies. Resonances and necessity of reduction.

Due to the ‘mandatory 1’s’ described above, forced on us by its symmetries, the
periodic orbits of N-body systems never satisfy hypothesis (L) of the KAM stability
theorem. As we described in that section, can get rid of these 1’s by the projecting
the orbit to the relevant symplectic reduced space , or, what is the same, adapting
the return-map discs D to angular momentum as well as energy, and making sure
that they are transvserse to relevant subgroup (Gµ) of G.

Let γ be a solution to a Hamiltonian system with symmetry. Let J be the
momentum map for the Hamiltonian action –so angular momentum for the N-
body problem in center-of-mass frame, and J0 = J(γ(0)) = J(γ(t)) the value of
the momentum map on the orbit. When we say “γ’s reduced space” we mean the
corresponding symplectic reduced space {J = J0}/GJ0 together with the projected
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orbit π(γ(t)) where π ∶ {J = J0} → {J = J0}/GJ0 . (Here as usual GJ0 is the
co-adjoint stabilizer of that orbit.)

Definition 2.5. We will say that the relative periodic orbit γ is reduced KAM
stable if its projection to its reduced space satisfies the hypothesis (L) and (T) of
2.2 for the Hamiltonian flow induced on the reduced space.

thm: KAM stable Theorem 2.4. [Reduced KAM stability; planar case] Let γ(t) be a relative pe-
riodic orbit for the planar N-body system which is reduced KAM stable. Then
a rotationally invariant neighborhood of γ in the full phase space is partially filled
with irrational invariant torii whose density tends to 1 as we approach the orbit. On
these torii the relative distances rab are quasi-periodic and hence bounded functions
of time.

Proof.
Apply the KAM stability theorem to the reduced orbit. One gets KAM stability

at the reduced level, for that value of energy and momentum, with consequent slice
map defined on a disc of dimension 2(N − 2). Now vary initial conditions, allowing
energy and momentum to vary. We can follow the relative periodic orbit by the
IFT into these new values, getting a new orbit in a new reduced space. Because
of the planarity assumption, these reduced spaces do not jump in dimension and
vary smoothly with initial condition. Since the KAM conditions (L) and (T) are
open conditions they persist into nearby values of angular momentum and energy,
yielding KAM stable orbits within each reduced space, and in particular being of
positive measure and density 1 nearby. Now pull back up to the total phase space
to see that the rotationally invariant family of nearby relative periodic orbits are
surrounded by torii (no longer Lagrangian) whose total measure is positive and
whose density tends to 1 as we approach any one of the family.

10. Case Study: the Eight

describe Simo’s analysis -
RM

sec: case study
This section is inspired by Simós’ article [144].
The figure eight orbit (??) is KAM stable. At a practical numerical level, take

the initial conditions that Simó culled and integrate forward with a good numerical
integrator for a 100,000 periods. Observe that the orbit continues to look the same.

To obtain a rigorous proof of KAM stability, one can verify the KAM hypoth-
esis (L) and (T) as follows. The reduced space for the planar three body problem
at angular momentum zero (or any angular momentum) has dimension 6. Sub-
tract 2 for the energy-time ‘mandatory 1’s’ to see that the relevant return map for
investigating near-eight behaviour is a symplectic map R ∶ (D4,0) → (D4,0) of a
4-disc. Its differential dR0 has four eigenvalues. It follows that if we find eigen-
values eiω1 , e−iω1 , eiω2 , e−iω2 with ω1, ω2 clearly distinct, then we have found all the
eigenvalues for dR0 and that the orbit is elliptically stable.

check if Simo’s are eiω or
e2πiω; write those other
numerical guys. -RM

Simó [144] investigated the stability of the eight and the dynamics of its sur-
roundings with great care numerically. He computed the eigenvalues of the differ-
ential of the return map to be eiω1 , e−iω1 , eiω2 , e−iω2 where

ω1 = .008422724708131, ω2 = .298092529004750

(The eigenvalues are independent of the period or size chosen for the eight since
scaled versions of the eight yield conjugate return maps, hence identical eigenval-
ues.) To verify KAM condition (L) one checks that the 64 numbers k1ω1 + k2ω2
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with ki = −4,−3,−2,−1,1,2,3,4 are not integers. (We left ki = 0 out of the sum set
since it is obvious that nωi ≠ Z for n = 1,2,3,4.)

The reader might object at this point. There is no closed form expression
for the eight and so approximate representations of its monodromy matrix A and
linearized return map dR0 must be found with the aid of numerical integration.
We do not (and probably cannot) have exact closed form expressions for A or its
eigenvalues. When the machine is telling us that one of its eigenvalues is λ = eiω1

could it actually be that λ = (1/.9999...9)eiω1 and hence the orbit would fail to
be spectrally stable? No. Due to the spectral symmetry REF , if one eigenvalue
λ = reiω were to lie outside but very close to the unit circle then it must arise in a full
quartet: λ,1/λ̄ = 1

r
eiω, λ̄,1/λ are all in the spectrum. If the closeness of r to 1 were

below machine precision we could not tell λ from 1/λ̄ or λ̄ from 1/λ, but, regardless,
taken together λ,1/λ̄, λ̄,1/λ would have to account for a 4-dimensional eigenspace,
exhausting our spectrum, and making the occurence of the other found pair of
eigenvalues e±iω2 impossible. So it is enough to find 4 distinct eigenvalues lying
within machine precision of the unit circle and arising in two complex conjugate
pairs to guarantee that our orbit is linearly stable.

Simó numerically approximated the Taylor expansion of the return map of the
eight, thereby establishing the twist condition (T) and convincingly establishing
that it is KAM stable. In that paper you can find pictures of some of the KAM
torii around the eight. Later Simo and Kapela [66] used interval arithmetic to
rigorously establish the two KAM conditions (L) and (T), thereby guaranteeing
the eight’s KAM stability.

Gareth Roberts [129] gave a separate proof of linear stability of the eight
based on its D6-symmetry of the eight. Recall OOP – do in TOUR? – that the
eight is determined by one-twelfth of its orbit. Using these symmetries Roberts
could reduce the spectral stability computation to the analysis of a single two-
by-two matrix culled from this one-twelfth and the symplectic realizations of the
symmetry operations.

◇
Domain of stability.
The eight is KAM stable, but how far can we push it and retain stability? There

are many directions we can push in. We can change initial conditions, keeping the
masses the same. Or we can vary the masses, using the implicit function theorem
to follow the orbit as a relative periodic orbit and ask for the new orbit’s stability.
Simó investigated the results of both types of pushing. For the first, he took a
certain two-dimensional slice of the Poincaré disc and integrated forward. As he
integrated he kept track of the minimum and maximum of the interbody distances
and threw orbits out as ‘unstable’ when these distances went below or above some
tolerance. He kept track of up to 30,000 crossings and then plotted the resulting
“Julia set” of ‘stable’ orbits. The result in indicated in figure 1.

The specific slice Simó took was as follows. He insisted the initial positions
were collinear. After reduction, the set of phase points with angular momentum
zero and energy 1/2 is 4 dimensional and can be parameterized near the eight by
the initial velocites ẋ2, ẏ2, ẋ2, ẏ3 of bodies 2 and 3. His slice was determined by the
eight relation ẋ2 = − 1

2
ẋ3, ẏ2 = − 1

2
ẋ3. In the figure the axes are then the inital values

of ẋ3, ẏ3. The black regions are stable according to the numerical tests. The initial
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Figure 1. Stability Zone around the eight. Courtesy of C. Simó. [144] fig: Julia

condition for the eight is close to the center of the plot, in the narrow pinched
section of the main black region.

In order to follow the orbit as we vary masses, let’s recall how to use the
implicit function theorem to follow a periodic orbit. Let R denote the return map,
now viewed as a function of the masses m ∈ U ⊂ ∆2 as well as the initial positions
x ∈ D4, with the masses entering through Newton’s defining equations. Here ∆2 =
{(m1,m2,m3) ∶mi > 0,m1+m2+m3 = 3} is the ‘mass simplex” and U is some small
open subset near the point m∗ = (1,1,1) of equal masses. Thus R ∶ D4 × U → D4.
A periodic orbit is a fixed point of R so a pair (x,m) with R(x,m) = x. We’ve set
our coordinates up so that x = 0,m = m∗ corresponds to the figure eight. Rewrite
the fxied point equation as F (x,m) = 0 where F (x,m) = R(x,m) − x. The inverse
function theorem asserts that we can ‘follow” the zero to a family of orbits x(m)
with F (x(m)) = 0 provided ∂F

∂x
∣0,m∗ ≠ 0. Here, the partial means the derivative

with respect to all directions x ∈ D4 and saying that the partial derivative is not
zero means that it is invertible. But ∂F

∂x
= DR0 − Id with m = m∗. This matrix is

invertible exactly when 1 is not an eigenvalue of dR0. The condition (L) on the
reduced eight, substantiated by Simó’s eigenvalue computations, guarantees this
invertibility of ∂F

∂x
∣0,m∗ . So, we can follow the orbit uniquely to get a nearby family

of near-eights. Simo followed these mass-dependent eights, keeping track of their
stability. He found these periodic orbits became linearly unstable when he varied
the masses by 10−5 away from the equal mass case.

◇
Are there figure eight triple star systems in our universe? Heggie [53] investi-

gated this question numerically. He then threw pairs of equal mass binary systems
at each other numerically to get a sense of how often figure eights might form in a
galaxy. He writes that “a small fraction of one percent” of the experiments led to
eights that lasted a few periods. If the masses are not equal, the creation of eights
becomes even less likely, since as Simó discovered, moving a fraction of a percent
away from equal masses leads to instability. Heggie summarized his investigations
by asserting in a conversation that “there are somewhere between one figure eight
orbit per galaxy and one per universe”
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◇
include discussion of ro-
tating eights?? -RMThe eight has zero angular momentum. Turn on a bit of angular momentum.

Rest of this section in flux CITE ‘rotating eights’ The eight persists but must
rotate. In the rotating frame the new eight looks stable. FIGURE . Back in the
inertial frame this perturbed eight rotates – so cannot stay close to the mother eight
that birthed them. So it does not make sense to talk about the eight being “stable”
in inertial space under perturbations which change its angular momentum. This
discussion shows us again that the correct way to speak about N-body stability is
in the Poisson reduced phase space P/G.

okay! new tools - Poisson
reduction -RMIf we view the eight as a solution to the planar 3-body problem then it is

reduced KAM stable: these rotating eights are KAM stable. They have their own
KAM torii , torii which are close in shape space and also in reduced phase space
to the mother orbit than birthed them. Viewed from the perspective of the spatial
3-body problem they are also stable. The eight, viewed in space, has three axes of
symmetry, one of which represents rotations in its plane. Along all three axes we
can follow eights, the different eights unfolding in different ways. For very small
perturbations all these new eights will be KAM stable.

11. More KAM stable celestial situations

One motivation behind the birth of the KAM theorem was to prove or at
least better understand the stability of the solar system. I urge the reader to
consult Appendix 8 of Arnol’d’s [10] for a beautiful treatment which I cannot hope
to match. Here is a very abbreviated catalogue of situations within the N-body
problem to which KAM stability theorems have been applied.

For the solar system itself, or what are known as “planetary systems” there is
a vast literature. The underlying KAM theorem used here is closer to the original
version which is explicitly a perturbation theory. The ratios of the masses of the
planets to that of the sun are proportional to the perturbation parameter. So select
out 1 mass as large, call it “m0 for the sun, and scale the others by ε to arrive at
a family of N + 1-body problems with mass ratios 1 ∶ εm1 ∶ εm3 ∶ . . . εmN . If we
formally let ε → 0 we get N uncoupled Kepler problems. Look at the situation
where the Keplerian orbits are arranged in concentic circles, well separated. Now
turn ε back on. We are in the realm of KAM theory. A new problem arises not
discussed above. For each planet a new cluster of 1’s arise in the eigenvalue of
the return map not accounted for amongst the mandatory 1’s we described above.
These arise due to the fact that every orbit of the negative energy Kepler orbit
is periodic and moreover if we fix their energy then their periods are all the same.
This is refered to as the 1 ∶ 1 resonance of Kepler: perturbed Kepler orbits come
back to where they started. Many acre-feet of prose have gone into getting around
or dealing with these 1’s, thus insuring that some version of the conclusion of the
KAM theorem holds in the planetary situation. Due to this problem, an entire
subfield of KAM theory has developed, known as “degenerate Hamiltonian KAM
theory”. For a few post-Arnol’d results and references on the planetary problem I
urge the interested reader to consult Féjoz [37] and Chiercia [26].

The Lagrange orbit in the three-body system is an interesting fairly well-studied
case. A few references in historical order which arrive at various KAM stability
results around the Lagrange orbit are [29], [97], [11], and [159]. The first two
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concern the planar restricted problem and the third concerns the spatial restricted
problem.

12. Global Instability with Strong Force

If we go to the strong force (α = 2 power law) case of the N-body problem
then the answer to the Open Question becomes “no”. Indeed the Lagrange-Jacobi
identity in this case (49) asserts that Ï = 4E in this case, where E is the energy.
It follows that if E < 0 then every orbit begins and ends in total collapse: I = 0,
while if E > 0 every orbit is unbounded:I → ∞ as t → ±∞ (FIGURES XX) So for

an orbit to be periodic it must have E = 0. In that case Ï = 0 so İ = const. along
any orbit. But if the orbit is periodic we must have İ = 0. In summary, strong force
periodicity requires both İ(0) = 0 and E = 0 of the initial conditions. In this case
the value of I remains constant along the orbit. By a slight perturbation of initial
conditions we change E or İ(0), so there are no Lyapunov stable orbits.

The same arguments tell us that the only relative periodic orbits arise when
E = 0 = İ. We can search for stable relative periodic orbits within the invariant
manifolds H = 0 and İ = 0. They appear to be unlikely.

thm: unstable alpha =2 Theorem 2.5. For the case of the planar strong force (α = 2) three body prob-

lem with equal masses, and within the invariant submanifold H = İ(0) = J = 0
every relative periodic orbit is linearly unstable and hence cannot be Lyapunov sta-
ble within this invariant submanifold.

The theorem is proven in REF where we show that the flow modulo rota-
tions, after reparameterization, becomes smoothly conjugate to geodesic flow on a
complete surface of negative curvature. For such geodesic flows instability is well
known.

See problem 6 in the next section for more in this direction.

◇

13. More approachable Questions.

The Newtonian planar 3 body problem can be viewed as a parameterized fam-
ily of problems, the parameters being the masses, the energy E, and the angular
momentum J . A relative periodic orbit for the problem must have negative energy
E, by the Lagrange-Jacobi identity REF. The figure eight provides a KAM stable
periodic orbit for J = 0.

1. Are there KAM stable relative periodic orbits having angular momentum
zero for any mass distributions?

Scaling symmetry preserves the combination EJ2, known as the Dziobek con-
stant.

2. Are there KAM stable orbits for all negative value of the Dziobek parameter
EJ2 for the equal mass planar 3-body problem? For any masses?

To begin on this problem the reader might want list out what is known by
undertaking a literature search. In Moeckel [100] you can find some stated results
around periodic orbits.
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3. Prove Arnol’d diffusion occurs for the figure eight orbit, thus establishing
that it is not Lyapunov stable. A believable scenario to investigate would be one
of “diffusion” from arbitrarily close to the eight out to near to one of the three
companion hyperbolic eights that Simó found [144]. Once near the companion
hyperbolic eight one could show follow that eight’s unstable manifold very far away.

4. When the figure eight is viewed as a solution to the spatial three body
problem is it still KAM stable?

carefully define what you
mean by “KAM stable”
for a rel period orbit, ei-
ther HERE or , probably
better, earlier! -RM

The proof we gave for theorem 2.4 fails for the spatial problem at zero angular
momentum since the reduced spaces jump from 6 to 8 dimensions. It seems likely
that some additional condition will need to be verified on some “torsion” arising
from a now-6 dimensional return map in order to invoke the usual KAM technology
and proceed to a proof.

5. Generalize the Albouy-Dullin-Scheule stable example to any number N
of bodies as follows. The equilateral triangle form the vertices of a regular 2-
simplex and is a central configuration for N = 3. See proposition 1.5. Take instead
the regular simplex central configuration solution for any number N > 3 ofbodies,
placing them in a Euclidean space E of dimension d = 2(N − 1). We saw in the
previous chapter that the configuration can be ‘spun’ using an almost complex
structure J on E so as be made into a relative equilibrium. Any element Ω ∈ so(d)
can be put in a two-by-two block diagonal form corresponding to splitting E into
N−1 orthogonal 2-planes and ‘spinning’ each two plane independently at a different
frequence. J ∈ so(d) corresponds to all frequencies equal, say 1 ∶ 1 . . . ∶ 1. Show that
by deforming the side lengths with the frequencies, the simplex can be deformed so
as to form a family of quasi-periodic “isosceles” relative equilibrium solutions, each
of its N − 1 Jacobi vectors spinning in one of the 2-planes. Show that if “spun fast
enough” some of these relative equilibria become Lyapunov stable.

For the strong force α = 2 power law N-body problem, we saw in the previous
section that relative periodic orbits only exist when E = 0 and İ = 0. If we fix
E = 0, İ = 0 there are many relative periodic orbits. If, in addition, J = 0 and the
masses are all equal, then all of these orbits are linearly unstable.

6. Consider the α = 2 problem within the invariant manifold E = 0, İ = 0. Are
all relatively periodic orbits linearly unstable, regardless of the value of the angular
momentum and the mass ratios?

14. Notes.

Section 0. When Chenciner and I stumbled over Moore’s temporarily forgotten
figure 8 orbit we were surprised to find that it was stable. Or at least that’s
what numerical integrations on the computer and our friends who were experts in
numerical computations told us. Back then, I had worked in control theory and in
Hamiltonian systems so I knew a bit about “asymptotic stability” and “stability
by the energy-Casimir method” but I was quite ignorant of the notions of stability
available in “real” Hamiltonian dynamics, which is to say, in celestial mechanics.

Section 1. Work of Laskar and colleagues suggests that the solar system might
not be stable. REF. In a few billion years there is a few percent chance that the
eccentricity of Mercury’s orbit increases to the point that it intersects the orbit of
Venus, to cataclysmic effect.
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Hermann in turn attributes this ‘Oldest Question’ to Newton.
Section 2. See p. 74 of chapter 6 of [94] for a nice summary of various types

of stability.
Linear stability. The eigenvalues of the monodromy are often refered to as the

“multipliers”. refer to Herman,
for KAM Arnol’d , that KAM book, Stable and Random Motion ,and some

basic dyn sys texts note (T) can be relaxed and allow some degeneracy
note usual statements of the KAM theorem require irrationality and linear

dependence over the reals of the frequencies. Such assertions are numerically un-
verifiable. In contrast, the hypothesis (L) and (T) are finite in nature, and can be
verified rigorously on a machine using, for example, interval arithmetic.

The diffeomorphism of the first step of the Birkhoff normal form takes the form
Id +Q(z, z̄) with Q homogeneous quadratic

The version of the Nekhoroshev theorem stated is an improvement of the orig-
inal due to Pöschel REF.

On ‘case study”. 2nd paragraph. Another way to look at this implication
that imprecise numerics can give exact spectral stability is as follows. Distinct,
but numerically indistinguishable eigenvalues very close to, but not on the unit
circle might yield a single eigenvalue in the numerics but it would have to have
multiplicity two, while the multiplicities can be computed and are found to be one
(two for each complex conjugate pair).



CHAPTER 3

Is every braid realized?

Open Question 3.1. Is every braid type on N strands realized by a periodic
solution of the planar Newtonian N-body problem?braid_question

The following special case inspired much of my work and remains open.

Open Question 3.2. Is every relative braid type on 3 strands realized by a
relative periodic solution of the equal mass zero angular momentum Newtonian 3-
body problem?braid_question

1. Braiding bodies

When three points move in the plane without colliding they generate a braid
on three strands. Take time as a third axis orthogonal to the plane. Then the
three moving points qa ∈ R2 = C, a = 1,2,3 sweep out three non-intersecting curves
t ↦ (qa(t), t) in Galilean space-time R2 ×R whose union forms a traditional braid
on three strands. Figure 1 shows the braid generated by the figure eight solution to
the three-body problem while figure 2 shows the braid made when 1 and 2 form a
tight binary system circling each other while 3 is far away. These space-time braids
provide a means of visualizing free homotopy classes in C3 ∖ ∆, the configuration
space of the three-body problem.

By a braid type on N strands we mean a free homotopy class of loops for
the planar collision-free N-body configuration space, CN ∖ ∆. Braid types are in
bijective correspondence with conjugacy classes of the fundamental group of CN∖∆,
a group which is known as the pure braid group or colored braid group on N -strands
and which forms a well-known finite index subgroup of the more famous Artin braid
group. We cover some basics regarding braid groups below in section C. See also
[14] Birman, 1974, chapters 1 and 2.

Figure 1. The braid generated by the figure 8 orbit. fig8braid

101



102 3. IS EVERY BRAID REALIZED?

Figure 2. The braid A12 generated by a tight binary forms one
of the generators of the pure braid group. fig:braidtightbinary

We also stated a relative version of the open question. Recall that a planar
N-body solution is called “relative periodic” of period T if q(t+T ) = Rq(t) for some
rotation matrix R ∈ SO(2) = S1. The rotation group generates the center Z of the
pure braid group by taking a fixed base configuration q0 ∈ CN ∖ ∆ and rotating
it one full revolution. Since the N-body configuration space modulo rotations is
homotopic to shape space, PN /Z is the fundamental group of N-body shape space.

Definition 3.1. A relative braid type is a free homotopy class in the collision-
free planar N-body shape space, or, what is the same, a conjugacy class in the
projective pure braid group PN /Z.def: rel braid

q: relative braids Question 3.1. Is every relative braid type realized by a relative periodic orbit?

1.0.1. Links and the Borromean Rings. (Just for fun.) If the period of q(t)
is T then the space-time braid connects the plane t = 0 to the plane t = T . The
three starting points at t = 0 lie directly below the three ending points at t = T .
Reconnect ending points to corresponding starting points by arcs, thereby forming
a link. Applied to the braid for the figure eight braid, the link we get is the
Borromean rings. See figure ??

1.1. Eclipse sequences. As our three points move about in the plane, every
once in a while they become collinear. An eclipse has occurred. Label that eclipse
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Figure 3. The braid for the figure 8. fig: BorromeanRings3

by the occluding mass. Our collision-free triple of curves then ticks off an eclipse
sequence - a ‘word’ in the three ‘letters’ 1, 2, and 3, as time progresses. (In many
references the eclipse sequence is called the ‘syzygy sequence’.) For example, the
figure eight solution makes the eclipse sequence 123123 in one period. This eclipse
sequence encodes the curves’ relative braid type. Correspondingly we have the
following modified version of this chapter’s open question.

Question 3.2. Is every periodic eclipse sequence realized by a relative periodic
solution of the planar 3-body problem?eclipse_question

The Lagrange relative equilibrium solution (3.1) consists of a rotating equi-
lateral triangle. Suffering no eclipses, its eclipse sequence is empty. Nevertheless,
the pure braid it generates is non-trivial, and indeed is the generator of the center
of pure braid group. The following lemma formalizes the relations between the
original Open Question of this chapter and the follow-up question 3.2.

lemma: eclipse rep Lemma 3.1. Let Z be the center of the pure braid group on 3 strands. Then
Z is generated by rotating the base configuration one full revolution. With this in
mind, the following sets are naturally isomorphic:

● (1)conjugacy classes in P3/Z.
● (2) free homotopy classes in the shape sphere minus collisions
● (3)signed reduced periodic eclipse sequence
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Figure 4. From the 8 to the Borromean braid. fig: BorromeanRings1

We will call an element of any one of these sets a relative free homotopy class.

In the process of proving the lemma we will define what we mean by an eclipse
sequence being “signed”’ , “reduced” and “periodic”.

Proof and explanation of lemma. The Lagrange solution, projected to
the shape sphere is trivial homotopically: it is a constant loop. A loop in the shape
sphere S2 represents a relative periodic curve: a curve which closes up modulo a
rotation. Two different lifts of the same shape curve differ by a rotation, hence,
if each lift is closed then the difference of their homotopy classes is represented by
a loop generated by the action of the rotation group and such rotational loops lie
in the center of the pure braid group. Thus P3/Z is the fundamental group of S2

minus three points. This realization provides the equivalence (1) ⇐⇒ (2).
To get (2) ⇐⇒ (3) observe that the three binary collision points (12), (23), (31)

cut the collinear equator of shape sphere into three arcs, labelled 1, 2 and 3, arc a
representing the locus of collinear configurations of eclipse type a. FIGURE. When
a curve crosses the arc labelled a an eclipse of type a has occured. Thus we can
read off the eclipse sequence of a solution by projecting the solution to the shape
sphere and counting off its intersections with the three collinear arcs.subsec:signed

1.1.1. Signing the Sequences. We write 1+ if the curve crosses arc 1 from the
upper hemisphere to the lower hemisphere - or equivalently if the triangle goes from
positively oriented to negatively oriented. We write 1− if it crosses arc 1 from the
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Figure 5. Eclipse sequence for the eight. Count crossings of the
labelled equatorial arcs to get sequence 123123. The left figure is
the stereographic projection of the right one, with the 31 collision
placed at infinity fig:eclipses

lower hemisphere heading into the upper hemisphere. In this way the solution ticks
off a sequence such as 1+2−3+2− . . .. The superscripts + and − must alternate so
that a choice of one sign on any one symbol determines the rest of the signs, We
have described the meaning of a “signed” eclipse sequence. There are
exactly two signed eclipse sequences for a given unsigned eclipse sequences. If we
choose a relative periodic curve q ∶ R→ C3 ∖∆ representing one of these sequences
then the other sequence is represented by the curve obtained by applying a planar
reflection (for example qa ↦ q̄a) to this curve. On shape sphere, such a reflection
acts by reflecting the shape image about the equator. Due to this simple 2:1 nature,
in what follows we do not bother with signs decorating eclipse sequences.subsec:stutters

1.1.2. Reducing Stutters. Crossing the same arc twice in a row is a homotopi-
cally removable “mistake”. We call such multiple crossings of the same arc “stut-
ters” . Stutters can be removed in pairs. FIGURE. For example, homotopically
speaking 122213 = 123 and 12213 = 113 = 3. We call an eclipse sequence “reduced”
if it has no stutters.

1.1.3. Cycling sequences. Since our shape curve is periodic so is its eclipse se-
quence. So we can think of its symbols 1,2,3 as written cyclically on a circle.
Written cyclically it must continue to have no stutters if it is to be reduced. For
example, 1231, when viewed as a periodic eclipse sequence, is not reduced, since
when wrapped around on the circle it is the same as 1123.

QED .
It is worth noting that the fundamental group of S2 ∖ ∆ is the free group on

two letters, with these letters being represented by simple loops enclosing any two
of the three binary collision points.
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Exercise 3.1. Show that modulo particle relabelling (permutations of the three
masses) and reflection there are less than 2M−2 distinct reduced eclipse sequences
of length M .

2. Motivation: Variational methods.

The following success story motivated the question of this chapter.

Theorem 3.1. If X is a compact manifold endowed with a Riemannian metric,
then every free homotopy class of loops in X is realized by a periodic geodesic whose
length minimizes the length of all closed curves in this class.

Sketch Proof. The Riemannian metric allows us to measure the length of
sufficiently smooth paths in X. Fix a free homotopy class. Minimize the length of
loops representing this class. Geodesics are extremals of the length functional so in
particular the minimum length loop will be the desired representative geodesic.

But does this minimizer actually exist? Compactness of X combined with
the Arzela-Ascoli theorem insures existence of such a length minimizer. A bit of
functional analysis shows that the minimizer is smooth enough that the derivation
of the Euler-Lagrange equations goes through: the minimizer must be a geodesic
representing the class. QED

The proof just sketched is an example of the direct method of the calculus of
variations. We will try to apply the method to the N-body problem. To begin
we require a variational principle: a functional on paths, like length, whose critical
points are the sought-after solutions. The N-body problem at fixed energy E does
admit a Riemannian metric (most of) whose geodesics are solutions to Newtons’
problem at that energy E. See the Appendix on the Jacobi-Maupertuis metric .

write, and refer to, appen-
dix -RM However the following variational principle has proved more useful than the JM

length for the N-body problem.

Definition 3.2. The action A of a path q ∶ I → E is the integral A(q(⋅)) =
∫I L(q, q̇(t))dt where L(q, v) =K(v) +U(q) is called the “Lagrangian”.

Critical points of the action are solutions to Newton’s equations, provided the
critical points are collision-free. This fact is known as the action principle

Remark The Lagrangian is K + U . The Hamiltonian (conserved energy) is
K −U . Compare them. Do not confuse them.

In the action-minimizing approach to the Open Question we fix the period T
(rather than the energy E as we would have to do in using the JM metric) and the
braid type of the competing curves and tries to copy the compact Riemannian proof
above. One would like to say the action-minimizer exists and is our desired curve.
Without additional assymptions made on the competing curves this direct approach
fails due to the non-compactness of the N-body configuration space Ê = CN ∖ ∆.
There are two sources of non-compactness: rab → 0 and rab → ∞. We might call
these the “infrared” (r → ∞) and “ultraviolet” (r → 0) divergences, following the
terminology of quantum field theory. The more difficult of the two is the ultraviolet:
particle collisions.

infrared? Ultraviolet?
too corny? -RM The standard gravitational N-body problem has solutions which end in collision

in finite time and these have finite action. (See exercise XXX at the end of this
chapter regarding the finiteness of the action. ) By passing through collisions we

then , include exercise! ?
-RM can jump from one braid type to another while the action changes continuously.
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Nothing seems to prevent an action minimizing sequence of paths within a braid
type to tend to a collision path. In 1977 W. Gordon [46] showed that this ‘jumping
phenomenon’ actually happens for the standard two-body problem.

Theorem 3.2 (W. Gordon). Consider the braid type in which the two bodies
wind twice around each other in the gravitational two-body problem. (See figure 2.)
Fix the period T . Then any action minimizing sequence within this braid type and
period tends to a path with collisions.

On the other hand, if the braid type is that in which the two bodies wind once
around each other, then the minimizer is realized and indeed a single period of every
Keplerian solution of the two-body problem having the given period T realizes this
minimizer.

To underline both the subtlety and the main issue, consider the limiting collision-
ejection solution to Kepler’s problem, the one with zero angular momentum. FIG-
URE ? Its action is the same as that of all the other T -periodic Keplerian solutions
and so also realizes the minimum of the second part of Gordon’s theorem, despite
having a collision.

To get the direct method to work for N-body problems one must either leave
the Newtonian 1/r potential or one must supplement the topological braid type
constraint on loops with additional conditions.

Remark. The Jacobi-Maupertuis [JM] length is a direct extension of the length
functional in Riemannian geometry to mechanical problems. See appendix D. The
JM length is the path length as measured by a degenerate Riemannian metric known
as the Jacobi-Maupertuis metric, a metric which depends on the choice of energy E,
and is defined on the Hill region: {U ≥ −E} ⊂ E. In the interior of the Hill region this
metric is an honest Riemannian metric and its geodesics are reparameterizations of
the energy E solutions to Newton’s equations. It is aesthetically tempting to try to
use the JM metric to get interesting periodic solutions for the N-body problems. So
far almost all such attempts have failed due largely to the fact that the JM metric
degenerates to zero on the Hil boundary {U = E}. Two notable successes of the
JM method in mechanics are Seifert’s work [?] and Moeckel’s work [?].

3. What’s Known?

3.1. Cheating by changing the force. The direct method works beautifully
for the planar N-body problem if we are willing, like Poincaré, to cheat. Poincaré
changed Newton’s 1/r pair potential to a 1/rα power law potential, α ≥ 2. Following
Gordon [46] we call these “strong force” potentials.

Definition 3.3 (Gordon). A strong force potential is a power law potential
Uα = Σmamb

rα
ab

for which α ≥ 2

The following computation underlies Poincaré’s success.

Lemma 3.2. Let L =K+U be the Lagrangian for a strong force N-body problem
U and A = ∫ Ldt the corresponding action. Then any curve in E = (Rd)N which
suffers a collision has infinite action.lemma:infinite action

Proof of Lemma The key is the observation that for any positive r1 the
integral ∫

r1
0

dr
rα/2 is infinite provided α ≥ 2. The kinetic energy in center-of-mass

frame can be written as 1
M

Σa<bmamb∣q̇ab∣2 where M = Σma and qab = qa − qb. Since
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∣q̇ab∣2 ≥ ṙ2
ab it follows that K ≥ mamb

M
ṙ2
ab and so L ≥mamb( 1

M
ṙ2
ab+ 1

(rab)α ) for any pair

a, b. Now suppose that q(t) is a smooth path in E in which bodies a and b collide at
some time t = tc. Write r = rab so that L ≥mamb( 1

M
ṙ2+ 1

r(t)α ). Use A2+B2 ≥ 2∣AB∣
to get L ≥ C ṙ

rα/2 or Ldt ≥ C dr
rα/2 where C = 2mamb√

M
Use the divergence of the integral

∫
r1

0
dr
rα/2 to conclude that A(q([t1, tc]) ≥ C ∣ ∫

r1
0

dr
rα/2 ∣ = +∞ where t1 < tc is any time

at which r(t1) ∶= r1 ≠ 0. QED
Recall that q ∶ R → E = C3 is called ‘relative periodic” of period T > 0 if

q(t + T ) = Rq(t) for some rotation R ∈ SO(2) = S1. Poincare’s theorem, theorem
3.3 concerns relative periodic orbits with R = exp(iω). FIGURE FOR POINCARE.

Poinc Theorem 3.3. [Poincaré , 1896] Consider the planar 3-body problem with a
strong force potential. Fix two integers n1, n2, a nonzero angle ω ∈ R/2πZ and
a positive period T ∈ R. Then there is a collision-free relative periodic solution of
period T such that edge 12 rotates by ω radians, edge 13 rotates by ω+2πn1 radians
and edge 23 rotates by ω + 2πn2 radians in one period. The solution minimizes the
action over all relative periodic curves satisfying the stated constraints.

Poincaré’s proof proceeds in a manner identical to the proof of the Riemannian
geometry theorem. The key point is that lemma 3.2 prevents collisions. Collisions
are required if we are to pass from one braid type – or in Poincaré’s theorem, one
homology class to another. Thus if a minimizer exists it is collision-free and satisfies
the given topological constraint. A full proof is given later

Give! place section, refer-
ence! -RM Poincaré’s method of proof with almost no changes allows us to answer the

open questions of this chapter for strong force potentials.
Call an eclipse sequence “tied” if all three letters 1,2,3 appear in the sequence.

Theorem 3.4 ( Montgomery, 1998). In a strong force planar three-body prob-
lem every tied eclipse sequence is realized by a relative periodic action-minimizing
solution. This solution has zero angular momentum.strong_eclipses

And here is a version for any number of bodies.

Theorem 3.5. Let β be any relative braid type (definition 3.1) for the planar
N-body problem, R = exp(iω) ≠ 1 any non-identity monodromy, T > 0 a period, and
U = Uα be a strong force potential. Then there is a relative periodic solution to the
N-body problem with potential U , which realizes the relative braid type β and has
period T and monodromy R. This solution minimizes the action over all relative
periodic curves satisfying the constraints specified by R,β.thm: rel braids

Poincaré’s theorem 3.3 is the homological N = 3 version of theorem 3.5 just
stated as we now explain. Given a periodic curve in Ê = C3 ∖ ∆ we can count
the winding number of each edge qa − qb. This counting defines a surjective ho-
momorphism P3 → Z3 which is the Hurewicz homomorphism π1(X) → H1(X) for

the case X = Ê. ( See section C below.) The center Z of the pure braid group
P3 on three strands is generated by rotations. The Hurewicz map sends the center
to the ‘diagonal’ winding numbers, (n,n,n) ∈ Z3. It follows that upon forming

the quotient of Ê by the rotation group, we arrive at a surjective homomorphism
P3/Z → Z3/Z = Z2 realising the Hurewicz homomorphism for the shape sphere (or
space) with collisions deleted:

{eq:Hurewicz3}{eq:Hurewicz3} (84) π1(S2 ∖∆)→H1(S2 ∖∆).
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The integers (n1, n2) of Poincaré’s theorem parameterize the elements of H1(S2 ∖
∆). We could call them “relative homology classes”. A conjugacy class in π1(S2∖∆)
is a relative braid type on 3 strands and the Hurewicz map is constant on conjugacy
classes. So the Hurewicz map takes theorem 3.5 to Poincaré’s theorem 3.3.

For a proof of theorem 3.4 and the other theorems discussed in this subsection,
see section 3.4.

“Reduced” is perhaps a
better adjective? ‘Rela-
tive’ conflicts with the ex-
isting use of that adjective
in homology -RM

3.2. Imposing symmetries: choreographies and the Eight. We know
one braid type that is realized: that of the figure eight orbit (see 3.3 and figures 4,
3), with its eclipse sequence of 123123. The eight was discovered (twice) by applying
the direct method of the calculus of variations after imposing symmetry conditions
on the closed curves which compete in the action principle. The symmetries require
the masses be equal. At about the time that the eight was found, Chenciner and
Venturelli [25] used the same methods to discover a pleasing solution to the spatial
four-body problem which they dubbed the hip-hop (figure ??). These two works
represent the first real success of the direct method of the calculus of variations in
the gravitational N-body problem. They started an avalanche of subsequent work.

A good way to describe discrete symmetries of periodic solutions to the N-body
problem is to view periodic curves q(t) = (q1(t), . . . , qN(t)) in configuration space
as maps

{symmetric rep}{symmetric rep} (85) q ∶ T × [N]→ Rd

by setting q(t, a) = qa(t). Here [N] = {1,2, . . . ,N} is the N element set of mass
labels. Points of T = R/TZ represents periodic time, so T is the orbit’s period:
q(t + T ) = q(T ) and we call T the time circle . The group of permutations SN acts
on [N] by permuting the mass labels, preserving the action of q provided the masses
are all equal. We henceforth fix the center of mass by assuming the map satisfies
Σ{a∈[N]}q(t, a) = 0 at each instant t of time. The one-dimensional isometry group

O(T) = O(2) of the time circle T = S1 acts by time translations and reflections.
The group O(d) of orthogonal transformations of Rd acts on inertial space. All
three group actions preserve the action A of a loop when the masses are equal, so
altogether we have the group O(T) × SN ×O(d) acting on our loops, leaving their
action unchanged, and mapping solutions to solutions.

We impose a symmetry condition on a loop by choosing a finite group Γ together
with a faithful representation

ρ ∶ Γ→ O(T) × SN ×O(d)
by which we simply mean a homomorphism with empty kernel. Choosing a repre-
sentation of Γ is the same thing as choosing a way for Γ to act on T, on [N] and on
Rd. By slight abuse of notation we write this action as ρ(g)(t, a, x) = (gt, ga, gx)
for (t, a, x) ∈ T × [N] ×Rd and g ∈ Γ. Imposing equivariance defines the symmetry
condition on loops.

def: symmetric Definition 3.4. By a Γ-symmetric loop we mean any loop (equation (85))
which is Γ-equivariant:

q(gt, ga)) = gq(t, a).
The idea is to restrict the action A to Γ-symmetric loops and then minimize the
action by the direct method. If we can show that the minimum exists and is
collision-free then it is automatically a Γ-symmetric solution to the N-body problem.
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Figure 6. The symmetry group of the figure eight is that of a reg-
ular hexagon. The reflections about the 6 indicated lines generate
this group. fig: hexagon

It was by this method of combining the direct method with symmetries that the
eight and the hip-hop were found.

To obtain the figure eight orbit we impose the symmetry group Γ = D6 of a
regular hexagon. The relationship of this group to the three-body problem is best
seen by looking at the shape sphere with its tesselation into 12 spherical triangles
made by the 3 isosceles great circles and the collinear equation. But this does not
quite describe its representation on the three-body problem. D6 has 12 element
and is generated by the reflections about the symmetry axes of a regular hexagon.
See figure 6.

To describe the representation ofD6 yielding the eight, observe that the symme-
try lines of the hexagon come in two alternating flavours: lines which join opposite
vertices and lines which join midpoints of opposite edges. See figure 6 where we
have colored the two flavours blue and red. Label the blue lines going around the
circle counterclockwise as 1,2,3 with 1 corresponding to the x-axis. Label the red
lines 3̄, 1̄, 2̄, making sure to interleave the labeling to insure that two mass labels (eg
1, 1̄) never are adjacent to each other on the circle, and adding the bars to insure
they are not confused with the blue lines. Draw the time circle T circumscribing the
hexagon. Then each reflectional symmetry of the hexagon acts on the time circle
by that same reflection. For example, if we coordinatize the circle so line 1 passes
through t = 0 then the reflection about this line generates the time transformation
t↦ −t. (If T is the period of the time circle so that T = R/TZ then t and t + T are
the same point of the time circle, and so the reflection t ↦ −t is also represented
by t ↦ T − t, showing that it also fixes the antipodal point t = T /2 to t = 0 on
the time circle.) The reflection for any unbarred line act on the physical inertial
plane R2 = C like a half-twist: z ↦ −z, The reflection about any barred line act
on the plane by reflection about the x-axis: z ↦ z̄. Finally, the reflection about a
line labelled i or ī acts on the label space [3] by (jk), which is to say by switching
the two remaining elements j, k ≠ i of label space. Note, if we let the reflections
of figure 6 act on the labelled lines then this action on label space is precisely the
action on the labelled lines: reflection about line 1 switches lines 2 and 3 (and 2̄
and 3̄) so can also be seen from the figure.
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thm: eight Theorem 3.6. The loop obtained by minimizing the action over the space of
D6-symmetric loops is collision-free and consequently solves Newton’s equations.
This solution is the figure eight solution.

3.3. Choreographies. A surprising fact about the figure eight solution is that
its three masses trace out the same curve, chasing each other around this curve.
Such a solution is called a choreography . That the eight is a choreography follows
rather directly from its D6 symmetry. Take the product h ∈ D6 of 4 consecutive
reflections from figure 6, for example 1, 3̄,2, 1̄. This h acts by rotation by 1/3 of a
revolution on the time circle, by the identity on the inertial plane and by a cyclic
permutation on the labels. Thus h generates the cyclic group Z3 ⊂D6. If we restrict
our representation of D6 to this Z3 we obtain a representation of Z3 which forces
the motion to be that of a three-body choreography.

More generally, to impose the choreography condition for N equal masses, take
Γ = ZN , the cyclic group of order N . Take T = N so that the time circle is
T = R/NZ. Define the representation of ZN by having the generator of ZN act
by taking (t, a, x) to (t + 1, a + 1, x), where addition of the mass labels a is taken
mod N . Then ZN -equivariance is the assertion that q(t + 1, a + 1) = q(t, a) or
qa+1(t) = qa(t − 1), t = 1,2, . . . ,N . In other words, all bodies travel the same curve,
staggered in phase from each other by 1/Nth of a period. If we know how any one
of the bodies move, we know how all the bodies move.

Soon after the eight was found Simo did a numerical study and found hundreds
of other planar three-body choreographies. See figure (?? ) for a few of these.

3.4. Hip-hop. The Hip-hop is a symmetric solution to the equal mass spatial
4-body problem. The symmetry group of the hip-hop is Γ = Z2×Z4. The generator
of Z2 acts on the time circle by 180 degree rotation: t ↦ t + T /2, trivially on the
mass labels, and by −Id on inertial space R3. The generator h of Z4 acts trivially
on the time circle, by the cyclic permutation a↦ a+1 on the set [4] of mass labels,
and by the orthogonal transformation B(x, y, z) = (−y, x,−z) on inertial space R3.
Note that B projects onto the plane R2 and this projected map (which agrees with
the restriction of B to z = 0) is rotation by 90 degrees. Thus the orbit of any point
in R3 under the Z4 action projects onto a square in the plane.

As a consequence of being Z4-symmetric the motion of any one body determines
that of all the others. If q1(t) is the motion of body 1 then the full 4-body loop
is q(t) = (q1(t),B(q1(t)),B2(q1(t)),B3(q1(t)). The Z2 symmetry implies that
q1(t + T /2) = −q1(t).

thm: hiphop Theorem 3.7. The loop obtained by minimizing the action over the space of
Z2×Z4-symmetric loops is collision-free and consequently solves Newton’s equations.
This solution is non-planar, with the 4 bodies oscillating symmetrically between two
antipodally related tetrahedra, q∗ and −q∗ forming a planar square (z = 0) at the
instant half-way between.

For q∗ we take the configuration at which the z-coordinate of q1(t) is maximized.
By a time translation we can assume this happens at t = 0. Then q(T /2) = −q∗.

3.5. Designer orbits. If we want a solution with a particular shape, or pleas-
ing symmetry, then we can try their luck by choosing a group Γ and a representation
of Γ that forces this symmetry. The direct method, applied to the loops having this
symmetry type might yield the desired solution. An obvious choice of symmetry
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is that of the Platonic solids. See [48] or [?] for orbits having these symmetries,
obtained by this method.

Sticking to the plane, one can add more and more bodies. A number of infinite
families of such planar orbits have been established in this way by [39]. See also
[?] for a summary of the state of affairs as of 2006.

As an alternative method one can take a slightly different perspective on the
eight. In one-sixth of a period it travels from one collinear Euler instant to another,
with the order of the masses on the line being permuted. The angle between these
two lines is quite particular to the eight and the angle bisector of the angle they
make is one of the symmetry axes of the eight. Instead, one could lay out N equal
masses on the line in some configuration, then rotate the line and permute the
masses. In this way we get a shooting problem from one collinear configuration
to another. By varying the lines and the points on the line it may happen that
velocities match in such a way that at the next collinearity the same angle and set of
configurations repeats. In this way one would have made another type of solution,
periodic if the angle between lines is a rational multiple of π. This method has
been used by REF to establish a number of surprising orbits.

100s or 1000s have been found by now. We tour some in section XXX
This is the “designer” part of the activity – choosing a good group

to act and a good group action. We then restrict the action functional to
equivariant loops, namely those loops satisfying

The key to these works is to fix a symmetry class of loops over which to minimize
the action A and then to figure out a way to guarantee that collisions do not occur
amongst the minimizers.

3.6. Numerical algorithms. Periodic solutions lend themselves to Fourier
series. Symmetry conditions put constraints on the coefficients of the Fourier series.
One can search for numerical approximations to the minimizing solutions realizing
a particular symmetry type by truncating to some order these Fourier series and
computing the action of the resulting path. This action becomes a function of a
finite number of Fourier coefficients. Apply a gradient search to find the Fourier
coefficients that minimize. See [?], [119], [?]. All of this is beautifully done on the
fly in the program written by Gregory Minton.

If one wants higher accuracy and more assurances that one has found an actual
solution to Newton’s equations, one can use the discrete symmetry to slice up
phase space into Poincare sections associated to the symmetry type. One can then
take the approximate minimizer as a seed for integration, in going from one slice
to another, or through a series of slices. A fixed point of the resulting map will
be the desired periodic orbit. In this way one gets an appoximate minimizer for
the symmetric variational principle. See [?], XXX. All of this can be turned into
rigorous existence proofs with bounds using the methods of interval arithmetic.
REF

3.7. Abandon the method: answer the question! The following result
almost solves the Open Question for the Newtonian three-body problem. Its proof
uses dynamical systems methods instead of variational methods.

Theorem 3.8 (Moeckel-Montgomery; 2015). Every relative braid type on 3
strands is realized by a relative periodic solution to the Newtonian three-body problem
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with equal or nearly equal masses. These guaranteed solutions have small but non-
zero angular momentum, come repeatedly very close to triple collision, and their
eclipse sequences have many stutters.eclipse_main

Recall that a stutter within an eclipse sequence is a repeated occurrence of the
same symbol.

We sketch the ideas behind this theorem in section 3.6.

4. The Direct Method. Proofs and collision obstructions.
direct method

In this section we go into some of the technical details around the direct method
and use it to prove some of the theorems listed in the previous section. We start
by proving Poincaré’s theorem (3.3). In this proof we do not have to worry about
collisions but the structure of the argument serves as a template for all our other
variational proofs.

4.1. Proof of Poincaré’s theorem. We will go through the steps carefully,
enumerating them in such a way that simple replacements of the ingredients going
into the steps will yield the proofs of many of the rest of the theorems of this section.

Step 1. Let Ω denote the space of all absolutely continuous paths satisfying the
constraints of the theorem and having finite action. So Ω consists of all absolutely
continuous paths q ∶ R→ C3 = E for which q(t+T ) = exp(iω)q(t), whose edges q1(t)−
q2(t), q1(t) − q3(t) have winding numbers n1, n2 per period T , and whose action

A(q) = ∫
T

0 L(q(t), q̇(t))dt per period is finite. For the path’s winding numbers to
be defined the edges 12 and 13 must never shrink to zero, and this is guaranteed
by ut lemma 3.2. Let A∗ be the infimum of this action A(q) as q varies over Ω.

Step 2. Let q(n) ∈ Ω, n = 1,2,3, . . . be any minimizing sequence : A(q(n))→ A∗
as n→∞. The heart of the proof consists of establishing that some subsequence of
the minimizing sequence converges in the uniform (C0) topology to a path q∗, that
q∗ ∈ Ω and that q∗ is collision-free.

This subsequence is obtained by applying the Arzela-Ascoli theorem: any
bounded, equicontinuous sequence of paths in C0([0, T ],E) has a convergent sub-

sequence. We recall the definitions. The sequence q(n) is bounded if there exists a
positive constant C such that for all n we have supt∥q(n)(t)∥ < C. The sequence is
equicontinuous if for every ε > 0 there exists a δ independent of n, such that for all
t0, s ∈ [0, T ] we have ∣s−t0∣ < δ implies ∥q(n)(s)−q(n)(t0)∥ < ε. So we must establish
the boundedness and equicontiniuity of our minimizing sequence.

Boundedness. The standard way to establish boundedness in the calculus of
variations is by verifying that the action with the path constraints is coercive.

Definition 3.5. A pair (A,Ω) consisting of a variational principle A and a
domain Ω for A is coercive if ∥q∥→∞ Ô⇒ A(q)→∞.

Use the C0 norm ∥q∥ = supt∈[0,T ]∥q(t)∥ on paths in the definition of coercivity.
It is then immediate that if (A,Ω) is coercive then any minimizing sequence is
bounded.

ω ≠ 0 Ô⇒ coercivity. We will only use the kinetic energy part of the
action. We have A(q) ≥ ∫ K(q̇)dt ∶= 1

2 ∫ ∥q̇∥2dt. Cauchy-Schwartz’s inequality

∫ fg ≤
√
∫ f2

√
∫ g2 applied to f = ∥q̇∥, g = 1 yields

√
∫ ∥q̇∥2dt

√
∫ dt ≥ ∫ ∥q̇∥dt ∶=

`(q), where `(q) is the Euclidean length of the path q in the Euclidean vector space
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E. Thus

A(q) ≥ 1

2T
`(q)2.

Let t∗ is a time for which ∥q(t)∥ which realizes ∥q∥ ∶= supt∥q(t)∥. Then q(t∗ + T ) =
eiωq(t∗). Also `(q) ≥ ∣q(t∗) − q(t∗ + T )∣ since Euclidean line segments realize the
infimum of distance between any two points, here the points q(t∗) and q(t∗ +T ) in
E. But the angle between q(t∗), q(t∗ + T ) is ω from which it follows that ∥q(t∗) −
q(t∗ + T )∥ = 2R sin(ω/2) where R = ∥q∥ = ∣q(t∗)∣. In other words

A(q) ≥ 1

2T
4∥q∥2 sin2(ω/2).

This implies coercivity as long as ω ≠ 2πk for some integer k. We will deal with
case ω = 2πk where k is a nonzero integer seperately, later on.

Equicontinuity. In order to establish the equicontinuity on the minimizing
sequence we again only use the kinetic part of the action. We have that q(s)−q(t0) =
∫
s
t0
q̇dt because our paths q are assumed absolutely continuous and the coordinates

of absolutely continuous paths have measurable derivatives and are equal to the
integrals of these derivatives. ROYDEN REF. Then

∥q(s) − q(t0)∥ ≤ ∫
s

t0
∥q̇(t)∥dt.

Using Cauchy-Schwartz again, we have

∫
s

t0
∥q̇(t)∥dt ≤

√
∣s − t0∣∫

s

t0
∥q̇(t)∥2dt ≤

√
∣s − t0∣2A(q)

since A(q) ≥ ∫
T

0 K(q̇)dt = 1
2 ∫

T
0 ∥q̇∥2dt ≥ 1

2 ∫
s
t0

∥q̇∥2dt. Putting these inequalities
together yields

∥q(s) − q(t0)∥ ≤
√

∣s − t0∣2A(q)
(The inequality asserts that the q’s are uniformly Hölder continuous of exponent
1/2.) Equicontinuity follows immediately. Given an ε with which we want to bound
∥q(s) − q(t0)∥ by, take the corresponding δ = ε2/C2 where C is any constant such

that 2A(q(n) ≤ C for all n sufficiently large, so for example C = 2.1A∗ would work.

Here we are using that we are only concerned with the tail of the sequence q(n) -
we can throw out any finite number of inital q(n)’s when applying Arzela-Ascoli.

Now we can invoke Arzela-Ascoli and get some subsequence, relabelled q(n), of
our initial sequence, with q(n) → q∗ in the C0 norm.

Step 3. The limiting path is collision-free. By the dominated convergence
theorem lim inf A(q(n)) ≥ A(q∗), so ∞ > A∗ ∶= lim inf A(q(n)) ≥ A(q∗) which implies
that q∗ is collision-free since A(q∗) = +∞ for any path with collisions, by the lemma.
It is this step that is the hardest in the Newtonian 1/r case.

Step 4. The limiting path is smooth and satisfies Newton’s equations.
“ Routine” - leave to appendix ??

This completes the proof of Poincaré’s theorem as long as ω ≠ 2πk, k an integer.
For that case we have not shown coercivity.

Coercivity in the case of ω = 2πk, k a non-zero integer. Look first
at the problem of minimizing the length of plane curves q ∶ R → R2 over all curves
missing the origin and winding once around it. Without any additional constraint
the infimum is 0 and is realized by a shrinking family of circles. But if we impose
the constraint ∥q∥ ∶= supt∣q(t)∣ = R with R ≠ 0 then any minimizing sequence will
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tend to a line segment of length R, traversed twice, with one endpoint the origin,
thus one for which `(q) = 2R. FIGURE. The Cauchy-Schwartz argument identical
to that of the paragraph “ ω ≠ 0 Ô⇒ coercivity” in step 2 above gives

1

T
∥q∥2 = 1

T
R2 ≤ 1

2
∫

T

0
∣q̇(s)∣2ds.

Now suppose ω = 2π so k = 1 and apply this argument separately to each edge
qab(t) ∈ R2 of our moving triangle and sum the inequalities with appropriate mass
weights to get

1

T
∥q∥2 ≤ ∫

T

0
K(q̇(t))dt.

which is coercivity.
The infimum of the length among all curves in the plane which wind k times

around the origin, k ≠ 0, and have ∥q∥ ≥ R is the same: 2R and yields the same
coercivity bound.

This completes Poincaré’s theorem for all nonzero values of ω.

The proof we presented of Poincaré’s theorem goes through verbatim for any
coercive class if the action we are minimizing is that of a strong force potential.
Hence we get:

Theorem 3.9. For the planar N-body problem each of the following families
of loops or relative loops are coercive, and hence each is realized by an action-
minimizing solution for any power law potential Uα having α ≥ 2.

● i) any relative braid type provided we require edge 12 of the N-gon suffers
a net rotation of ω ≠ 0 in one period

● ii) any “homologically tied” relative braid type

We explain the classes and their coercivity. The first class (i) provides a direct
generalization of Poincare’s theorem from relative homology to relative homotopy.
The homology of CN∖∆ is generated by (N

2
) loops, one for each edge qab = qa−qb, the

loop being realized by masses a and b making one full counterclockwise revolution
around each other while all the other masses are far away and unmoving. To directly
generalize Poincaré, we could insist that q12 revolves by 2πω while all the other qab
rotate by 2πω + 2πnab for some integers nab. The nab realize the 1st homology of
the planar N-body shape space minus collisions. Then we would fix ω ≠ 0 and the

(N
2
)−1 integers nab. Now there is a canonical map, the Hurwewicz map PN → Z(N

2
)

and when we quotient by rotations it induces the map PN /Z → Z(N
2
)−1. This map

factors through the relative free homotopy classes. The coercivity of this class
follows in an identical manner to Poincaré’s class.

By taking ω = k a non-zero integer we get, above, winding number k for edge
12 and k + nab for all the other edges. The projection of the braid onto the center
is zero if and only if all OOPS ...

(ii) as per my orig paper

4.2. Interlude: Gordon’s work. The key to Gordon’s work is the realization
that the action of a periodic solution to Kepler’s problem only depends on its period.

Proposition 3.1. Fix the period T . Then the action suffered by going once
around any Keplerian solution having this period is the same, and equal to 2πµ1/2a1/2

where H = − µ
2a

is the orbit’s energy and T 2 = µa3 relates the period and size a.
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Proof. The Lagrangian and Hamiltonian are related by L(q, q̇) = pq̇ −H(q, p)
provided p and q̇ are related to each other by the Legendre transformation (A.1,
??) The relation inducing the Legendre transformation can be understood as an

ref?? Appendix? -RM
equality of one-forms:

Ldt = pdq −Hdt
in an extended phase space, pulled back to solution curves. The form pdq denotes
the canonical one-form on phase space (A). Integrate this relation over one period,
using the fact that the energy and period are related by Kepler’s third law and in
particular that fixing the energy fixes the period. We get

∫
T

0
Ldt = ∫

c
pdq −HT.

The integral of Ldt is the action. Now let c1, c2 be two solutions having the same
energy, and hence the same period T . We can subtract the two integrals to get

A(c2) −A(c1) = ∫
c2
pdq − ∫

c1
pdq

Now the energy level set is path connected for Kepler’s problem. Parameterize the
two curves and connect their initial points c1(0), c2(0) by a smooth curve γ(s),0 ≤
s ≤ 1 which lies within the fixed energy level. Because ω(XH , v) = dH(v) we have
that ω(XH , γ̇) = 0 But ω = dp∧dq. Applying the Hamiltonian flow to all the points
of the arc γ for one full period we sweep out an annulus whose boundary is c2 − c1.
We have just shown that this annulus is ω-isotropic: the pull-back of dp ∧ dq to
this annulus is zero. It follows by Stoke’s theorem that ∫c2 pdq − ∫c1 pdq = 0 or

A(c2) = A(c1).
To get the precise expression for the action evaluate it on the circular solution

q(t) = aexp(iωt). (Use the defining equation of Kepler’s problem to see that ω2 =
µ/a3.) QED

Proof of the second part of Gordon. We show any minimizing sequence
tends to a collision-ejection solution. Let’s first go twice around a Keplerian orbit.
If the period of this orbit is P then to go twice around takes time T = 2P . On
the other hand the action of this twice-circled orbit is 2a(P ) = 2cP 1/3. The action

of the collision-ejection solution of period T is cT 1/3 = 21/3cP 1/3 which is less than
twice around our twice-circled orbit since 21/3 < 2. This proves that going twice
around the classical solution will not minimizer the action. Why not?

Take the collision ejection solution and just back up a bit from collision and
pause to concatenate with a tiny quick circle traversed twice. For example, if
collision occurs when t = 0 then it occurs again at t = T . Using r(t) = r(−t) =
r(T − t), travel along the collision-ejection solution from t = ε/2 to t = T − ε/2. At

that stopping time we are at a point a distance a = cε2/3 from the origin. Now take
the Keplerian cirlce of this radius. Its action, twice around is 4πµ1/2a1/2 which
tends to zero with ε. Now, we’ve messed up the period condition but only by O(ε)
which can be normalized back to T by a time rescaling at the risk of a vanishingly
small change to the action.

Without much difficulty one can show the scenario just sketched is optimal:
any minimizing sequence converges to the collision-ejection orbit. Moreover, the
same is true no matter what winding number we take as long as it is not 0,1 or −1.

4.3. Hunting the Eight and the Hip-hop.
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4.4. A workhorse : Marchal’s lemma. Establishing the existence of the
hip-hop and figure eight gave a proof of concept. Variational methods actually can
be used to say something interesting about the gravitational N-body problem. Not
long after hearing a talk on the figure eight Christian Marchall proved a lemma
which became central to subsequent work.

Marchal lemma Lemma 3.3. [Marchal] Consider the N-body problem in d dimensions, d > 1
with any power law pair potential, Newton’s α = 1 included. Let q0, q1 ∈ E = (Rd)N
be fixed endpoints and T > 0 a fixed time. Then every action minimizer q ∶ [0, T ]→ E
connecting q0 to q1 in time T has no interior collision points. In other words, if
q ∶ [0, T ]→ E is such a minimizer then q(t) ∉ ∆ for all t ∈ (0, T ).

Remarks. The lemma allows either endpoint to be a collision point.
Since minimizers solve Newton’s equations away from collision, the minimizers

of Marchall’s lemma are solutions to Newton’s equations.
Marchall proved his lemma for the Newtonian case and d = 3. Chenciner and

then Ferrrario and Terracini showed how to prove it for any d and any power law
1/rα, α > 0.

Before Marchall’s lemma the only general facts available regarding action min-
imizers were that their collision locus was a closed set of measure zero and that
upon restriction to any component of the complement to the collision locus the
curve solved Newton’s equations. These facts allow for the collision set to be a
Cantor set in which case the “solution” afforded by the minimizer consisted of a
countable set of solutions defined on small open intervals, concatenated to each
other at elements of the Cantor set. The jump from the Cantor set all the way
down to the empty set is a big one!

Proof sketch.
We will give the proof under a simplifying assumption. For a full proof we

recommend [22] or [39].
The proof is by contradiction. Assume our minimizer has interior collisions.

Our simplifying assumption is that the collisions occuring are isolated binary colli-
sions. Let tc ∈ (0, T ) be one such collision time and δ1 a time such no other binary
collision arises within (tc − δ1, tc + δ1). Shift time by tc so as to center the collision
time to t = 0 and so that our minimizer starts at q0 at time −tc and ends at q1 at
time q(T − tc). For each point s ∈ S2 we will construct a perturbation qs(t) of q(t)
which agrees with q(t) outside the critical interval [−δ1, δ1] and has no collisions
within the interval. We will not be able to compare the action A(qs) to A(q) for
any particular s to any advantage. Marchall’s brilliance was to instead average
A(qs) over the whole sphere and show that the average action decreases:

{Marchall_average}{Marchall_average} (86) ∆A ∶= ⨏
s∈S2

A(qs)dσ(s) −A(q) < 0,

where the symbol ⨏s∈S2 . . . ds means to take the average over the sphere with respect
to the usual area measure of the sphere. It follows from inequality (86that for some
s∗ ∈ S2 we have that A(qs∗) < A(q) so that in particular , contradicting minimality.

The key to Marchall’s proof of inequality (86) is potential theory. He identified
the leading term in the averaged perturbed action with the potential due to a
homogeneous gravitating spherical shell.

The particular family of perturbations of Marchall is simple but beautiful. Let
us suppose that it is body 1 and 2 that are colliding at time t = 0. Let f(t; ε) be the
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Figure 7. The function f defining the perturbation. fig: graph_f

continuous even non-negative piecewise linear scalar function equal to ε for t = 0
and having support on

Ic ∶= [−δ, δ]
where δ ≤ δ1 (A particular choice of δ will be made later, one guaranteed so that
within Ic our alleged minimizer has well described asympotics.) See figure 7. Thus

f(t; ε) = ε(1 − t/δ),0 ≤ t ≤ δ
Let µ1, µ2 be the usual ‘reduced mass” coefficients so that m1µ1−m2µ2 = 0 µ1+µ2 =
1. Define the perturbation qεs(t) = (qε1,s(t), qε2,s(t), . . . , qεN,s(t)) by

qε1,s(t) = q1(t) + µ1f(t; ε)s,
qε2,s(t) = q2 − µ2f(t; ε)s,

while
qεa,s(t) = qa(t), a > 2.

Note that
m1q

ε
1,s +m2q

ε
2,s =m1q1 +m2q2

: the perturbation has not changed the 1-2 center of mass, nor the overall center of
mass. Also note that

qε1,s − qε2,s = q12(t) + f(t; ε)s
where q12(t) = q1(t) − q2(t). The perturbation as destroyed the collision at t = 0,
shifting it by the vector s.

Since q and qs agree outside of Ic = [−δ, δ] we have

A(qεs) −A(q) = ∫
Ic
(K(qs(t)) −K(q(t))) +U(qs(t)) −U(q(t))dt

for each s. The proof is achieved by averaging this action difference over s ∈ S2 and
showing that it becomes negative for appropriate δ > 0 and all ε sufficiently small.
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To this end we will show that as ε → 0 the dominant term of the action difference
comes from the 12 potential term:

∆A12 ∶= ⨏
s∈S2
∫
Ic

m1m2

∣q12(t) + f(t, ε)s∣
− m1m2

∣q12(t)∣
ds

We estimate ∆A12 now. Switch the order of integration:

∆A12 ∶= ∫
Ic
(⨏

S2
m1m2

∣q12(t) + f(t, ε)s∣
− m1m2

∣q12(t)∣
ds

At this point the promised potential theory enters, potential theory going back to
Newton. Newton established that a uniform spherical shell of mass exerts no force
inside, while outside it exerts the same force as would be exerted if all of its mass
were concentrated at a point at its center. This reasoning implies that if f > 0
denotes a constant radius and if we define a function W (Q) on R3 by

W (Q; f) = ⨏
s∈S2

ds

∣Q − fs∣
then

(87) W (Q) =
⎧⎪⎪⎨⎪⎪⎩

1
∣Q∣ , ∣Q∣ > f
1
f
, ∣Q∣ ≤ f

Note also that W (Q,f) = ⨏s∈S2
ds

∣Q+fs∣ds since the integral is invariant under s↦ −s.
Applying this realization regardingW (Q) to the integrand inside our last expression
for ∆A12. Setting Q = q12(t), f = f(t), multiplying by m1m2 and using ∣Q∣ = r12

we see that the two terms of this integrand cancel unless r12 < f in which case we
get the integrand to be m1m2

f
− m1m2

r12
. Thus

∆Aε12 =m1m2 ∫
t∈Ic∶r12(t)≤f(t;ε)

( 1

f(t; ε) −
1

r12(t)
)dt.

We are done with our use of potential theory.
Since 1/r12 > 1/f on the region of integration we have that ∆A12 < 0. We will

need the leading asymptotics in ε of ∆A12 to insure it dominates the rest of the
average action, keeping it negative. To obtain this asymptotics we will need that
of r12(t) as t→ 0:

{eq: r asymptotics}{eq: r asymptotics} (88) r12(t) ∼ γt2/3 +O(t), γ = (9

2
(m1 +m2)G)1/3

This estimate is valid for the separate solution arcs on either side of collision. The
include γ get it by ei-
ther owrking it out by en-
ergy balance or look up in
levi-civita and add eq ref;

chenc says γ = (9/2)1/3 for
standard Kepler -RM

asymptotics (88) was supplied a century ago by Levi-Civita. See section 13 of [81].
We show how derive this in an exercise at the end of the chapter. We choose δ
independent of ε so that this asymptotics is valid on the interval [−δ, δ]
for both collision branches with fixed constant bounds

really? add some exer-
cises? -RM

I claim that estimate (88) implies

{eq: Delta A}{eq: Delta A} (89) ∆Aε12 = −
4m1m2

γ3/2

√
ε +O(ε).

Focus on the branch leaving collision: 0 ≤ t. We have f(t) decreases monotonically
from ε to 0 while r12 increases monotonically from 0. It follows that there is a
unique first time t0 = t0(ε), close to zero such that r12(t0) = f(t0). See figure 8

We can estimate that time by replacing r12(t) by γt2/3 and solving f(t) = γt2/3 to
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Figure 8. The point t0 is where r12(t) first exceeds f(t). fig: t0

leading order, using f(t) = ε(1 − t/δ) which yields

t0 = ( ε
γ
)3/2 +O(ε2).

The errors made by replacing r12 by γt2/3 in the integrand of ∆A12 change it by
terms which are O(ε). The integral is now estimated by

m1m2(∫
t0(ε)

0

dt

f(t; ε) − ∫
t0(ε)

0

dt

γt2/3
).

The second integral we do immediately to get − 3
γ
t
1/3
0 . The first integral could

be done but instead we estimate it by
t
1/3
0

γ
≥ ∫

t0
0

dt
f(t) as follows. The function

f is monotone decreasing on [0, t0] so 1/f(t0) ≥ 1/f(t) on that interval. Thus
t0

f(t0) = ∫
t0

0
1

f(t0)dt ≥ ∫
t0

0
dt
f(t) . Now use f(t0) = γt2/30 + O(t0). Summing, the two

integrals we get (1 − 3)m1m2
t
1/3
0

γ
+ lower order terms ≥ ∆A12∣t>0 or

−2
m1m2

γ3/2 ε1/2 ≥ ∆A12∣t>0

where ∆A12∣t>0 denotes the contribution to the averaged action change obtained
by integrating over for the interval [0, t0]. The estimate for ∆A12∣t<0, the averaged
12 potential part of the action for the interval [−δ,0] before collision proceeds
identically and yields the same upper bound. Adding the two upper bounds yields
the claimed result, inequality (89).

It remains to show that ∆A12 dominates the other terms in the averaged change
in action. Expand out the total averaged change in action:

∆A = ∆AK +Σj>2(∆A1j +∆A2j) +∆A12
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where ∆AK denotes the averaged change in the kinetic part of the action, and where
∆Aij denote the differences in perturbed and unperturbed averaged action arising
from the 1/rij term of the potential. There are no terms ∆Abc for b, c > 0 since
the motions of all the other bodies a > 2 were left unchanged by the perturbation.
terms of the potential are zero. We will show that

∆AK = O(ε2/δ)
and

∆A1j = O(εδ),∆A2j = O(εδ).
(Recall δ is independent of ε and is chosen so that the collision asymptotics of both
branches held.) These estimates show that the negativity of ∆A12 dominates the
rest of the action as claimed, and will complete the proof.

(∆AK) The integrand for the difference in kinetic parts of the action is

1

2
Σma(∣q̇εa,s(t)∣2 − ∣q̇a(t)∣2)

Since we’ve only changed the trajectories for a = 1,2 these are the only ones that
contribute. Since

q̇ε1,s = q̇1 + µ1ḟ(t; ε)s
the kinetic difference term in the integrand for mass 1 is

1

2
m1(2µ1ḟ1q̇1 ⋅ s + µ2

1(ḟ)2)

Now

ḟ(t; ε) = εΘ(t; δ)
δ

where

Θ(t, δ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1,0 ≤ t ≤ δ
1,−δ ≤ t < 0

0, ∣t∣ > δ
From this expansion of the integrand it looks like the averaged kinetic is O(ε) right
away. However the velocity q̇1 blows up as t→ 0 so we would need its asymptotics
to estimate this term which is apparently linear in ε. The integral arising from this
term is at least finite since the rate of blow up of the velocity is t−1/3. But viewed
as a function of s this first term is linear in s and linear functions on the sphere
average to zero! It follows that the only term that contributes to the averaged
kinetic action from mass 1 is the term m1µ

2
1(ḟ)2. The same argument holds for

the kinetic term arising from mass 2. Adding the two, using ḟ2 = ε2/δ2 on Ic and
doing the integral we get :

∆AK = ε
2

δ
(m1µ

2
1 +m2µ

2
2)

exactly.
(∆A1j ,A2,j , j > 2) We use the fact that the collision is isolated. Thus, there

is a positive constant C such that r1j , r2j > C as long as t ∈ Ic and j > 2. Write
qij = qi − qj . One expands out 1

rε1j
− 1
r1j

, using

(rε1j)2 = r2
1j(1 +

2

r2
1j

µ1f(t, ε)q1j ⋅ s +
1

r2
1j

f(t, ε)2)
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and the binomial expansion to find that

∣ 1

rε1j
− 1

r1j
∣ ≤ ε

2

µ1

C2
+O(ε2)

where we used that ∣f ∣ ≤ ε on Ic. An identical estimate holds for 1
rε2j

− 1
r2j

. Since the

integrands arising in ∆A1j ,A2,jare bounded by ε and their interval of integration
is of size δ we get that ∆A1j ,∆A2,j = O(εδ) as claimed.

QED (for our proof of Marchal’s lemma)

4.5. Isolating Collisions.

4.6. Variants of Marchal. One cannot directly apply Marchal to eliminate
collisions for the minimizers obtained by applying the direct method to paths with
Γ-symmetry. This is because Marchal’s averaged variations are random in any
direction and destroy the symmetry. Ferrario and Terracini [39] showed how to
construct an equivariant version of Marchal’s lemma provided the representation
of Γ obeyed a property they called the rotating circle property. We refer to section
2.6 of [?] and section 9 of [39] for the precise statement of this property and a host
of solutions to which it applies.
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5. A ballet tour

We have already described the figure eight and hip-hop orbits. Here we describe
a sampling of a few of the many other orbits obtained by combining the direct
method with symmetry constraints.

Figure 9. The symmetry groups of the five Platonic solid have
various representations which are realized by solutions to the spa-
tial N-body problem. by way of the direct method. For N you can
take the order of the group. Courtesy of D. Ferrario. platonics

Figure 10. Chen established the existence of a countable family
of solutions to the 2N body problem. Half the masses travel one
choreography (blue) clockwise. The other half travel a rotate of
the same choreography curve (red) counterclockwise. In the figure
2N = 4. Courtesy of K.C. Chen. fig: rosettes

double rosettes from
C.U.P: so no permission
necessary -RM
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Figure 11. Chen Ouyang and Xie established the existence of
various families of solutions by arranging points on two lines and
using the angle between the lines and the arrangements of the
points as inputs into the direct method. Courtesy of K.C. Chen. fig: 4braid

picture from their Math.
Res. Lett. paper -RM

Figure 12. Steckles and Montaldi classified possible symmetry
types of planar choreographies. All types are realized by strong
force potentials. This one they call D(3,4). Numerical evidence
suggests it is realized gravitationally. Courtesy of J. Montaldi. fig: D(3,4)

include constraints on
Fourier coeffs from their
paper ? -RM 6. Dynamical method.

dynamical method
We will use exponential notation to denote stutters. For example 1223 = 11222.

We say that an eclipse sequence consists of stutter blocks in the range [N0,N] if it
is of the form . . . an0

0 an1

1 . . . anii with a0, a1, . . . ∈ {1,2,3} and the integers n0, n1, . . .
lying in the interval [N0,N].

Theorem 3.10. Consider the planar three body problem as in the previous
theorem. There is a (possibly large) integer N0 with the property that for every
N > N0 and every eclipse sequence, infinite or not, consisting of stutter blocks in
the range [N,N0] there is a solution realizing that sequence. If the sequence is
periodic then the realizing solution is relative periodic.thm:MoeckelMontgomery

Proof of theorem 3.11 from theorem 3.10 Given a relative braid type,
there is a reduced periodic eclipse sequence w = a1a2 . . . a2k representing it. (Lemma
??.) Replace each ai in w with the stutter block anii with ni odd and in the range
[N0,N] to get a new word and repeat the new word so as to make it periodic. By
theorem 3.11 this new periodic eclipse sequence is realized by a relative periodic
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solution. Since stutters cancel in pairs (subsection 1.1.2), this relative periodic
curve, viewed in the shape sphere is freely homotopic to the relative braid type
encoded by w. QED

meaning and depending of
N on angular momentum?
-RMNone of these guaranteed solutions are minimizers in their free homotopy

classes. Indeed

Lemma 3.4. The action of any relative periodic solution which has a stutter
can be decreased while remaining relative periodic and in the same relative free
homotopy class.

Proof. Our proof is by “orbit surgery”. Suppose q is the solution and the
stutter is realized by two successive times t0, t1. Look at the image curve s(t) in
the shape sphere. The operation of reflecting the arc s([t0, t1]) about the equator
while leaving the rest of s(t) unchanged keeps its eclipse sequence the same. Some
thought shows that this ‘surgery operation’ on the shape curve can be lifted. To do
so, let `0 be the line through the three masses at time t0 and `1 the line at t1. Reflect
the arc q([t0, t1]) about `0 while keeping q([0, t0]) unchanged to arrive at a new arc
whose shape projection on the interval [t0, t1] is the reflection of s([t0, t1]). This

new arc ends in a collinear configuration lying on the line ˜̀
1 obtained by applying

the reflection to `1. Let g be the rotation taking `1 to ˜̀
1. Apply g to the final

segment q([t1, T ]) of q and concatenate the result with the previous part of the
curve. By this process we have made a continuous relative periodic curve q̃ with
the same eclipse sequence as q and the same action.

Now, by way of contradiction, suppose q cannot be shortened in its homotopy
class. Then q must satisfy the Euler Lagrange equations and in particular be
analytic. But q̃ has the same action and represents the same homotopy class as q
so it, also, cannot be shortened and so must be a solution. But our surgery process
has destroyed the analyticity of q̃ at t0 (and t1). This contradicts minimality. QED

Theorem 3.10 is achieved using Moeckel’s detailed knowledge of dynamics near
triple collision. A cartoon of the solutions guaranteed is as folllows

write up “cartoon ”? -
RM

6.1. Route to a full answer? Theorem 3.11 almost solves the original open
question 3.2 for N = 3. That question asks us to find, for each unreduced free
homotopy class of loops in Ê(2,3), a solution to Newton’s three-body problem
representing it. We have found solutions representing each reduced free homotopy
class.

Free homotopy classes are in bijection with conjugacy classes in the pure braid
group P3 while reduced free homotopy classes are in bijection with conjugacy classes
of the projective pure braid group, P3/Z. Thus, we have answered the Open Ques-
tion modulo the center Z of the braid group. This center is generated by an overall
rotation, so by travelling circuits of the Lagrange relative equilibrium. So, we would
answer the original open question affirmatively if we could “tack on” any number
of nearly Lagrange orbits to the dynamically realized solutions of theorem 3.11.
We would also have to make sure the resulting orbits were periodic and not just
relative periodic. Can this be done? We do not know. Following or extending our
dynamical proof of theorem 3.10 through to this end would require keeping track
of the overall rotations due to close encounters with triple collision in the solutions
we constructed and this we have not done.

There is something un-
satisfactory about the an-
swer, at least for someone
addicted to variational
principles -include a fi-
naly section here of “more
approachable open ques-
tions ? – how to go from
123123 to 1a2a3a1a2a3a

... ? -RM

..
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6.2. Danya Rose results ??

7. N=3. Almost solved.

Theorem 3.11 (Moeckel-Montgomery; 2015). Every reduced free homotopy
class of loops is realized by some periodic solution to the Newtonian three-body
problem.eclipse_main

This theorem almost solves the original open question 3.2 for N = 3. That question
asks us to find, for each unreduced free homotopy class of loops in Ê(2,3), a solution
to Newton’s three-body problem representing it. Instead we have found solutions
representing each reduced free homotopy class. Recall that free homotopy classes
are in bijection with conjugacy classes in the pure braid group P3 while reduced
free homotopy classes are in bijection with conjugacy classes of the projective pure
braid group, P3/Z. Thus, we have solved the problem modulo the center Z of
the braid group. This center is generated by an overall rotation, so by travelling
circuits of the Lagrange relative equilibrium. Powers of the Lagrange solution now
generate all the “missing” central free homotopy classes! So why aren’t we done
with answering the open question? These central classes are all trivial as reduced
free homotopy classes. It remains to represent all the non-central conjugacy classes
in P3. Each such class projects onto some reduced free homotopy class which we
know is realized. But there are a Z’s worth of unreduced free homotopy classes,
which could be constructed one from the other by concatenating on powers of
Lagrange’s solution. Are all of these realized? Probably. But to follow our proof
through to this end would require keeping track of overall rotations due to close
encounters with triple collision in the solutions we constructed and this we have
not done.

In contrast to theorem 3.4, the solutions established by theorem 3.11 all have
nonzero angular momentum. The angular momentum is small, but non-zero. This
“shortcoming” begs us to ask:

Open Question 3.3. Is every reduced free homotopy class of loops realized
by some zero angular momentum relatively periodic solution to the Newtonian
three-body problem?

The proof of theorem 3.11 requires that the mass distributions m1,m2,m3 lie
in a large open set of mass parameter space which includes the case m1 =m2 =m3

of equal masses. Whether or not every reduced free homotopy type can be realized
when the masses lie in the complement of this set remains an open question. For
example, does the theorem hold in the regime of a dominant primary mass, say
m1 >>m2,m3?

We proved the theorem 3.11 using dynamical methods pioneered by Moeckel,
rather than variational methods. Moeckel’s methods require analysis of the flow
near the McGehee blown-up triple collision manifold REF CC Chapter and as result
the solutions have repeated close approach to triple collision. See figure.

The eclipse sequences which the periodic solutions of theorem 3.11 generate
may have many many stutters. Define a stutter block of size k to mean one of
the three eclipse sequences of the form ak with a = 1,2 or 3 occurring exactly k
times in a row. We say that an eclipse sequence has stutter range [K,K ′] if it is
a concatenation of stutter blocks of size k with K ≤ k ≤ K ′. Then, for example,
132833 has stutter range [3,8] but does not have stutter range [3,7]. Note though
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that 1318 is considered as having stutter range [3,8], since we do not forbid stutters
of stutter blocks. Theorem 3.11 was proved as a corollary of:

eclipse_w_stutters Theorem 3.12. Let µ = ∣J ∣2∣E∣ be the Dziobek constant. Then there is an open
neighborhood U of the equal mass diagonal (m,m,m) in the three-dimensional mass
parameter space with the following property. For the Newtonian 3-body problem with
masses in U there exist integers K,K ′ with K ′ = K ′(µ) > K such that every bi-
infinite eclipse sequence in the stutter range [K,K ′] is realized by a solution. These
solutions come very close to triple collision when transitioning from one stutter block
to the next. If the eclipse sequence is periodic then so is the solution. Moreover
K ′(µ)→∞ as µ→ 0.

Proof of theorem 3.11 from theorem 3.12. Take masses in U . Let a
reduced eclipse sequence be given, say 1213 for the sake of example. Choose an odd
integer m in the range [K,K ′] By theorem 3.12 1m2m1m3m (repeated periodically
) is realized by a periodic solution. Cancel all the stutters until none are left to
see that homotopically the loop generated by this solution is the one encoded by
eclipse sequence 1213 (repeated). QED

Note that if we could take K = 1 in theorem 3.12 then we would have an
affirmative answer to open question 3.2.

Non uniquenesses of rep-
resenting solutions ? -
many! many! - many
eclipse sequences rep the
same free homotopy class
-RM

8. More questions.

1. Does the zero angular momentum three-body problem admit a solution
which is contractible when viewed as a loop in collision-free configuration space?
In other words, can one realize the trivial free homotopy class by a zero angular
momentum periodic solution?

2. Is there a free homotopy class which is realized but for which every realizing
solution is linearly unstable?

3. Moeckel and I showed that every free homotopy class is realized by a periodic
orbit if we allow ourselves a bit of angular momentum and a large number of
stutters. For some of classes, for example that of the eight, both the angular
momentum and the number of stutters can be brought down to zero. Can you find
a class for which the number of stutters in any realizing solution is not zero? Is
greater than 10? Greater than 100?

4. Throughout this section we restricted ourselves to the planar problem, fo-
cusing on realizing a given free homotopy type, which is to say, conjugacy class in
π1(Ê(2,N)). For d > 2 the fundamental group is zero and its algebraic replacement
is either πd−1 or Hd−1. By playing some variational or min-max game for the N
body problem in d-dimensions, d > 2 using these higher classes, can you find any
new or interesting classes of orbits?

5. For fixed negative energy are there an infinite number of choreographies
modulo rotation for the equal mass-three body problem? Do they represent an
infinite number of distinct eclipse sequences? If we also fix angular momentum
does this number remain infinite?

9. Notes.

Wu-yi Hsiang introduced me to this problem for N = 3 in about 1997. He was
insistent about using the Jacobi-Maupertuis metric approach to solve it. So far,
that method has not panned out. But see REFS of his.
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The variational method in mechanics has a long history, and is central to Feyn-
man’s approach to quantum mechanics. The Poincaré work described here is the
first result we know of applying the direct method of the calculus of variations to an
N-body problem. There are many works from Italian schools of analysis applying
the direct method to various potential force problems and predating Venturelli’s
work on the hip-hop and our work on the figure eight. Often these start with a
list of assumptions on the potential. These assumptions often exclude Newton’s
N-body problem. When they include it the “solutions” they yield are generalized.
They allow for a collision set which could be as big as the Cantor set - some closed
set of measure zero. Outside the collision set the curves thus obtained solve New-
ton’s N-body problem. The various solution branches on the intervals forming the
complement of the Cantor set are concatenated continuously and one does not know
much more than that.

I was proud of theorem XXX when I proved it. I did not know about the earlier
works of Poincaré or of Moore. Poincaré had come to grips with the difference
between homology and homotopy before 1896. It is likely that he knew the result
and just found it easier to write out his short paper the way he did, using the older
more familiar language of winding numbers instead of homotopy. It seems certain
that if told the result he could have proved it effortlessly. My ignorance aided my
morale. Knowing how far others had already gone along lines I thought were new
and was just starting off on could have demoralized me to the point of quiting the
N-body world.

GORDON: In the 1970s W. B. Gordon re-discovered Poincaré’s basic observa-
tion without ever discovering his two page paper. He placed it into a wider setting
using something like a functional analyst’s eye and began the first steps of extending
it to the Newtonian problem.

Hip hop vs eight: , discoveries both occurred in 1999 and were published in
2000. “In the air”

Our early work was a kind of “by hands” getting rid of collisions. You can read
a bit of the history around the eight, and its interaction with Moore’s work in our
paper REF and on my web site. Marchall’s lemma provided the big breakthrough
to let loose the flood of proofs establishing families of choreographic solutions.

Marchal. I met Christian Marchal in December of 1999 at the Don Saari
birthday/ Northwestern retirement party. He gave an astounding talk that had
nothing to do with celestial mechanics. He talked about how the U.N. had all their
models wrong for human population growth. They universally over-predicted world
population. Data showed that birth rates were actually declining precipitously
around the world, in contradiction to all models. (He justified giving this talk
in a celestial mechanics conference by relating, in a single slide, to the mis-guided
epicycles of Ptolemy before Kepler.) For me, this was the best news I had heard in a
decade! I was brought up in Northern California in the 70s and had an oceanography
teacher, Mr. Sikora, in Junior High for whom the up-coming Population Bomb,
predicted by the Ehrlich couple, was the worst disaster the earth was facing. For
Christian, this birth rate data was horrible news! Who was going to pay for his
retirement? He himself had seven children. What would Europe be coming to?
Later, I was blessed with a few dinners with he and his wife. He lived in the
apartment building he had grown up in, and could remember the bombs dropping
and Nazi soldiers occupying Paris.

continue in this vein? sto-
ries on Simo, Chenciner,
Moeckel, .. Gole? Hsiang
?? -RM
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The story of how a comment by Carles Simo led to the proof of theorem REF
by Moeckel and I is told in Ref and REF .

Danya Rose’s thesis REF provides a large data set to explore for the zero-
angular momentum equal mass three body problem. It contains information which
can be translated to the syzygy type and XXX

*******
TO NOTES ?? :

Notes on the proof set-up. One could use the monodromy relation to
replace the domain [0, T ] of C0([0, T ],E) with a circle, at the expense of changing
the set up for the action by going into a frame rotating with constant frequence
ω/T .

better change to a circle
from [0, T ] -RM*******

However, those solutions found by variational means are often quite pleasing to
the eye and enjoy remarkable properties. This branch of investigation has generated
a large body of research over the last two decades.

Among the most well known of these variational orbits is the figure eight. See
figure 3.3 in the ‘Tour’ of chapter 1. The eight has eclipse sequence 123123. ..
PUT IN TOUR –¿ was discovered by Cris Moore using variational methods, and
rediscovered by Chenciner and myself. We gave a proof of the eight’s existence
by combining the direct method with two other ingredients, additional symmetries
which arise when all three masses are equal, and the geometry of the shape sphere.
Our proof was explicity enough that Carles Simo could use it as a seed to find initial
conditons yielding the eight.

state theorem w minimezer in the D6-equivariance class ; hexagon...
This discovery led to a host of new solutions found by similar methods for the

equal mass N body problems. We describe some of these in a later section.
****
There are two sources of non-compactness in the N-body problem: rab → 0 and

rab →∞.
Since Poincaré was essentially the inventer of the first homotopy group he

certainly could have gotten the homotopy version of this theorem which we will
describe momentarily.

To the best of our knowledge, Poincaré was the first one to get this method to
work for three bodies. There is a large body of work by the “Italian school” in the
1970s-1990s but with little concrete to show for it. Cris Moore took this approach
in a beautiful five page paper “Braids in Classical Dynamics” written in 1993 and
implemented numerically to good effect.

**********
However, as with many problems in celestial mechanics, someone had scooped

Cris Moore’s key idea by many decades.
******
Jacobi and Maupertuis showed how to reframe the N-body problem as a ge-

odesic problem on a manifold that is Riemannian but not compact or even com-
plete. Due to incompleteness and other problems the direct method seems to be
quite hard to get to work for finding periodic orbits. In place of extremizing the
Jacobi-Maupertuis arclength we can, instead, apply the direct method the action.

******
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10. Exercises

Exercise 3.2. Here we derive equation ( eq: r asymptotics).
Suppose that for some graviational N-body solution that q1 and q2 engage in an

isolated collision at time t = 0, so their mutual distance r12 → 0 while all the other
rab remain bounded away from zero. Write

r(t) = r12(t)
and H for the total energy of the solution. The derivation rests on the fact that
limt→0r(t)H = 0.

a) Show that the motions of all the other bodies qa(t), a > 2 are C1 near t = 0
so their contributions to the total kinetic energy is bounded.

b) Show that the center of mass motion of q1 and q2 is C1 near t = 0.
c) From (a) and (b) we have that H = K − U = K12 − m1m2

r
+ bounded where

K12 is the kinetic energy of the relative q1 − q2 part of 12 system. We have K12 =
1
2
m1m2

m1+m2
(ṙ2 + r2θ̇2). Use rH → 0 to conclude that

1

2

m1m2

m1 +m2
ṙ2 −m1m2 = 0

are bounded.

Exercise 3.3. Make the ansatz q(t) = Atb for the one-dimensional Kepler’s
equation. Show that b = 2/3 yields a solution. Compute the action to collision for
such a solution and see that it is finite over any finite interval [0, c] containing the
collision time t = 0.

Any finite group sits in SN for some N . Take the Monster group for example.
It is represented on [N] where N = ... is the order of the Monster group. We will
have to take the trivial representation on T and Rd since the Monster is simple. Is
there an N-body solution realizing this Monster symmetry? Would anyone besides
me care?



CHAPTER 4

Does a Scattered Beam have a Dense Image?

chapter: scattering
open:scattering Open Question 4.1. Is the image of a beam of N-body solutions under scat-

tering open and dense in the sphere of outgoing directions in configuration space?

This question concerns the positive energy N-body problem. There are no
periodic or bounded orbits so that the problem concerns asymptotic behaviours. A
beam is a family of solutions close to parallel to each other in the distant past. Their
velocities limit to the same value as t → −∞. Computing their limiting velocities
as t → +∞ defines the scattering map, a map to the sphere of outgoing directions.
The question asks if the image of this map is open and dense. It will take effort
to make all these notions precise. Before we take that effort we provide the classic
motivation behind the question.

1. Motivation. Rutherford and the discovery of nuclei
sec: Rutherford

The discovery of the nucleus depended on Rutherford’s analysis [133] of classi-
cal two-body scattering which includes defining the scattering map for the two-body
problem. See figure 1. Rutherford, Geiger and Marsden had been aiming beams
of alpha particles (Helium nuclei) at gold foil and measuring the directions of the

Figure 1. Rutherford Scattering. The variable b is the impact
parameter and θ coordinatizes the direction of outgoing rays. fig:Rutherford

131
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outgoing particles scattered by the foil. They were surprised to find a measur-
able fraction (1/20,000) suffered nearly complete recoil. To explain their results,
Rutherford posited replacing Thompson’s ‘plum pudding’ model of the atom by
one in which nearly all of its mass is concentrated in a point-like positive charge
at the center (the nucleus) this center being surrounded by a diffuse cloud of very
light negative charges (electrons). He assumed the alpha particles to be also pos-
itively charged and that in order to suffer their strong deviations they must have
penetrated through the electron cloud so as to be strongly interacting with the
repulsive Coulomb force of the gold nuclei. Ignoring the electrons, Rutherford was
faced with a well known problem, the Coulomb problem which is just the Kepler
problem (equation (28)) with the sign of the Kepler constant µ reversed so as to
yield a repulsive instead of an attractive center.

Figure 1 indicates a beam of parallel lines coming in from infinity and, inter-
acting with the Coulomb force at the origin, getting deflected, and retreating to
infinity in a splay of directions. We parameterize the rays of the incoming beam
by a real parameter b, a coordinate on a line orthogonal to the beam’s direction.
We take b = 0 to correspond to the ray heading dead straight in to the origin.
This b is called the “impact parameter” as it measures how close the correspond-
ing trajectory would come to impact with the nucleus if we were to turn off the
Coulomb force. We label the outgoing trajectories by the angle θ made by their
asymptotic direction and the original incoming beam direction. Coulomb dynamics
then defines the scattering map b↦ θ = f(b). Rutherford computed

{Rutherford scattering}{Rutherford scattering} (90) θ = f(b) = 2arctan( −µ
2Eb

)

Here E is the energy of the incoming beam and µ is the ‘Kepler-Coulomb -constant’
of q̈ = −µq/∣q∣3, so that µ < 0 for Coulomb and µ > 0 for Kepler. See [70], particularly
p 286, eq (12.3.3), or [76] for this computation. It is this map, extended to and
made sense of in the context of the N-body problem, that the open question refers
to.

We pause to re-iterate that for the case of a Keplerian attractive center - the
expression (90) for the scattering map continues to hold. See figure 2 for a picture
of the attractive scattering map. It is remarkable that the differential cross sections
REF ?? XXX for the attractive and repulsive cases are identical, with µ entering
only through its square.

The map of equation (90) is a smooth invertible map

f ∶ R ∖ {0}→ S1 ∖ {0, π}

In particular its image is open and dense,missing exactly two angles, θ = 0 and
θ = π and so, in the two-body case the answer to our question is ‘yes’. Somewhat
remarkably, the Coulomb scattering map extends smoothly to the closure R∪{∞} =
RP1 = S1 of its domain. The extension sends b = 0 to θ = π corresponding to the ray
reflecting off the nucleus and it sends b =∞ to θ = 0 corresponding to no deflection
at all for infinitely distant trajectories. We will see below that this extension is
really the one-dimensional version of stereographic projection.

Rutherford and crew built their experiment in three-space, not in the plane.
By rotational symmetry, Coulomb scattering in three dimensions can be obtained
from two-dimensional Coulomb scattering by spinning the picture (figure 2) for
two-dimensional scattering about the beam axis. Take the beam axis to be −e3 =



2. SCATTERING IN THE N-BODY PROBLEM. 133

Figure 2. Kepler Scattering. fig:RutherfordAttractive

−(0,0,1). Then the incoming beam is parameterized by the xy plane and outgoing
directions are parameterized by the unit sphere S2 ⊂ R3 so the relevant map is a map
R2 → S2. Use polar coordinates (b, θ) on xy plane and spherical coordinates (φ, θ)
on the sphere. Fixing θ defines the plane of motion for the trajectory of the beam
and this does not change during the motion. Then, by the rotational symmetry, the
3-dimensional scattering map is (b, θ) ↦ (f(b), θ). But (r, θ) ↦ (2arctan(1/r), θ)
is the expression for the inverse to stereographic projection, R2 → S2. Upon setting
r = ±2Eb/µ we find that Coulomb scattering and stereographic projection are the
same map! See Figure 3. It is remarkable that the scattering map analytically
extends so as to yield a diffeomorphism R2 ∪ {∞} → S2 covering the entire sphere
of outgoing directions. This fact is one reason to suspect the answer to the Open
Question is ‘yes’.

1.1. Scattering Cross-section. Scattering experiments are inherently prob-
abalistic. One does not have a single nucleus, but rather an enormous number of
gold nuclei whose precise location are unknown and essentially unknowable. One
thinks of the result of the experiment as a sampling of impact parameters.

What is taken to be measured, or approximated, is the “differential cross-
section” which is the push-forward of Lebesgue measure db by the scattering map.
Instead Rutherford was fix

scattering cross-section
for Rutherford here ...?
from Knauf.. -RM2. Scattering in the N-body problem.

Classical scattering is based on the idea that if the forces between bodies decay
with distance and the bodies are far apart and receding from each other then each
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Figure 3. Stereographic Projection stereoProj

body ought to move asymptotically along a straight line. N straight lines in Rd
yield a single line in the N-body configuration space E, and conversely, such a single
line defines N individual particle straight lines. A line `(t) in E can be written as

{eq:lines}{eq:lines} (91) `(t) = At +B, A,B ∈ E, ∥A∥ = 1, B ⊥ A.

A represents the direction of the line and B is its impact parameter, the unique
point on the line closest to the origin.

A is a point in the unit sphere SM−1 ⊂ E of dimension M − 1 where M = dN .
Together (A,B) ∈ TSM−1, the tangent bundle of the sphere, so that we identify the
space of lines in E with this tangent bundle. We may want to center the solutions
by going to the center of mass frame in which case we replace E by E0, the centered
configuration space and this dimension M becomes M = d(N − 1).

As a zeroth approximation, the scattering map which we will eventually define
is a map on the space of oriented lines. It sends an incoming line representing the
asymptotics of a solution at t = −∞ to the corresponding outgoing line representing
the same solution at t = +∞. Identify TSM−1 with T ∗SM−1 using the mass metric,
so as to bring in ideas from symplectic geometry. The scattering map should be a
symplectic map of the form

{full scattering}{full scattering} (92) SC ∶ T ∗SM−1 ⇢ T ∗SM−1.
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defined by the dynamics. The broken arrow notation for the map indicates that
its domain will not be all of T ∗SM−1 due to the incompleteness of the flow. Some
incoming solutions will end in collision (or a non-collision singularity) and cannot
be continued into the future. We will call the eventual map inspired by equation
(92) “the full scattering map”. The scattering map of the Open Question is built
from the full scattering map by restricting this map to a single fiber representing
a single incoming beam direction, and then projecting the resulting image to the
base sphere of directions.

A beam is the space of all oriented lines having a fixed direction A in equation
(91) so that a beam is identified with a single fiber T ∗ASM−1 = A⊥. The beam is
parameterized by fixing A and varying B in equation 91. The map whose image is

add more complicated for
N body see sec q CHAZY
for details. -RM

the subject of the Open Question 4.1 is the composition

{scat_map}{scat_map} (93) T ∗ASM−1 iA // T ∗SM−1 SC // T ∗SM−1 π // SM−1

where iA is the inclusion T ∗ASM−1 → T ∗SM−1 and π is the projection. This map
takes all of the solutions which fill out a fixed incoming beam, integrates the flow
along them from time t = −∞ to t = +∞ and then projects out the final limiting
direction for each resulting outgoing solution. We call this composition the beam-
restricted scattering map when we need to distinguish it from the full scattering map
(92) defined earlier. The beam-restricted scattering map is a map RM−1 ⇢ SM−1.
The open question asks if its image, like that of Coulomb scattering’s image, is
open and dense.

What makes this zeroth approximation inaccurate is that N-body solutions are
not, in fact, asymptotic to lines in any traditional sense. Instead there is a log(∣t∣)
occuring in their asymptotics (equation (94) below) and this makes rigorously defin-
ing the map more complicated than that of the strategy just outlined.

The Coulomb case. We return to Rutherford’s scattering, that is the case
of Coulomb or Kepler scattering in the plane, figure 1, to illustrate the preceding
formalism. Then we have M = 2 so that

SC ∶ T ∗S1 → T ∗S1.

T ∗S1 = S1 × R is a cylinder parameterized by (θ, b) ∈ S1 × R. The angle θ ∈ S1

describes the direction of the oriented line and the “impact parameter” b ∈ R is as
marked in the figure and measures the (signed) distance of the line to the origin
when the force is turned off. We have A = (cos θ, sin θ) and B = bA⊥ = b(−sinθ, cos θ)
in equation (??). The impact parameter equals the angular momentum times a
constant depending on mass and energy and hence is unchanged in scattering.
Using its constancy and rotational symmetry it follows that SC must have the
form SC ∶ (θ, b)↦ (θ + f(b), b) for some function f(b). Scattering for any decaying
central force problem will take this same form. The function f(b) for Kepler is the
one given above in equation (90).

subsec: scattered image
2.1. Defining the image of the scattering map. For scattering to make

sense one needs a family of unbounded solutions, hence our requirement that the
energy be positive in the Open Question. See lemma 0.4. Despite being unbounded,
positive energy N-body solutions are not asymptotic to lines in the standard sense.
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Equation (94) below describes their actual asymptotics. The presence of the un-
bounded log(∣t∣) term in that equation, combined with the fact that typically A and
∇U(A) are linearly independent, implies that the solution asymptotically diverges
from any single line. This lack of a standard asymptotics means that the above
description of N-body scattering, although morally correct, is not accurate. For
this reason it will be easier to define the image of the beam-restricted scattering
map directly rather than to attempt to define the full scattering map SC. Later
on we will define this full scattering map.

section label? -RM

Definition 4.1. A solution q(t) is called backwards hyperbolic if it has
positive energy and if the limit of s(t) = q(t)/∥q(t)∥ as t→ −∞ exists and is collision-
free. Let s− ∈ SM−1 ∖∆ denote this limit and refer to it as the backward asymptotic
shape of q(t).

The reader will be able to formulate the analogous definitions of forward hyper-
bolic and forward asymptotic shape, s+.

Definition 4.2. A solution is hyperbolic if it is both forwards and backwards
hyperbolic.

A hyperbolic solution q(t) has backward and forward asymptotic shapes, s−
and s+. We say that the solution connects s− to s+.

def:beam Definition 4.3. The incoming beam with direction s− and energy E is the
set of all backwards hyperbolic solutions having fixed backward asymptotic shape
s− ∈ SM−1 ∖∆ and fixed energy E > 0

def: scattered image beam Definition 4.4. The scattered image of the incoming beam with direction s−
is the set of all outgoing directions s+’s connected to hyperbolic solutions lying in
this beam.

With these definitions in place, the terms appearing in the Open Question are
now defined.

3. What’s Known?
sec: scattering known results

1. The scattered image has nonempty interior. See [30] for the proof. The
open region guaranteed is swept out by solutions for which the distance between
all bodies remains very large for all time: that is they ‘stay near infinity” for all
time. The proof relies on analysis at infinity and a perturbation argument.

2. On their way from t = −∞ to t = +∞ the trajectories of a beam will hit
every point q0 ∈ E of configuration space, including all collision points. This result
is established in [84] where the authors prove it thorugh a deep analysis of the
associated Hamilton-Jacobi equations using weak KAM ideas. Their rays q(−∞,0]
are global JM minimizers connecting the asymptotic beam direction at t = −∞ to
the desired q0 ∈ E.

3. Rays in the beam which encounter collisions cannot be continued to infinity.
But by item 2 just above, we are guaranteed some beams hit collision. Consequently
the beam-restricted scattering map never has domain all of T ∗s−S

M−1.

4. For power law potentials U = 1/rα with 0 < α < 1 the scattering map in not
onto for the two-body problem. Indeed, in the planar version of the problem, in
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Figure 4. lThree-body scattering Scattering. fig:LagrangeScattering1

center-of-mass coordinates, the image of the map forms a circular arc of arclength
2π α

2−α < 2π centered on the beam direction. See figure 5 and 6. On the other hand,
when 1 < α < 2 we find that the map is onto, with some outgoing directions covered
more than once. As α → 2 the scattered image of the beam covers the circle more
and more times, tending to cover each outgoing direction infinitely many times as
α → 2.

These results can be found in the paper [72] where a surprising application of
them is made. We will prove these results in Appendix E. Figure 5 describes the
scattering of a half-beam for α = 1/2, giving a sense of why the result holds and the
mechanism behind it.

5. Numerical experiments done by Moeckel for an incoming Lagrange beam
indicate that the scattering map for such a beam is onto, in keeping with a ‘yes’
answer to the open question. See figure 4.

As we defined it, for a centered beam the scattered image is a subset of S3 ⊂
E0(2,3). What is depicted in the figure is the further projection of this image in S3

to the shape sphere S2, and from there, onto the shape disc D2. The shape disc is
the quotient of the shape sphere by reflections so its points represent (unoriented)
similarity classes of triangles. The reflection about any line in the plane generates
Z2 = O(2)/SO(2) which acts on shape space by (w1,w2,w3) ↦ (w1,w2,−w3). It
follows that we can identify the space of congruence classes of triangles with the
closed upper half space, w3 ≥ 0, and the space of similarity classes of triangles with
the closed upper hemisphere of the shape sphere. Project out w3 to get a convenient
picture of the space of similarity classes of triangles as the shape disc : the unit disc
in the w1 − w2 plane. The boundary of the disc represents collinear triangles and
has the same 6 marked points as before, alternating binary and Euler points. In the
disc’s interior we have a single marked point representing the equilateral triangle.
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When the masses are equal this point is at the center and the three isosceles circles
become three equispaced diameters.

How was the figure made? Moeckel took a bunch of initial conditions lying in
the unstable manifold of the Lagrange shape s (see the end of subsection 4.3 below)
at zero angular momentum – so a Lagrange beam – and numerically evolved them
forward into the distant future and plotted their final shapes on the shape disc to
get the picture.

how to make gray scale
version of ?? -RM

Figure 5. Scattering a half beam with power law r−1/2 fig: twothirds_scattered

4. Building the Scattering Map.

We proceed to construct the scattering map. We begin by recalling Chazy’s
1922 asymptotics for hyperbolic solutions. His asymptotics give us a definition for
the full scattering map, but with a gap. That gap is filled by theorem 4.1. We
prove the theorem by using a McGehee blow-up at infinity which adds a manifold
at infinity together with equilibrium points at infinity which provide hyperbolic
solutions a place to go and a a place to come from. Hyperbolic solutions then
connect unstable equilibria at infinity to stable equilibria at infinity. The cotangent
fibers T ∗s S arise as projectivizations of the tangent space to the unstable or stable
manifolds at these equilibria. This blow-up perspective on scattering was essential
in establishing that its image has non-empty interior.

4.1. Chazy asymptotics. Chazy [18] established the asymptotic expansion

{Chazy1}{Chazy1} (94) q+(t) = At − (∇U(A))log(t) +B +O( log t

t
), t→∞



4. BUILDING THE SCATTERING MAP. 139

Figure 6. Gap in the scattering image for α = 1/2 fig: beam gap

valid for any forward hyperbolic solutions q+(t). The dominant linear coefficient is
related to the solution’s energy E > 0 and asymptotic shape s+ by

A ∶= A+ =
√

2Es+.

The secondary log t term is needed for the expansion to solve Newton’s equations
to leading order 1/t2. The coefficient of this term is ∇U(A) =M−1F (A). Compare
equation (35). There is no reasonable sense in which our solution is asymptotic
to a line since its distance from any fixed line as t → ∞ is typically unbounded. 1

Despite this lack of an asymptotic line we simply drop the log(t) term and let

B = B+

play the role of the impact parameter of a line and so declare that the line associated
to q+ is the one whose parameters are a = A+, b = B+(modA+) in equation (91).

(Now this line has speed
√

2E instead of speed 1. No matter. ) We call (A,B) the
Chazy parameters of q+(t). .

1If A and ∇U(A) are linearly independent, then q+ and the line with parameters a = A+, b = B
are asymptotic as unparameterized curves But this special case does not help us develop a general

scattering map.
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Similarly, if the solution q = q−(t) is backward hyperbolic with energy E > 0
and asymptotic shape s− then Chazy’s asymptotics in the backward time direction
are

{Chazy2}{Chazy2} (95) q−(t) = A−t − (∇U(A−)) log(∣t∣) +B− +O( log ∣t∣
t

), t→ −∞

with

{ChazyE}{ChazyE} (96) A− = −
√

2Es−.

To justify the choice of minus sign here, note that equation (94) implies that

lim
t→+∞

q̇+(t) = A+.

The minus sign relating A− to s− guarantees that

lim
t→−∞

q̇−(t) = A−.

We call (A−,B−) the Chazy parameters of q−.
If q(t) is hyperbolic then both its forwards and backwards ends have Chazy

parameters. The full scattering map takes one to the other:

{full scattering Chazy}{full scattering Chazy} (97) SC ∶ (A−,B
⊥
−)↦ (A+,B

⊥
+)

where the ⊥ is orthogonal projection to the respective normal space to the A’s so
that B⊥± = B± − ⟨s±,B±⟩s±.

4.2. The scattering map and Systems of Rays. In order for our formu-
lation (97) of the scattering map to be well-defined we must know that a backward
hyperbolic solution exists for any given (A−,B

⊥
−) and that this solution is unique

modulo time translations. Once we know this, the domain of the scattering map is
the set of (A−,B−) for which its solution extends indefinitely into the future, and
the map is defined by taking this extension and working out its future asymptotics.
The following theorem establishes the needed existence and uniqueness.

Chazy_uniqueness Theorem 4.1. (I) Two trajectories which have the same Chazy parameters
(A−,B−) are the same up to a time translation.

Recall relation 96.
(II). The incoming beam with direction s− and energy E modulo time translation

forms an affine space parameterized by the Chazy impact parameter B− ∈ s⊥−. Any
two trajectories in the beam remain a bounded distance apart as t→ −∞.

This theorem says that we can think of the Chazy parameters as initial conditions
at infinity.

Proof of (II). Take two solutions q, q̃ in this incoming beam and subtract

them. Because they have the same leading Chazy parameter A = −
√

2Es− their
difference has asymptotic expansion B− − B̃− +O(log ∣t∣/∣t∣) whose limit as t → −∞
is B− − B̃−, showing that the two trajectories remain a bounded distance apart and
that we can use the impact parameter B− as an affine parameter.

The affine parameter B− is defined modulo A−. To see this, consider a solution
q(t) in the the incoming beam and its time translate q(t − t0) which is also in the
incoming beam and has the same impact parameter B−. We have q(t) − q(t − t0) =
At0 − ∇U(A) log(∣t∣) + ∇U(A) log(∣t − t0∣) = At0 +O(1/t) where we have used that
log ∣t∣ − log(∣t − t0∣) = log(∣t∣/∣t − t0∣) = log(1/(1 − t0/t)) = O(1/∣t∣), t << −1. It follows
that the “B−”’ for the time translate is B− −At0, so that modulo time translation
the impact parameter is only defined modulo A−.
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subsec: pf Chazy uniqueness
4.3. Proof of (I) of theorem 4.1 by Blowing up infinity. We are to show

that for given Chazy parameters A−,B− there is exactly one backward hyperbolic
solution, modulo time translation, having these Chazy parameters. There are sev-
eral proofs available. We will follow [30]. Other approaches are Chazy’s original
approach [18] and one based the Dollard-Möller transformation that can be found
in [36].

In the same spirit as McGehee blow-up, we add a manifold at infinity as a place
for scattering solutions “to go”. The flow, extended to infinity, has a manifold of
fixed points which is normally hyperbolic and which splits in two parts according to
incoming and outgoing beams. The unstable manifold of the incoming fixed point
will correspond to an incoming beam.

To begin, introduce spherical coordinates (r, s) ∈ (0,+∞]× S on E ≅ RdN , as in
the McGehee transformation:

q = rs, where r = ∥q∥, s = q/r ∈ S.
Decompose the velocity vector v ∶= q̇ into radial and tangential or “ spherical”
components

v = νs +w where ν = ⟨s, v⟩ and ⟨s,w⟩ = 0.

Change the independent time variable according to

{eq_tau}{eq_tau} (98) dt = rdτ,
writing ′ = d

dτ
. Finally introduce

ρ = 1/r,
so that ρ = 0 corresponds to spatial infinity. Under these changes of variables,
Newton’s equations transform into

{eq_odex}{eq_odex} (99)

ρ′ = −νρ
s′ = w
ν′ = ∥w∥2 − ρU(s)
w′ = ρ∇̃U(s) − νw − ∥w∥2s

where

∇̃U(s) = ∇U(s) +U(s)s
is the tangential component of ∇U(s), since U is homogeneous of degree −1. In
these new variables the energy H is given by

1

2
ν2 + 1

2
∥w∥2 − ρU(s) =H.

The transformed equations extend analytically to ρ = 0. Further setting w = 0
yields all equilibria e of the extended flow. The equilibria e form a manifold E
coordinatized by ν, s ∈ R × S, by writing e = (0, ν, s,0). The dimension of E is
M = dim(E) which is half the dimension of the extended phase space P.

The energy at infinity is 1
2
ν2 + 1

2
∥w∥2 = H, so at equilibrium H = 1

2
ν2. We

are only interested in the case H > 0 of positive energy solutions in which case
the equilibrium manifold E falls into two (diffeomorphic) components E− and E+
according to whether ν > 0 or ν < 0, where ν = ±

√
2H.

This equilibrium manifold E is normally hyperbolic. To be normally hyperbolic
means that when we linearize the vector field at any equilibrium e ∈ E the resulting
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operator on the tangent space TeP of phase space P splits into a two-by-two block
diagonal form where one block is zero and corresponds to the tangent space to E
and the other block corresponds to the generalized eigenspaces for the nonzero gen-
eralized eigenvalues. Moreover, and this is the ‘hyperbolic part”, all these nonzero
generalized eigenvalues have nonzero real part. In our case there is only one nonzero
generalized eigenvalue and it is −ν when e = (0, ν, s,0) ∈ E .

A non-trivial simultaneous linearization theorem, theorem 3.1 of [30], now
comes to play, and implies that the N-body flow near infinity is locally conjugate
in a neighborhood of E− to its linearization, with this conjuation varying analyt-
ically with e. In particular, this theorem yields, for each e = (0, ν, s,0) ∈ E− an
M -dimensional unstable manifold Wu(e). The part of Wu(e) lying in the interior
ρ > 0 of P is the incoming beam with direction s and energy 1

2
ν2. When the param-

eters of the linearized data are compared with the Chazy parameters, the existence
and uniqueness theorem follows. See theorem 4.1 of [30]. QED

Remark. There is a single generalized eigenvector associated to the eigenvalue
−ν. The corresponding nontrivial Jordan block in the linearization propagates to
‘twist’ the relations between the linearizing variables and the Chazy variables (see
the equations in theorem 4.1 of [30]) and also yields the log(∣t∣) term in the Chazy
asymptotics.

Summary. We can summarize the proof just given as follows. The incoming
beam with direction s and energy E is equal to Wu(e)∩{ρ > 0} where e = (0, ν, s,0)
as in the proof.

4.4. Systems of Rays. Arnol’d defines a system of rays as a Lagrangian
submanifold of the cotangent bundle. He uses this idea and ideas from optics to
formulate a number of interesting theorems and conjectures. Taking his perspective,
we believe that the following facts may be of use.

thm: beam is Lag Theorem 4.2. The set of phase points (q(t), p(t)) ∈ T ∗E0 swept out by the
incoming beam with fixed direction s− and energy E forms a Lagrangian submanifold
L−(s−;E) lying within the given energy level set.

The obvious analogues of theorems 4.1 and 4.2 hold for the outgoing beam
for an s+ ∈ S ∖∆. We write L+(s+;E) for the corresponding outgoing Lagrangian
submanifold. If L−(s−;E) and L+(s+;E) intersect, then, since they are invariant
under the backward and forward flows respectively, they must intersect along a
union of energy E hyperbolic orbits. Thus s− is connected to s+ if and only if
L−(s−;E) ∩ L+(s+;E) ≠ ∅ for some E > 0. (By scaling symmetry, whether they
intersect or not does not depend on the energy E.) We have reformulated the Open
Question of this chapter in terms of the popular subject of “Lagrangian intersection
theory”. Namely: given s−, is it true that for an open dense set of s+’s we have
that L−(s−;E) ∩L+(s+;E) ≠ ∅.

5. More questions

1. [This question represents a kind of marriage of the present chapter with the
previous one]

The three bodies of hyperbolic solutions to the planar three body problem
asymptote to lines, a triple of lines for the past, another triple for the future. Fix
six such allowable lines, three for the past, three for the future. (For example, they
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could both represent the Lagrange shape– three lines through the origin each at
120deg with respect ot each other) The set of all collision free paths (not necessarily
solutions!) having these past and future asymptotics has many different compo-
nents, indeed they are labelled by reduced eclipse sequences, or free homotopy
classes. Are all finite reduced sequences realized by hyperbolic solutions asymp-
totic to the given lines? Or, alternatively, is there some bound on the length of the
sequence, say, in the equal mass case?

2. The scattering map for an incoming Lagrange beam at fixed positive energy
is a map SC ∶ R3 → S3. Here the R3 represents the unstable manifold to that
Lagrange , or, what is the same, the set of impact parameters b having energy E,
and the S3 represents the space of outgoing directions. Let d3b and d3ω be the
standard Lebesgue (= Riemannian) measures on R3 and S3. Compute the Radon-
Nikodym derivative d(Sc∗d4b)/dω. In other words, if we push forward Lebesgue
by SC we get a measure SC∗d

3b = f(ω)d3ω. Compute, or at least say something
about, the function f(ω). This function is known as the “differential cross section’.
[The main open question of this chapter asks whether the support of f has full
measure.]

3. Analysis of the central force problem for the other homogeneous poten-
tials 1/rα show that the scattering map for the two-body problem is not onto, and
that the set of accessible angles ∆θ(α) goes to zero with α. Work out the correct
‘billiards at infinity’ model for the associated broken geodesics for three-body scat-
tering with these other potentials. Is it the “obvious” non-deterministic billiards,
except instead of having all outgoing angles allowed as in the 1/r case, only angles
in the sector ∆θ(α) are allowed?

6. Notes.

Andreas Knauf introduced me to this problem in 2012. He has numerous papers
on scattering. I highly recommend XXX.

The book by REF is a kind of bible of classical scattering.
...
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APPENDIX A

Geometric Mechanics

AppendixA

1. The Lagrangian and Hamiltonian Formalisms
sec: formalisms

We describe the elements of geometric mechanics as used in the book. This
appendix can be taken as a brief introduction to the subject aimed at someone who
knows differential geometry but has never had a course in classical mechanics. For
more complete treatments we recommend [10], [1], or [70] We end the appendix
with a derivation of the “particle in a magnetic field ” version of the reduced planar
N-body equations by using Poisson reduction.

The mathematical foundations of modern Classical mechanics are formed by
the Lagrangian and Hamiltonian formalisms and the relations between them. We
begin with a manifold Q called configuration space. Points of Q are thought of
as representing the ‘positions’ of the interacting objects forming the mechanical
system of study - in this book N point masses. The Hamiltonian formalism lives on
the cotangent bundle of the configuration space. The Lagrangian formalism lives
on its tangent bundle. The Hamiltonian formalism plays a central role in chapter
two of this book while the Lagrangian formalism plays a central role in chapter
three.

Definition A.1. Let Q be a manifold representing the configuration space of
a mechanical system. A Hamiltonian is a smooth function H ∶ T ∗Q → R on the
cotangent bundle of configuration space. A Lagrangian is a smooth function L ∶
TQ → R on the tangent bundle of configuration space. Either TQ or T ∗Q are
referred to as the phase space of the system and will sometimes be denoted by P.

Coordinates qi on M induce fiber-linear coordinates vi on TQ and pi on T ∗Q
by writing a vector v ∈ TqQ as v = Σvi ∂

∂qi
and a co-vector p ∈ T ∗q Q as p = Σpidq

i.

Then p(v) = Σpiv
i. (Here q ∈ Q is any point covered by our coordinate neighbor-

hood.) In terms of these coordinates the Hamiltonian and Lagrangian are functions
of the forms H = H(q1, . . . , qn, p1, . . . pn) and L = L(q1, . . . , qn, v1, . . . , vn) where
n = dim(Q). Hamilton’s equations, written in these coordinates, is the system of
equations

{eq: Hamiltons}{eq: Hamiltons} (100)

q̇i =∂H
∂pi

ṗi = −
∂H

∂qi
.

The Euler-Lagrange equations for L, written in the above coordinates, are

{eq: E-L}{eq: E-L} (101)
d

dt
( ∂L
∂vi

) = ∂L

∂qi
.

147
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When performing the time derivative d
dt

on the left-hand side of the Euler-Lagrange
equations in order to write them out as a system of second order ODEs, we use
the chain rule, and when we are finished we impose the equation q̇i = vi which says
that v is indeed the velocity associated to a curve qi(t) in M .

To relate the Lagrangian and Hamiltonian systems set pi = ∂L
∂vi

within the left-
hand side of the Euler-Lagrange equations, thus defining a map (q, v) ↦ (q, p) =
(q, p(q, v) called the Legendre transform. The Legendre transformation is an in-
trinsically defined bundle map, (generically not linear)

FL ∶ TQ→ T ∗Q

with the following coordinate-free definition as a fiber derivative: if v ∈ TqQ then

p = FL(q, v) ∈ T ∗q Q is the linear functional p ∶ TqQ→ R given by p(w) = d
dt
∣t=0L(q, v+

tw). When the Legendre transformation is invertible, we can write its inverse as
(q, p)↦ (q, v(q, p)) and using this inverse we can view the function

H = p(v) −L(q, v)
as a function of q and p. The resulting function H ∶ T ∗Q→ R is called the Legendre
transform of L. The Legendre transform turns the Euler-Lagrange equations for L
into Hamilton’s equations for H.

write notes -RM
notes. Dirac. L-C Young. In the case that the Legendre transform is not

invertible

exer: euclidean newton Exercise A.1. 1. Take Q = R and write x ∈ R for the coordinate. The standard
Lagrangian of 1-dimensional mechanics is L(q, v) = 1

2
mv2−V (x) where the constant

m > 0 is the particle’s mass. Verify that its Euler-Lagrange equations are Newton’s
equations: mẍ = −V ′(x). Verify that its Legendre transform is (x, v) ↦ (x, p) =
(x,mv). Verify that its Hamiltonian is H = 1

2
1
m
p2 + V (x) and that Hamilton’s

equations are equivalent to Newton’s equations.
2. Take Q = Rn be Euclidean space with its standard inner product and let

V ∶ Rn → R be a smooth function called the potential. Let M be a positive parameter
corresponding to mass. The corresponding Newton’s equations are Mq̈ = −∇V (q).
Verify that the Euler-Lagrange equations of the Lagrangian L(q, v) = 1

2
M ∣v∣2−V (q)

are Newton’s equations. Verify that the Legendre transformation p =Mv when we
use the standard inner product to identify (Rn)∗ with Rn, and so both TQ and T ∗Q
with Rn ×Rn. Verify that the Hamiltonian is then by H(q, p) = 1

2
1
M

∣p∣2 + V (q) and
that Hamilton’s equations are also equivalent to Newton’s equations.

Exercise A.2. Modify the 2nd part of the previous exercise so as to work
for the N-body problem, thus expressing the N-body problem as an Euler-Lagrange
equations and as a Hamilton’s equations. Restrict to the non-collision configurations
so derivatives of the potential are defined.

1.1. Natural Mechanical Systems. If our configuration space Q comes
along with a Riemannian metric ds2

Q and a ‘potential function’ V ∶ Q → R then
we call it a “natural mechanical system”. If a Lie group G acts on Q by isometries
of the metric which leave the potential invariant then we say we have a “natural
mechanical system with symmetry”. The N-body problem is such a system.

Write ⟨⋅, ⋅⟩q for the fiber inner product on TqQ defined by the metric on Q
and ⟨⋅, ⋅⟩∗q for the associated dual metric on T ∗q Q. Write K(q, v) = 1

2
⟨v, v⟩q and

K∗(q, p) = 1
2
⟨p, p⟩∗q for the kinetic energies. We take for the Lagrangian L(q, v) =
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K(q, v) − V (q) while the Hamiltonian is H(q, p) = 1
2
K∗(q, p) + V (q). Coordinate

expressions for K and K∗ may be useful. If ds2
Q = Σgij(q)dqidqj expresses the

metric in coordinates then K = 1
2
Σgij(q)vivj) while K∗ = 1

2
Σgij(q)pipj where gij

is the inverse matrix to gij .

Exercise A.3. Verify that the Legendre transform for the L just described is the
operation of “lowering indices” which takes v = TqQ to the covector p = FL(q, v)
with p(w) = ⟨v,w⟩q. In coordinates: pi = Σgij(q)vj. Verify that the Legendre
transform of L is the Hamiltonian H above.

Exercise A.4. Verify that both Hamilton’s and Lagrange’s equations of motion
for a natural mechanical system are equivalent to their Newtonian form ∇q̇ q̇ =
−∇V (q) where ∇ is the Levi-Civita metric for the Riemannian metric on Q.

2. Symplectic structure: the Hamiltonian side.

The Hamiltonian side of mechanics enjoys the benefits of symplectic geometry,
a geometry associated to a particular type of two-form on a manifold known as a
symplectic form. The symplectic form for mechanics is called the canonical two-
form on T ∗Q and is given in our local coordinates by

ω = Σdqi ∧ dpi.

Exercise A.5. Verify that ω is well-defined, independent of the choice coordi-
nates qi on Q used to induce the coordinates qi, pi for T ∗Q.

Verify that ω is closed, i.e. that dω = 0.
Verify that ω is non-degenerate.

To say that ω is non-degenerate means that the fiber-linear ‘index lowering’ map
v ↦ ivω ∶= ω(v, ⋅) from the tangent bundle to the cotangent bundle is invertible.
Equivalently, any two-form ω has the local coordinate expression ω = Σωijdx

i ∧dxj
relative to coordinates xi on the manifold. ‘Non-degeneracy’ of ω is equivalent to
the skew-symmetric matrix ωij being invertible.

Definition A.2. A symplectic form is a closed non-degenerate two-form on a
manifold. A manifold P with a symplectic form ω is called a symplectic manifolds.

Symplectic manifolds must have even dimensions since skew-symmetric matri-
ces in odd dimensions always have kernels. Moreover, any two symplectic manifolds
of the same dimension are locally diffeomorphic as symplectic manifolds by the fol-
lowing lemma.

Lemma A.1 (Darboux). About any point of an symplectic manifold there exist
coordinates, called “Darboux” or “canonical” coordinates, wuch that the expression
for the two-form in these coordinates is the one given above.

The matrix of our ω in terms of the canonical coordinates (q1, . . . , qn, p1, . . . , pn)
is

J = ( 0 In
−In 0

)

where In is the n×n identity matrix and n = dim(Q). One has J2 = −I2n hence the
matrix of ω is invertible and the canonical two-form is indeed non-degenerate.
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Exercise A.6. Write Θ for the one-form on T ∗Q given in local coordinates as
Θ = Σpidq

i. Then ω = −dΘ. Verify that Θ and hence ω are globally defined forms
on T ∗Q, independent of the choice of coordinates qi used to induce the system of
canonical coordinates (qi, pi) on T ∗Q.

See [1] for a coordinate-free definition of Θ.
Given a function H on such a symplectic manifold P we define the associated

Hamiltonian vector field XH on P by solving

(102) ω(XH , ⋅) = dH.
for the vector field XH . The non-degeneracy of ω implies the solvability of this
linear equation. We also write iXHω for the one-form ω(XH , ⋅).

Definition A.3. The vector field XH just defined is called the Hamiltonian
vector field of the Hamiltonian H.

Exercise A.7. Verify that Hamilton’s equations (100) are the ODEs associated
to the Hamiltonian vector field XH as just defined on P = T ∗Q, relative to the
canonical symplectic form.

Cartan’s magic formula asserts that LXα = diXα + iXdα, where LX is the Lie
derivative with respect to a vector field X and where α is any k-form. Applied
to X = XH and α = ω, Cartan’s formula yields LXHω = 0. Thus the flow ΦHt of
any Hamiltonian vector field XH is a flow through symplectomorphisms: diffeomor-
phisms which preserve ω. Such transformations are also refered to as “canonical
transformations”.

Definition A.4. A symplectic transformation, also known as a canonical trans-
formation, is any diffeomorphism of P preserving the symplectic form. We write
Symp(P ) for the (infinite-dimensional) group of symplectic transformations.

The huge and varied nature of the canonical transformations give the symplectic
formalism its power. We can use canonical transformations to put the Hamiltonian,
and hence the dynamics, into some normal form, perhaps approximate, or to better
understand the properties of its flow.

Diff(Q) ⊂ Symp(T ∗Q). The diffeomorphism group of Q embeds in the sym-
plectomorphism group of T ∗Q as follows. Given ψ ∶ Q→ Q a diffeomorphism, define
ψ∗ ∶ T ∗Q→ T ∗Q by ψ∗(q, p) = (ψ(q), (dψq)−1,T (p)). This induced map is called the
“cotangent lift” of ψ and is easily verified to be a canonical transformation. The pro-
cess of cotangent lift defines an injective homomorphism Diff(Q)→ Symp(T ∗Q).

At the level of Lie algebras, cotangent lift induces an inclusion of the space of
all vector fields on Q into the space of Hamiltonian vector fields on T ∗Q as follows.

Exercise A.8. If Y is a vector field on Q, define PY ∶ T ∗Q→ R by PY (q, p) =
p(Y (q)). Show that the Hamiltonian vector field XH of H = PY projects to Y by
the projection T ∗Q → Q. Write exp(tY ) ∶ Q → Q for the flow of Y . Show that the
Hamiltonian flow defined by PY is the cotangent lift of the flow of Y .ex: momentum functions

In canonical coordinates PY = ΣpiY
i(q) where Y = ΣY i(q) ∂

∂qi
. In other words,

Hamiltonians linear in momentum variable correspond to the vector fields on con-
figuration space.

Definition A.5. We call PY the momentum function , or simply the momen-
tum of the vector field Y .def: momentum function
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This last observation allows us to quantify the vast gulf between diffeomor-
phisms of Q and symplectomorphisms of T ∗Q. At a formal level, we can view the
space C∞(T ∗Q) of all Hamiltonians H as forming the Lie algebra of the group of
symplectomorphisms Symp(T ∗Q), with the exponential map Lie(G) → G taking
H to the time t flow of XH . Now Taylor expand a given H in terms of the fiber
variable p ∈ T ∗q Q:

{H}{H} (103) H(q, p) =H0(q) +H1(q)(p) +H2(q)(p, p) + . . .
where H0 is independent of p, H1 = H1(q)(p) is linear in p and thus has the local
form H1(q)(p) = ΣY i(q)pi, H2(q)(p, p) = 1

2
Σgij(q)pipj is quadratic in p, etc. We

have seen that H corresponds to a diffeomorphism of the configuration space if and
only if H =H1, which is to say, if and only if H0 =H2 =H3 = . . . = 0. We have just
characterized the image of the embedding of Diff(Q) in Symp(T ∗Q) as having
infinite codimension, requiring as it does infinitely many equalities to hold.

Return to natural mechanics. A natural mechanical system is generated
by a Hamiltonian which truncates at the second order and has no first order piece:
H = H0 +H2. We identify H0 with the potential and H2 with the kinetic energy.
When a first order piece H1 is present we may associate it to a vector field, or,
dually (via H2 assuming that it is non-degenerate) a one-form “vector potential”
as in electromagnetism.

3. Variational structure: the Lagrangian side.

The Lagrangian defines a function on paths in configuration space called the
action.

Definition A.6. The action A associated to the Lagrangian L ∶ TQ→ R is the
function

c↦ A(c) ∶= ∫
I
L(c(t), ċ(t))dt

defined on the space of absolutely continuous paths c ∶ I → Q. Here I ⊂ R is any
closed bounded interval.

Recall that a path is absolutely continuous if it is differentiable a.e. and if the
fundamental theorem of calculus holds locally: if c(t) = (q1(t), . . . , qn(t)) is the

coordinate expression for c in some neighborhood then qi(t) = qi(a) + ∫
t

0 q̇
i(s)ds.

(See [132].) Being absolutely continuous does not depend on the choice of local
charts.

In calculus of variations one differentiates the action with respect ot sufficiently
smooth paths c. If we restrict the action to the space of all smooth paths joining
two fixed points of Q in some fixed interval I of time, then the Euler-Lagrange
equations are the necessary conditions [?], [88] for a path to be a critical point of
the restricted action. We now verify this assertion by hand for a natural mechanical
system on a Euclidean space Q = E as is relevant for the N-body problem. To do
so we make explicit the differentiation process.

Definition A.7. By a compact perturbation of a path q ∶ (a, b) → E we will
mean a family qε(t) = q(t)+ εh(t) of curves where the support of h is some compact
sub-interval J of (a, b).

Theorem A.1. Consider the case of the action A = ∫ Ldt for a natural me-
chanical system L = K − V on the Euclidean vector space E, where K corresponds
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to half the inner product. Suppose that the path q is twice-differentiable and that
the derivative of A is zero at q for all compact twice differentiable perturbations
qε = q + εh of q. Then q solves Newton’s equations.

Proof. Differentiate A(q + εh) with respect to ε. Use q̇ε = q̇(t) + εḣ(t) to
expand out and find

K(q̇ε(t)) =K(q̇(t)) + ε⟨q̇(t), ḣ(t)⟩ + ε2K(ḣ(t)).
Also

V (qε(t)) = V (q(t)) + ε⟨∇V (q(t)), h(t)⟩ +O(ε2)
where we have assumed that V is C2 along the path q(t). It follows that

A(qε) = A(q) + ε(∫ ⟨q̇, ḣ⟩ − ⟨∇V (q), h⟩)dt +O(ε2)

so that
d

dε
∣ε=0A = ∫

J
⟨q̇, ḣ⟩ − ⟨∇V (q), h⟩)dt.

where J is the closed interval supporting h. We note that d
dt
(⟨q̇, h⟩ = ⟨q̈, h⟩ + ⟨q̇, ḣ⟩

or

⟨q̇, ḣ⟩ = ⟨−q̈, h⟩ + d

dt
(⟨q̇, h⟩)

It follows that
d

dε
∣ε=0A = ∫

J
⟨−q̈ −∇V (q), h⟩dt + (⟨q̇, h⟩)∣dc

where J = [c, d]. The final boundary term is zero since h has compact support
within the open interval J and so h = 0 at the endpoints c, d of J . So, we have
shown that

d

dε
A = ∫

J
⟨−q̈ −∇V (q), h⟩)dt.

Now assume the hypothesis of the theorem, that this derivative is zero for all
twice differentiable compactly supported h. Since the set of such h is dense in
L2 = L2(J,E) for this interval J , where the L2 pairing is (w,h)↦ ∫J⟨w(s), h(t)⟩ds
we must have w = −q̈ −∇V (q) is zero a.e.. But q(t) is assumed C2 so we have that
Newton’s equations q̈ = −∇V (q) is satisfied on J . Since J ⊂ I is arbitrary, w have
that q satisfies Newton’s equations on all of I.

QED
With extra work we can weaken the hypothesis of the theorem to :

Theorem A.2. Suppose that the path q ∶ I = [a, b]→ E is absolutely continuous
and V is C2 in a neighborhood of q((a, b)). Then A is Frechet-differentiable at
q and the derivative is zero at q if and only if q(t) is twice-differentiable on the
interior of I and satisfies Newton’s equations there.

We will prove this theorem in the next appendix, which is an appendix on the
direct method.

yes? if you promise it, do
it! or, simply give a refer-
ence to .. -RM Extremal path need not exist. For example, take Q = R with standard coordi-

nate q and L = q̇ + q. Then the Euler Lagrange equations for L read d
dt
(1) = 1 or

0 = 1. There is no solution. Correspondingly, the action of a path q ∶ [0, T ] → R
is ∫

T
0 (q̇(t) + q(t)dt = q(T ) − q(0) + ∫

T
0 q(s)ds. This function has no extremals for

fixed values of T , q(0) and q(T ). Indeed this action functional is linear so has no
extremal and in particular no minimum or maximum.
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In physics texts one reads the adage “ physical trajectories minimize the action”
not “extremize the action”. The effort to minimize the action initiated the calculus
of variations and is one of the most powerful methods available to this calculus. But,
as we just saw, the minima may not exist. With this in mind, the next proposition
is important in chapter 3.

Proposition A.1. For natural mechanical systems action minimizers exist be-
tween sufficiently close points. Specifically, if we restrict the action to all absolutely
continuous paths joining two points q0, q1 in a time T and if the points are suffi-
ciently close and the time sufficiently short, then the minimum exists, is smooth,
and solves the Euler-Lagrange equations. Conversely, any sufficiently short subarc
of a solution to the Euler-Lagrange equations minimizes the action among all paths
connecting the endpoints of this subarc.

For a proof of a somewhat more general version of this proposition we refer to what
Mañe calls “Weierstrass’s theorem” on p.24-6 of his book.

The existence of minima for arbitrary points and times is closely linked to the
completeness of the Euler-Lagrange flow. In the case of Riemannian geometry,
which is to say, natural mechanical systems with potential V = 0, this fact is well-
known and goes under the name of the Hopf-Rinow theorem: the geodesic flow is
complete if and only if any two points can be connected by a length-minimizing
geodesic. In the case of the N-body problem, the collisions get in the way of
completeness of the flow. Despite this fact, by the miracle discovered by C. Mar-
chal ??, collision-free action minimizers always exist for the gravitational two-point
boundary value problem, provided the endpoints are not collision points and the
dimension of space is greater than 1. See XX

put Marchall in , further
on -RM

4. Poisson Bracket Formalism and Reduction

At various points in this book we work with the N-body problem after modding
out by its symmetry group G. is the group of rigid motions G acting on N-body
phase space P. There are two primary methods for forming the quotient of phase
space by the group action. The most direct way and computationally effective
method is to just do it: form the quotient phase space P/G. However, the quotient
phase space is no longer a symplectic manifold and another geometric formalism
enters in if we are to understand what we are doing down there on the quotient.
That formalism is Poisson geometry. Instead of inheriting a symplectic structure
or variational structure from P, this quotient space inherits a “Poisson structure”,
hence this section.

The other method of forming the quotient is known as “symplectic reduction”.
Poisson manifolds admit intrinsic (singular) foliations whose leaves are symplectic
manifolds. These leaves can be identified with the symplectic reduced spaces of P
and these will be described in a later section.

To begin our brief survey of Poisson geometry, return to symplectic geometry,
so a manifold P endowed with a symplectic form ω. We define the Poisson bracket
on P by

{F,H} = ω(XF ,XH)
where XF ,XH are the Hamiltonian functions of the smooth functions F,H on P.
We could also write {F,H} = dF (XH) = −dH(XF ). This bracket defines a bilinear
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skew-symmetric operation on functions on P. In terms of our canonical coordinates
qi, pi we have

{F,H} = Σ
∂F

∂qi
∂H

∂pi
− ∂F
∂pi

∂H

∂qi

Exercise A.9. Verify that when ω is the canonical symplectic form as above,
we have the bracket relations, also known as the canonical commutation relations:

{eq: CCRs}{eq: CCRs} (104) {qi, qj} = 0,{qi, pj} = δij ,{pi, pj} = 0

Exercise A.10. If P = T ∗Q, let X ↦ PX be the momentum function defined
earlier. Verify that {PX , PY } = −P[X,Y ] where [X,Y ] is the Lie bracket of the
vector fields X,Y on Q. Also verify that {π∗f,PX} = π∗(X[f]) where π ∶ T ∗Q→ Q
is the projection and π∗ ∶ C∞(Q)→ C∞(T ∗Q) is the pull-back operation.

We formalize Poisson brackets as follows

Definition A.8. A Poisson bracket on a manifold P is a Lie algebra structure
F,H ↦ {F,H} on its smooth functions which, in addition, is Liebnitz:

{F,GH} = G{F, ,H} + {F,G}H

There is a second Liebnitz identity relative to the first slot “F” of the Poisson
bracket which follows automatically from the skew-symmetry of the bracket. The
reader may wish to verify that the bracket previously defined on a symplectic man-
ifold is actually a Poisson bracket, the main issue being the Jacobi identity.

A Poisson manifold is, by definition, a manifold with a Poisson bracket op-
eration on its smooth functions. The Liebnitz identity allows us to associate a
tensor B ∈ Γ(Λ2TP) to a Poisson manifold. B is called the “Poisson tensor”.
If xi are local coordinates on P then we write Bij(x) = {xi, xj}(x) and then
B = Σi<jB

ij(x) ∂
∂xi

∧ ∂
∂xj

. Then {F,H} = B(dF, dH) = ΣijB
ij(x) ∂F

∂xi
∂H
∂xj

where

we use Bji = −Bij .

Exercise A.11. If ω = Σωijdx
i∧dxj is the coordinate expression for a symplec-

tic form ω on a symplectic manifold, verify that the Poisson tensor corresponding
to its Poisson bracket is given by B = Σωij ∂

∂xi
∧ ∂
∂xj

where ωij is the inverse matrix
to ωij.

4.1. Dynamics. As in symplectic geometry, there is a Hamiltonian vector
field XH associated to each smooth function H on a Poisson manifold. We define
XH by its action on functions: XH[f] = {f,H}. This agrees with our previous
definition of XH in the symplectic case. Write ΦHt for the flow of XH . The Jacobi
identity implies that this flow preserves the Poisson bracket. If we set ft = f ○ΦHt
for f ∈ C∞(P) then we have that:

d

dt
f = {f,H}

which provides us with another equivalent way to express Hamilton’s equations
when P = T ∗Q. Just let f vary over qi, pi and write out the above equation to
recover our original version of Hamilton’s equations (100).
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4.2. New Poisson manifolds by quotient. If P is a Poisson manifold and if
a compact Lie group acts freely on P by Poisson automorphisms then P/G inherits
the structure of a Poisson manifold. Write the action of pulling a function back by
the action of g as F ↦ g∗F . Then to say that G acts by Poisson automorphisms is
to say that for all g ∈ G,F,H ∈ C∞(P) we have that {g∗F, g∗H} = g∗{F,H}. Since
G is compact and acts freely, the quotient space P/G is automatically a smooth
manifold. We can identify the ring of smooth functions on P/G with C∞(P)G -
the ring of G-invariant smooth functions on P. The fact that G acts by Poisson
automorphisms implies that the Poisson bracket of two G-invariant functions is
again G-invariant. Thus we have defined a Poisson structure on the quotient space
P/G.

In case P = T ∗Q and the compact Lie group G acts freely on Q , then its
cotangent lift acts freely on T ∗Q by symplectic, and hence Poisson automorphisms.
It follows that (T ∗Q)/G, is a Poisson manifold. This class of examples arises in the
N-body problem. We will describe its details in the next section.

Take the case of G acting on itself by left translation: Lg(h) = gh, Lg ∶ G→ G.
This is a free action and we can identify T ∗G/G = T ∗e G = g∗ with the dual of the
Lie algebra by left-translating covectors back to the identity. Now if X is a left-
invariant vector field then the momentum function PX is a left-invariant function
on T ∗G. By the previous exercise {PX , PY } = −P[X,Y ]. Viewed on T ∗e G, we have
that PX ∶ g∗ → g is given by PX(µ) = µ(X(e)). We identify g with left-invariant
vector fields. In this way, X ∈ g becomes an element of g∗∗ -i.e. a linear function
on g∗. Take a basis Ei of g and let ckij be the corresponding structure constants.
Write x1, . . . , xn for the coordinate system on g∗ corresponding to this basis. We
have just shown

{xi, xj} = −Σckijxk.

This Poisson bracket was found by Lie, and rediscovered by Kostant, Kirrilov and
Souriau. See [157] for a bit of the history.

Exercise A.12. If the action of G is instead by right translation verify that
the induced quotient bracket on g∗ is {xi, xj} = +Σckijxk.

some of this personal stuff
To NOTES? -RM

When I was a graduate student Alan Weinstein published a beautiful paper
called “the Local structure of Poisson Manifolds” One of the central observations
of that paper is that every Poisson manifold admits a canonically defined, typically
singular foliation by what he christened “symplectic leaves”. To form the symplectic
leaf through the point p ∈ P form the collection of all Hamiltonian vector fields
XH = {⋅,H} and integrate them, starting from p. The Jacobi identity shows us
that this collection of vector fields is involutive, so, by an extension of the Frobenius
integrability theorem due to Sussman, the collection of all endpoints of such vector
fields is an locally embedded submanifold of P. Its tangent space is spanned by the
XH ’s. The symplectic form on the leaf can be obtained by writing ω(XF ,XG) =
{F,G}.

Exercise A.13. Suppose that G is connected. Then the symplectic leaves of
the Lie-Poisson bracket on g∗ are the co-adjoint orbits: the orbits of g∗ under the
dual of the adjoint action.
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5. Reduction by the circle

The formalism of Poisson reduction works out to be simple and explicit in the
case relevant to the planar N-body problem. Here G is the circle group S1 acting
by cotangent lift on the phase space of a natural mechanical system. The goal is
then to identify the quotient Poisson manifold (T ∗Q)/G in the case where G = S1.
We are interested in the case where S1 acts on the configuration space of a natural
mechanical system Q so that it leaves both the metric and potential invariant. Then
this S1 acts on T ∗Q by cotangent lift so as to leave the Hamiltonian of the system
invariant and preserve the Poisson brackets. This is the situation which arises for
the planar N-body problem. The grand finale and main point of this section is the
realization of “Wong’s equations” (108) - the equations of a particle in a magnetic
field on the shape space S = Q/G - as being the reduced version of the planar
N-body problem.

In order to proceed with the computation we will need the notion of a connec-
tion on a circle bundle which we will review as we come to it. We suppose, as is the
case for the planar N-body problem away from total collision, that our S1 action
is free. Write ∂

∂θ
for the infinitesimal generator of the S1-action. Thus, ∂

∂θ
is the

vector field q ↦ ∂
∂θ

(q) ∶= d
dθ

∣θ=0e
iθ(q) on Q. Set

V = span ∂
∂θ

⊂ TQ

We call V the vertical distribution and vectors lying in V are called “vertical”. V
is a trivial line sub-bundle of TQ. Also form the momentum function:

J = P ∂
∂θ
∶ T ∗Q→ R.

We call J the momentum map for the circle action. Being S1-invariant, J can be
viewed as a function

J ∶ (T ∗Q)/S1 → R

Exercise A.14. Verify that J agrees with the angular momentum in the case
of the planar N-body problem, with S1 = SO(2) the standard rotational action.

.
Write V 0 for the annihilator of V , that is, the space of all covectors p ∈ T ∗Q

such that p = 0 for all v ∈ V .

V 0 = J−1(0) ⊂ T ∗Q
Indeed, J(q, p) = p( ∂

∂θ q
).

The advantage of assuming that S1 acts freely on Q is that this implies that
the quotient space B = Q/S1 is a smooth manifold and that the quotient projection

π ∶ Q→ Q/S1 = B
gives Q the structure of a principal circle bundle over the base space B. We might
also want to call the base B the “shape space” in honor of the planar three-body
problem. Observe that

V = ker(dπ).
Circle bundles admit local trivializations so that, if xi, i = 1, . . . , n − 1 are co-

ordinates on B defined within a locally trivializing neighborhood and if θ is the
standard circle variable, we get induced coordinates xi, θ on Q such that in these
coordinates π(xi, θ) = (x1, . . . , xn−1) and such that the infinitesimal generator ∂

∂θ
is
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the coordinate ∂
∂θ

. These coordinates xi induce the usual momentum coordinates pi
on T ∗B and the xi, θ induce coodinates pi, pθ on T ∗Q. In terms of these coordinates
on T ∗Q we have that J(xi, θ, pi, pθ) = pθ, the momentum dual to rotation.

Lemma A.2. J−1(0)/S1 = T ∗B in a canonical way.

Proof. Locally, in the above coordinates, we have J−1(0) = {pθ = 0} and
so xi, θ, pi coordinatize J−1(0). Forming the quotient by S1 gets rid of θ so that
the quotient map J−1(0)/S1 is, in these coordinates, (xi, θ, pi,0)↦ (xi, pi) yielding
canonical coordinates on T ∗B. Some thought about how coordinates and local
trivializations fit together shows this computation yields a global map and finishes
the proof.

However, it may be worth understanding the diffeomorphism J−1(0)/S1 = T ∗B
at a coordinate-free level. Take a covector α ∈ T ∗b B. Then π∗α ∈ T ∗Q is a covector
which annihilates V thus π∗α ∈ J−1(0). There is an ambiguity as to where π∗α lives.
To make it a covector attached to a particular q ∈ π−1(b) we set p = (π∗α)q = dπ∗qα.
Now p annihilates Vq = ker(dπq) so that J(q, p) = 0. The ambiguity in where p is
attached washes out upon forming the quotient, since the S1 orbit of any point is
the whole π-fiber. It follows that (b,α) ↦ (q, π∗αq)modS1 is a well-defined map
T ∗B → J−1(0)/S1. To go the other way, take any βq ∈ J−1(0) ∩ T ∗q Q. We define a
covector α = [βq] ∈ T ∗b B as follows. I need to tell you what α does to a w ∈ TbB. In
order to do so, choose any Wq ∈ TqQ such that dπqWq = w and set α(w) = βq(Wq).
Because βq(Vq) = 0 the result is well defined independent of the choice of Wq since

such a choice is well-defined modula a vertical vector λ ∂
∂θ

∈ Vq.
QED
Circle bundles admit connections. A connection is an S1 invariant complement

H to V , so that
TQ =H ⊕ V.

(Apologies for the double use of the symbol H: for horizontal and for Hamiltionian.)
Thus, for each q ∈ Q we have a hyperplane Hq ⊂ TqQ. Equivalently, a connection is
an S1-invariant one-form A ∈ Ω1(Q) normalized according to

A( ∂
∂θ

) = 1.

A determines H by H = ker(A). , H plus the normalization determines A. Con-
nections have curvatures:

dA = π∗F
where F is a two-form on B. In terms of our locally trivializing coordinates xi, θ
we have

A = dθ +ΣAi(x)dxi

and
F = d(ΣAi(x)dxi.

thm: circle reduction Theorem A.3. A choice of connection for the circle bundle Q → B = Q/S1

induces a diffeomorphism
(T ∗Q)/S1 ≅ T ∗B ×R,

under which the momentum map J ∶ T ∗Q/S1 → R is projection onto R. The induced
Poisson structure on T ∗B ×R is characterized by

{xi, xj} = 0,{xi, pj} = δij ,{pi, pj} = JFij
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together with

{xi, J} = {pi, J} = 0.

Here xi, pi are a standard set of canonical coordinates on T ∗B induced by choosing
coordinates xi on B, and Fij = F ( ∂

∂xi
, ∂
∂xj

) are the components of the curvature F

of the connection with respect to the xi.

Proof. A connection A is a one-form, so for each q ∈ Q a momentum Aq ∈ T ∗q Q.

The normalization condition Aq( ∂∂θ ) = 1 is equivalent to J(q,Aq) = 1. Now J(q, p)
is linear in p so it follows that J(q, p + λAq) = J(q, p) + λ. Setting λ = −J(q, p)
allows us to defines a map T ∗Q → J−1(0) according to (q, p) ↦ (q, p − J(q, p)Aq).
This map is S1-equivariant since A and J are S1-invariant. By adding back in J
we arrive at an S1-equivariant bundle isomorphism T ∗Q ≅ V 0 × R = J−1(0) × R of
vector bundles over Q , namely

(q, p)↦ ((q, p − J(q, p)Aq), J(q, p) ∈ J−1(0) ×R.

(S1 acts trivially on the R-factor. ) Recall from the lemma above that J−1(0)/S1 =
T ∗B. It follows that this isomorphism, upon forming its quotient by S1, induces
an isomorphism T ∗Q/S1 → T ∗B ×R of vector bundles over B.

Look at this isomorphism in the local section induced coordinates xi, θ, pi, pθ
on T ∗Q as described above, and the coordinates xi, θ, pi, pθ that they induce on
T ∗Q/S1. The coordinates xi on B also induce coordinates on T ∗Q, which, for the
purposes of the proof, we write as xi = Xi, Pi. In terms of these coordinates our
isomorphism is given by

Xi = xi

Pi = pi − pθAi(x)
J = pθ.

To finish the proof, we compute Poisson brackets of these new functions. That
{Xi,Xj} = 0 and {Xi, Pj} = δij is almost immediate. The only tricky bracket to

compute is {Pi, Pj} = {pi−pθAi, pj−pθAj} = −pθ{Ai, pj}−pθ{pi,Aj} Since {f, pj} =
∂f
∂xj

for any function f of the x’s alone this last expression equals pθ(∂Aj∂xi
− ∂Ai
∂xj

).
But F = dA = Σ(∂Aj

∂xi
− ∂Aj
∂xi

)dxi∧dxj which leads to {Pi, Pj} = JFij . Since Xi, Pi are

the coordinates refered to as xi, pi in the statement of the theorem, this completes
the proof.

QED

5.1. Application to Natural Mechanical Systems. A natural mechanical
system with S1 symmetry admits a canonical connection with horizontal spaces

H = V ⊥,
where ‘⊥ is defined using the S1-invariant metric ds2

Q. Since the circle acts by

isometries with respect to ds2
Q this choice of horizontal is S1-invariant and hence

defines a connection.

Definition A.9. The connection associated to this choice of metric-induced
horizontal is called the “natural mechanical connection”

Since Vq = ker(dπq), the restriction of dπq to Hq is a linear isomorphism.
Declare it to be an isometry dπq ∶ Hq → TbB, b = π(q), where we endow Hq with
the restriction of ds2

Q as its inner product. This process induces an inner product
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on TbB , b = π(q), and hence a Riemannian metric ds2
B on the base space B which,

in deference to the N-body problem, we refer to as the “shape metric”. To see that
this inner product on TbB is independent of the choice of q ∈ π−1(b) use the fact
that S1 acts by isometries of ds2

Q and that the S1-orbits are the fibers of π. We

also have an S1 invariant metric on the fibers, summarized by the squared length
of the infinitesimal generator:

I(q) = ⟨ ∂
∂θ

(q), ∂
∂θ

(q)⟩q.

We can summarize the above discussion by saying that we have an S1-invariant
splitting:

{eq: split1}{eq: split1} (105) TQ = π∗TB ⊕R

with corresponding metric split as

{eq: split2}{eq: split2} (106) ds2
Q = π∗ds2

B ⊕ Idθ2.

A word or two is in order regarding π∗TB. π∗TB is the vector bundle over Q
which assigns to q ∈ Q the vector space Tπ(q)B. Then H ≅ π∗TB with isomorhism
dπq restricted to Hq. We write the inverse of this linear isomorphism as

hq ∶ TbB →Horq

and we call it the horizontal lift operator.
An alternative expression for the conserved angular momentum J , valid upon

using the Legendre transformatio to identify TQ and T ∗Q is

{eq: tangent J}{eq: tangent J} (107) J(q, v) = ⟨v, ∂
∂θ

⟩q

J is an S1 invariant, so can be thought of as a function on the quotient space
(T ∗Q)/S1. In this way Jq = J(q, ⋅) becomes an S1-invariant one-form on Q.

Lemma A.3. The connection one-form for the natural mechanical connection
is given by

A(q)(v) = 1

I(q)J(q, v)

where J denotes the angular momentum as per equation (107).

Proof. Since H = V ⊥ and V is spanned by ∂
∂θ

it is clear that kerJq = H.
It follows that Aq and Jq are multiples of each other: Aq = f(q)Jq for some non-
vanishing scalar function f The multiplier f is determined by the normalization
A( ∂

∂θ
) = 1. We have J(q, ∂

∂θ
) = I(q) which yields f = 1

I
.

QED
The dual of our metric splitting (equations (105, 106)) yields the S1-invariant

vector bundle splitting

T ∗Q ≅ π∗T ∗B ⊕R.

with corresponding dual quadratic form splitting as

K =K∗
B ⊕ 1

2

J2

I
.
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The total Hamiltonian has the form H =K + V . Using the kinetic energy splitting

we can rewrite H =KB + 1
2
J2

I
+ V ∶=KB + Veff(x) where we have written

Veff(x) = Veff,J(x) ∶=
1

2

J2

I(x) + V (x),

The new function Veff is called the “effective potential”, hence its subscript. In
our local coordinates then

H(x, p, J) =KB + Veff,J(x), KB = 1

2
gijpipj

We now use the Poisson bracket formalism to compute the equations of motion:
namely, we compute ḟ = {f,H} for f = xi, pi, J . Now {xi, Veff,J(x)} = 0 since
{xi, f(x)} = 0 for any function of the xj ’s alone. So

ẋi = {xi,KB} = gij(x)pj .

We move on to the momentum evolution equations:

ṗi = {pi,H} = {pi,KB} + {pi, Veff(x)},

J̇ = 0

Now, {pi, Veff(x)} = −∂Veff
∂xi

while two terms arise out of {pi,KB}, one from the

fact that {pi, xj} = −δji and the other from {pi, pj} = JFij . We compute that

{pi,KB} = −( ∂
∂xi

1
2
gkm)pkpm + gkmpkJFim. From the ẋi equation, this last term

equals JFikẋ
k. Thus

ṗi = −(
∂

∂xi
1

2
gkm(x))pkpm + JFikẋk −

∂Veff

∂xi
.

If we set the last two terms in the last equation to zero what remains is the geodesic
equations for the shape metric. The deviation from geodesy is given by these
last two terms which we may interpret as forces. These forces are the coordinate
expression of the one-form JF (ḃ,0) − dV (b). Raising indices using the metric and

recalling that the contravariant version of the geodesic equation is ∇ḃḃ = 0 we see
that the full system of equations is equivalent to

{eq: Wongs}{eq: Wongs} (108) ∇ḃḃ = −J(F (ḃ, ⋅)# −∇Veff,J(b).

where J is a constant and where # ∶ T ∗Q→ TQ is the metric-induced index raising
map (the inverse of the Legendre transformation).

In the case of the planar N-body problem, once we center the bodies and delete
total collision we get Q = E0 ∖ {0} = CN−1 ∖ {0} = S2N−3 ×R+, Q/S1 = CPN−2 ×R+.

The R+ factor corresponds to radial dilations, is coordinatized by r =
√
I and its

generating vector field -dilations - has zero angular momentum. The quotient map
Q → Q/S1 is the Hopf fibration S2N−3 → CPN−2 trivially extende to the R+ factor
by having it be the identity. The connection form induced by K and the circle
action is the standard connection for the Hopf fibration. The curvature form F is
the Fubini-study Kahler form on CPN−2, trivially extended to the R+ factor. In the
case N = 3 of the planar N-body problem, under our shape space identifications,
this two-form F is a constant multiple of the solid angle form on R3∖{0} ≅ CP1×R+.
A vector interpretation of this solid angle form and determination of the constants
leads immediately to the reduced 3-body equations (51) of the introduction.

as per p 165 of Tour, pf of
Wong’s eqns -RM
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6. Noether, Symmetries, and the Momentum map.

If our Lagrangian is independent of one of the position coordinates, say q1,
then ∂L

∂q1
= 0 and the first Euler-Lagrange equation (101) reads

d

dt
( ∂L
∂v1

) = 0.

Thus symmetry of L with respect to translation of the q1 coordinate yields con-
servation of the corresponding dual momentum coordinate p1 = ∂L

∂v1
. This is the

simplest instance of “Noether’s theorem” relating symmetries to conservation laws.
Recall that under the Legendre transform ∂L

∂v1
= p1 is in fact the momentum vari-

able dual to q1. A quick computation shows that our Hamiltonian H = H(q, p) is
also independent of q1. Hamilton’s equations (100) yield this same conservation
law ṗ1 = 0. The classical language for this situation is to say that q1 is a “cyclic
variable” for our system.

The variable p1 plays another role here by way of its Hamiltonian vector field.
Recall that {f, p1} = ∂f

∂q1
so that the Hamiltonian vector field of the conserved

coordinate yields translation of q1, providing a basic link between the conserved
quantity and the symmetry it is associated to, namely , translation of q1.

The situation just described arises when the Lagrangian is invariant under the
action of a circle S1 acting on configuration space. At points where the circle orbits
do not degenerate to points, we can take the cyclic variable to be the angular
coordinate q1 = θ ∈ S1 coordinatizing the circle, and supplement it with the needed
number of additional coordinates q2, q3, . . . , qn transverse to the circle which label
the nearby circle orbits. In this way the circle action becomes (θ0, q

2, . . . , qn) ↦
(θ0 + θ, q2, . . . , qn). The corresponding conservation law for circular invariance of L
is the momentum p1 = pθ and is called the “angular momentum” or “momentum
map” associated to the action.

The discussion above generalizes to a general Lie group G acting on Q, so that
G replaces S1. We suppose that this G-action leaves the Lagrangian L invariant:
L(q, v) = L(gq, dgqv). Here we have written g ∈ G and have written the correspond-
ing transformation as q ↦ gq. This transformation induces the transformation dgqv
of velocities where dg ∶ TQ → TQ denotes the differential with respect to q of the
transformation q ↦ gq. Under the Legendre transformation, the Hamiltonian is
invariant under the corresponding cotangent lifted action g(q, p) = (gq, (dg)−1T

q p).
Noether’s theorem gives us r independent conservation laws where r = dim(G).

To express these laws, let g denote the Lie algebra of G, an r-dimensional vec-
tor space. We will write one conservation law for each ξ ∈ g. Write ξQ(q) =
d
dε

∣ε=0(exp(εξ)q for the infinitesimal generator of the G-action on Q. Here exp(εξ) ∈
G is the one-parameter subgroup corresponding to ξ ∈ g. Then we set

Jξ = PξQ

in other words, Jξ(q, p) = p(ξQ(q)). This expression is linear in ξ so we can view J
as a map

{eq: mom map}{eq: mom map} (109) J ∶ T ∗Q→ g∗.

Definition A.10. The map of equation (109) just defined is called the mo-
mentum map for the given G-action.
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Choosing a basis E1, . . . ,Er for g gives us linear coordinates on g∗ and expresses J
as an r-vector J = (J1, . . . , Jr) with Ja = JEa .

Remark. In the previous section we had G = S1 and wrote J for the above pθ,
the single component of J . Now J is a vector-valued.

Proposition A.2 (Noether). Suppose, as above, that the Lagrangian is G-
invariant and that its Legendre map is invertible so that the associated Hamiltonian
H is defined on all of T ∗Q. Then the Jξ, ξ ∈ g are all conserved: {Jξ,H} = 0.

Proof. Recall the momentum functions of ... . If ψt is the cotangent lift of
complete! -RM

the flow of the vector field Y we showed that d
dt
ψ∗t F = {F,PY }. Now from Jξ = PξQ

we see that d
dt
g∗t F = {F,Jξ} where gt ∶ T ∗Q → T ∗Q is the cotangent lift of the

action of exp(tξ) on Q. It follows that if F is G-invariant then {F,Jξ} = 0 for all
ξ ∈ g. But H is G-invariant since L is, and {H,Jξ} = −{Jξ,H}. QED

In the setting of a natural mechanical system, we suppose that the Lie group
G acts on Q so as to preserve the metric dsQ and the potential V . In this case the
lifted G-actions preserve both L and H. Recall that the Legendre transformation
sends v ∈ TqQ to the linear functional ⟨v, ⋅⟩q ∈ T ∗q Q. It follows the momentum
map, when viewed on the tangent bundle side by using the inverse of the Legendre
transformation has the form

Jξ(q, v) = ⟨v, ξQ(q)⟩q.

Exercise A.15. Let G = SE(d) = Rd × SO(d) be the group of rigid motions
acting on Q = E(d,N), the configuration space for N-bodies in d-space. Put the
mass metric on E so as to define a metric ds2

Q. Verify that the momentum map
P = T ∗E→ g∗ for the G-action on the N-body phase space P encodes the linear and
angular momenta as its Rd∗ and so(d)∗ compenents. Here g = Rd ⊕ so(d). Discuss
the various identifications required to make this translation.

The following is important when we get to symplectic reduction in the next
section

Exercise A.16. The group G has a represententation on its dual Lie algebra
given by g ⋅µ = Ad∗g−1µ where Adg is the usual adjoint action (conjugation for matrix

groups). Upon using this action show that the momentum map as defined above is
G-equivariant J(gp) = g ⋅ J(p).

7. Symplectic Reduction
sec: symp reduc

The momentum map (equation (109)) allows us to construct a refined version of
Poisson reduction known as symplectic reduction. The symplectic reduced spaces
are parameterized by µ ∈ g∗ and can be identified with the symplectic leaves of
the Poisson reduced space, at least when G is compact and acts freely. The re-
duced Poisson dynamics thus restricts to each reduced space, giving us a family of
dynamical systems parameterized by µ.

Here is the definition. Fix µ ∈ g∗. Form

J−1(µ) ⊂ P.

Since J is equivariant, the stabilizer Gµ = {g ∈ G ∶ Ad∗gµ = µ} leaves J−1(µ) invari-
ant.
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Definition A.11. The symplectic reduced space for the value µ is the quotient
space (T ∗Q)µ ∶= J−1(µ)/Gµ.

There is no reason, a priori, for the symplectic reduced space to be a manifold, let
alone a symplectic manifold. However, we have

Proposition A.3. If G is compact and acts freely on T ∗Q then each symplectic
reduced space J−1(µ)/Gµ is a smooth manifold and inherits a symplectic form ωµ
from the canonical form on T ∗Q.

We will go through the details leading to this proposition in the remainder of this
section.

7.1. Linear Symplectic Reduction. A symplectic vector space V is a real
vector space endowed with a constant symplectic form ω0. Thus our phase space
is a symplectic vector space, as is the tangent space to any symplectic manifold.
If L ⊂ V is a linear subspace, then by its reduction we mean the quotient space
L/ker(ωL) where ωL is the restriction of ω to L and its kernel consists of all v ∈ L
such that ω(v,w) = 0 for all w ∈ L. Equivalently, ker(ωL) = L∩L⊥ where by L⊥ ⊂ V
we mean the ω-perpindicular to L, that is, the set of all v ∈ V such that ω(v,w) = 0
for all w ∈ L. As per the inner product situation, L⊥ is a subspace of V whose
dimension is complementary to L’s. The form ω induces a linear symplectic form
on the quotient in the standard way.

ssec: local reduction
7.2. Local nonlinear symplectic reduction. Moving on to the non-linear

world, if (P, ω) is a symplectic manifold and S ⊂ P a submanifold, then ωS = j∗ω
is a closed two-form on S whose rank may vary. Here j ∶ S → P is the inclusion. At
points where this rank is locally constant the kernel has constant rank and defines
an involutive distribution, so we can form the local leaf space S/kerωS . This local
quotient space is the local symplectic reduction of S.

Words are in order regarding the meaning of the “local quotient” of a man-
ifold M by an involutive distribution D. The Frobenius normal theorem asserts
the following normal form for D: every point of M is contained in a coordinate
neighborhood U ≅ Rk × R` where k is the rank of D and under which the distri-
bution D corresponds to the Rk directions. Thus, there are coordinates ua, vi, a =
1, . . . , k, i = 1, . . . , ` with respect to which D is defined by dvi = 0, i = 1, . . . , `. The
plaques (local leaves) are the integral manifolds vi = consti for D∣U , which is to
say the image of any one of the k-planes Rk × pt under the Frobenius normal form
diffeomorphism. Whenever a leaf of D intersects U it does so in a union of these
plaques. The plaques themselves are the connected components of the sets obtained
by intersecting a leaf with U . In particular the quotient U/D∣U consists of the space
of plaques in U and is diffeomorphic to R` as coordinatized by the vi. Any one of
these spaces is what we mean by a local quotient of M by D.

As a primary example of this reduction process, suppose that H is a smooth
function on the phase space P and that c ∈ R is a regular value for H. Then
the set S ∶= {H = c} ⊂ P is a smooth embedded hypersurface and kernel of ωS is
spanned by XH . A local symplectic reduction of {H = c} is a space whose points are
local integral curves for XH which lie within {H = c}. To form the local quotient
invoke the the symplectic version of the straightening lemma, which yields canonical
coordinates q1, p1, q

2, p2, . . . , q
n, pn such that H = p1 and those under which the local
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integral curves of XH are the q1-curves. It follows that q2, p2, . . . , q
n, pn coordinatize

the local symplectic quotient.
More viscerally, choose any disc D ⊂ S transverse to XH . This disc must be

symplectic: the restriction of ω to the disc is symplectic, since ker(ωS) is spanned
by XH . Use the flow of XH to form a tubular neighborhood of D diffeomorphic
to D × (−ε, ε) with the (−ε, ε) direction corresponding to the XH direction. This
process realizes the local symplectic quotient S/ker(ωS) as D. Our description of
the symplectic slice for realizing the Poincaré map can be viewed as an instantiation
of this construction.

7.3. Symplectic reduction, redux. Return to our definition of the sym-
plectic reduced space. First let us unwind the relations between J−1(µ) being a
manifold and the G action being free. A group action of a Lie group G on a man-
ifold P is called locally free at z ∈ P if the infinitesimal generator map g → TxP is
injective.

Exercise A.17. Verify that “free” implies “locally free.
Verify that µ is a regular value of the momentum map J if and only the G-action

on P is locally free at points z ∈ J−1(µ).

Thus, if G acts freely on P then each value µ ∈ g∗ is a regular value for J and
hence each J−1(µ) is a smooth embedded submanifold of P. Write iµ ∶ J−1(µ)→ P
for the inclusion.

Exercise A.18. Verify that the leaves of the kernel of the two-form i∗µω on

J−1(µ) consists of the connected components of the orbits of the stabilizer Gµ.

Write πµ ∶ J−1(µ) → J−1(µ)/Gµ for the projection, assuming that Gµ acts in such
a way that the quotient space is indeed a manifold and the quotient projection
a smooth submersion. Then J−1(µ)/Gµ is a manifold whose charts realize the
local symplectic quotienst of subsection 7.2. It comes with a symplectic form ωµ
characterized by i∗µω = π∗µωµ.

IfG is compact and acts freely then the same is true ofGµ and automatically the
hypothesis of the above paragraph hold. The symplectic reduced space J−1(µ)/Gµ
is indeed a smooth symplectic manifold with symplectic form ωµ.

Finally, we asserted that the reduced space can be identified with a symplectic
leaf of the Poisson reduced space P/G. In order to do so consider the following
diagram

J−1(µ)

Gµ

��

// GJ−1(µ) = J−1(Gµ)

G

��

// P

G

��
J−1(µ)/Gµ // J−1(Gµ)/G // P/G

The horizontal arrows are inclusions. The vertical arrows are quotients, first by
Gµ and then after that by G. It is not a hard job to show that the composite
bottom arrow J−1(µ)/Gµ → J−1(Gµ)/G is injective and its image is a symplectic
leaf, at least in the case when the G-action is free. The subsets Gµ ⊂ g∗ are the
co-adjoint orbits, and known to be the symplectic leaves for g∗ with its standard
Poisson structure (either left or right).

This diagram becomes particularly simple for the circle since it is an Abelian
group. In this case Gµ = µ and Gµ = G = S1. We return to our earlier picture
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as described in theorem A.3 of reduction by the circle. The symplectic reduced
spaces can be identified with T ∗(Q/G), but with the standard symplectic structure
“twisted” by J times the curvature form as per the earlier description of the Poisson
manifold there.

When the G action is not free, both the Poisson and symplectic reduced spaces
will typically be singular algebraic varieties and all kinds of interesting complica-
tions come in to play.

8. Notes

IN To NOTES These leaves are known as the symplectic reduced spaces, or
make notes, organize... -
RMMarsden-Weinstein-reduced spaces, or Meyer-Marsden-Weinsten reduced spaces.

For us, “reduction” means the process of working with these quotient flows and
understanding the various structures on the quotient space which are induced by
the natural mechanical system on Q. We will describe details of reduction when
G = S1 as is appropriate for the planar N-body problem. At the end we make some
remarks regarding the case d > 2 of SO(d) appropriate for the N-body problem in
d-space.

put in Notes to this Ap-
pendix ! -RMSymplectic and then Poisson reduction was my bread and butter as a graduate

student. Here, I will not take these tacks, tacks that I was taught through chapter 4
of Abraham-Marsden [?] and subsequent papers by Marsden, Weinstein, Guilemin
and Sternberg REFS ??. Instead I opt for a decidedly dynamical approach, pushing
symplectic and Poisson structures off to the side for a while.





APPENDIX B

The direct method of the calculus of variations

We can exploit the Lagrangian formalism by looking for minimizers of the
action over some class of paths. By carefully specifying the class we can sometimes
achieve solutions with desired properties. This method of obtaining solutions is
known as the direct method in the calculus of variations.

The simplest version of the direct method is to the fixed end point problem.

Problem B.1. Fix q0, q1 ∈ E and a length of time T . Minimize the action
A(q(⋅)) over all paths q ∶ [0, T ]→ E such that q(0) = q0 and q1 = q(T ).

Let us walk through the method for the fixed endpoint problem.
A bit of functional analysis is at the heart of the method. Define the function

space Ω to be the space of all absolutely continuous paths q ∶ [0, T ] → E satisfying
the endpoint conditions q(0) = q0 and q(T ) = q1 and having finite action: A(q) <∞.
Set

a = inf
c∈Ω

A(c).

By the definition of infimum there exists a sequence cn ∈ Ω such that limn→∞A(cn) =
a. We call such a sequence is called a “minimizing sequence”. The direct method of
the calculus of variations now proceeds by completing the following steps.

167
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STEP 1. Show that a subsequence of the sequence cn converges to some con-
tinuous curve c∗.

STEP 2. Show that c∗ ∈ Ω.
STEP 3. Show that A(c∗) = a.
STEP 4. Show that A restricted to Ω is differentiable at c∗ with derivative 0.
STEP 5. Conclude from step 4 and some version of the “fundamental lemma

of the Calculus of variations” that c∗ satisfies Newton’s equations.
Fundamental lemma HERE..

The typical element of Ω does not have a continuous derivatives so Newton’s
equations does not make sense for such an element. The fact that the critical points
automatically are twice-differentiable can be viewed as a very primitive version of
“elliptic regularity” in PDE. Ω is not a vector space (unless q0 = q1 = 0). Rather it
is an affine space.

To complete these steps we need some assumptions on the potential V . To
make our life simple we will assume that V is smooth and that −V (x) ≥ 0. Later
on we must relax the ‘smooth’ assumption to allow for the N-body potential which
blows up along ∆.

STEP 1.
Since −V ≤ 0 we have that

{actionbd}{actionbd} (110)
1

2
∥q̇∥2

L2
∶= 1

2
∫

T

0
∣q̇(u)∣2du ≤ A(q).

Now absolutely continuous have derivatives a.e. Indeed, they are precisely those
functions c ∶ I → E for which the fundamental theorem of calculus holds:

c(t) − c(s) = ∫
t

s
ċ(u)du

[See eg Royden p number ...!] Use the Cauchy-Schwartz inequality in the form

∫ fg ≤
√
∫ f2

√
∫ g2 with f = ∥ċ∥ and g = 1 to get :

∫
t

s
∥ċ∥dt ≤

√
∣t − s∣

√

∫
t

s
∥ċ(u)∥2du

Now use ∥c(t) − c(s)∥ = ∥ ∫
t
s ċdu∥ ≤ ∫

t
s ∥ċ(u)∥du and the action bound eq [110], to

conclude our basic inequality:

{star}{star} (111) ∥c(t) − c(s)∥ ≤
√

∣t − s∣
√

2A(c),
This inequality asserts that any family of curves c with bounded action is equicon-
tinuous. Now if c ∈ Ω we have that c(0) = q0 and so, by taking s = 0 and t ≤ T in
the basic inequality we find that

{positionbd}{positionbd} (112) ∥c(t) − q0∥ ≤
√
T
√

2A(c)
which asserts that the set of curves c ∈ Ω for which A(c) ≤ M is also a bounded
family. Thus this set of curves is a bounded equicontinuous family and hence one to
which the Arzela-Ascoli theorem applies. In particular, we can take M = 2a for our
minimizing sequence to see that every minimizing sequence has a C0-convergent
subsequence. We would like to say that this c∗ is the limit of Step 1. But there is
some more work to do.

H1 and weak convergence. By H1 we will mean the space of all absolutely
continuous paths q ∶ [0, T ] → E such that ∥q̇∥2

L2
< ∞. Now N(q) = ∥q̇∥L2 is not a
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norm on H1 since any constant path has N(q) = 0. The standard norm on H1 is
the one whose square is

∥q∥2
H1 = ∫ ∣q̇(s)∣2ds + ∫ ∣q(s)∣2ds = ∥q̇∥2

L2
+ ∥q∥2

L2
.

Exercise B.1. A) Show that the standard H1 norm is Lipschitz equivalent to

the norm whose square is (∫
T

0 ∣q̇(s)∣2ds) + ∣q(0)∣2. B) Show that q ∈H1 if and only
if q is absolutely continuous and A(q) <∞.

We now recall the Banach-Alaoglu theorem in the context of Hilbert spaces. any
norm-bounded sequence in a Hilbert space H has a weakly convergent subsequence.
We also recall the meaning of “weakly convergent”, We say that a sequence vn ∈H
weakly converges to v, written vn ⇀ v. if for any continuous linear functional
` ∶H → R we have `(vn)→ `(v).

Basic example. Let {en} be an orthonormal basis for the separable Hilbert
space H. Then en ⇀ 0, since any linear function ` has the form `(v) = ⟨u, v⟩ for
some u ∈ H and in our case `(en) = un is the nth coordinate of u relative to our
basis. Since ∥u∥2 = Σu2

n we have that un → 0. Note that we do not have that en → 0
in the standard topology of H, since ∥en − 0∥ = 1 !

By our basic bound, eq [111] and the bound of eq [112] we see that any c ∈ Ω
we have that

∥q∥2
H1 ≤ 2A(q) + TB2;B = ∣q0∣ +

√
2A(q)T .

In particular, our minimizing sequence is eventually H1 bounded, and so has a
weakly convergent subsequence.

Lemma B.1. The inclusion H1 → C0 is weakly continuous.

Proof. Fix t ∈ [0, T ]. Then the evaluation map q ↦ q(t) is a linear map
H1 → E. It suffices to show that it is a continuous linear functional with a fixed
bound, independent of t. Indeed, from our basic inequality

∣q(t)∣ = ∣q(t) − q(0) + q(0)∣ ≤ ∣q(t) − q(0)∣ + ∣q(0)∣ ≤ ∥q̇∥L2 + ∣q0∣

Now from a + b ≤
√

2(a2 + b2), for a, b > 0 and Exercise A we have that ∣q(t)∣ ≤√
2L∥q∥H1 which is continuity of the linear map.

Returning to our minimizing sequence we have that a subsequence of {cn},
relabeled so as to be called cn, satisfies:

cn ⇀ c∗( weak-H1), and cn → c∗ (C0).

STEP 2. c∗ ∈ Ω. Indeed c∗ ∈ H1, and since cn → c∗ in the continuous topology
and cn(0) = q0, cn(T ) = q1 for all n, we have that c∗(0) = q0, c∗(T ) = q1.

STEP 3. A(c∗) = a.
Since c∗ ∈ Ω and since a is the infimum of A over Ω we have that A(c∗) ≥ a.

We show that A(c∗) ≤ a. For this it suffices to show that limnA(cn) ≥ A(c∗), since
a = limnA(cn).

Since V is continuous and cn → c∗ in C0 we have that the potential terms

converge: − ∫
T

0 V (cn(s))ds → − ∫
T

0 V (c∗(s))ds. To deal with the kinetic term we
need to use weak convergence. With this in mind, we set:

⟨⟨v,w⟩⟩ = ∫
T

0
⟨v̇(t), ẇ(t)⟩dt, v,w ∈H1.
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so that the integral of the kinetic term in the Lagrangian is

∫ K(ċ(t))dt = 1

2
⟨⟨c, c⟩⟩.

Now ⟨⟨⋅, ⋅⟩⟩ is “half” of the inner product (either one) which yields the H1 norm
squared. As a result, any c ∈ H1 defines a continuous linear functional h ↦ ⟨⟨c, h⟩⟩
on H1 (with the norm of this functional bounded by ∥c∥H1). Take c = c∗ and use
cn ⇀ c∗ to conclude that

{starstar}{starstar} (113) ⟨⟨c∗, cn⟩⟩→ ⟨⟨c∗, c∗⟩⟩.
Now the quadratic form ⟨⟨⋅, ⋅⟩⟩ is nonnegative so that

0 ≤ ⟨⟨c∗ − cn, c∗ − cn⟩⟩ = ⟨⟨c∗, c∗⟩⟩ − 2⟨⟨c∗∗, cn⟩⟩ + ⟨⟨cn, cn⟩⟩
Taking lim infs and using equation (113) we get that

0 ≤ −⟨⟨c∗, c∗⟩⟩ + ⟨⟨cn, cn⟩⟩
or

⟨⟨c∗, c∗⟩⟩ ≤ lim
n

⟨⟨cn, cn⟩⟩
It follows that the kinetic part of the action satisfies

∫ K(ċ∗(t)) ≤ ∫ K(ċn(t))

Combined with the result − ∫
T

0 V (cn(s))ds → − ∫
T

0 V (c∗(s))ds. we have proven
that A(c∗) ≤ a = limnA(cn).

QED for step 3.
STEP 4. The differential of a function A at a point c∗ in the direction h is

defined as

dA(c∗)(h) =
∂

∂ε
A(c∗ + εh)∣ε=0.

In our case

A(c∗ + εh) =
1

2
⟨⟨c∗ + εh, c∗ + εh⟩⟩ − ∫

T

0
V (c∗(t) + εh(t))dt

This first kinetic term is a bilinear expression and so the standard “differentiate a
dot product” rule holds and yields ⟨⟨c∗, h⟩⟩ for derivative. Since the expression c∗+εh
is smooth in ε and since V is C1 we can use the chain rule to differentiate the second
term, arriving at its differential is − ∫

T
0 dV (c∗(t))h(t)dt = − ∫

T
0 ⟨∇V (c∗(t)), h(t)⟩dt.

In sum:

dA(c∗)(h) = ⟨⟨c∗, h⟩⟩ − ∫
T

0
⟨∇V (c∗(t)), h(t)⟩dt.

showing that A is indeed differentiable at any path c∗ ∈H1, and that this derivative
is continuous as a function from H1 to its dual space H1 (use the weak topology
on the dual!).

Now set
Ω0 = {h ∈H1 ∶ h(0) = h(T ) = 0}.

This is a closed linear subspace of H1 and is the tangent space of the (affine) space
Ω. In particular, since c∗ ∈ Ω whenever h ∈ Ω0 we have that c∗ + εh ∈ Ω.

We now argue by contradiction that dA(c∗)(h) = 0 for all h ∈ Ω0. Suppose
not. Then there is an h ∈ Ω0 such that dA(c∗)(h) ≠ 0. By switching the sign of
h and scaling if necessary, we can assume that dA(c∗)(h) = −1. Taylor expanding
A(c∗ + εh) with respect to ε yields A(c∗ + εh) = A(c∗) − ε + O(ε2) = a − ε + O(ε2)
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which shows that we can lower the value of A(c) to below a while staying in Ω.
This contradicts the fact that A(c∗) = a is the infimum of A over Ω.

Remark. This step is the standard argument from first quarter calculus!
STEP 5. If dA(c∗)(h) = 0 for all h ∈ Ω0 then c∗ satisfies Newton’s equation

and in particular c∗ is C2. (!)
Remark. The “Euler-Lagrange equations” for L, which are precisely Newton’s

equations, express the condition dA(c∗)(h) = 0 for all h ∈ Ω0 assuming that c∗ is
C2. This existence of continuous 2nd derivatives is used to integrate [??] by parts
and so derive the Euler Lagrange equations. The main point in step 5 is that we
do not, a priori, know that the minimizer is C2 , so this integration by parts step
is illegal.

Remark. This last step is “elliptic regularity” in its simplest setting.
The proof of the validity of step 5 is based on the

Theorem B.1 (Fundamental Lemma of the Calculus of Variations). Write

⟨⟨v,w⟩⟩ = ∫
T

0 ⟨v̇(t), ẇ(t)⟩dt for v,w ∶ [0, T ] → E. If c∗ ∈ H1 and ⟨⟨c∗, h⟩⟩ = 0 for all
h ∈ Ω0 then ċ∗ is a constant path, and so c̈∗ = 0.

For alternate proofs and an enlightened, beautiful and exceptionally clear state-
ment around the Fundamental Lemma, please see p. 18 of the text by LC Young.

proof of the fundamental lemma. We use Fourier series. Since ċ∗ is
square integrable we can expand it as an L2 convergent cosine series:

ċ∗ = A0 +Σ∞
k=1ak cos(2πk/T );A0, ak ∈ E

with
⟨⟨c∗, c∗⟩⟩ = T ∣A0∣2 + (T /2)Σ∣ak ∣2

The functions sin(2πk/T ), k = 1,2, . . . all vanish at 0 and T , so, for any fixed

e ∈ E, we have that h(t) = sin(2πkt/T )e is a function in h ∈ Ω0. Now ḣ =
2πk/T cos(2πkt/T )e and, so, by the orthogonality of the cosines we have that for
this h:

⟨⟨c∗, h⟩⟩ = π⟨ak, e⟩
But by assumption, this latter is zero for all k = 1,2, . . . and all e ∈ E. It follows
that all the nonzero Fourier series ak of ċ∗ are zero and hence ċ∗ = A0 = const., as
claimed.

Proof of Validity of Step 5. We explain the logic, working backwards. If we

integrate Newton’s equations q̈ = −∇V (q) we get q̇(t) = − ∫
t

0 ∇V (q(s))ds+v0 where
v0 is a constant.

Set

G(t) = ∫
t

0
∇V (q(s))ds.

so that dG/dt = ∇V (q(t)). Use d
dt
⟨G(t), h(t)⟩ = +⟨∇V (q(t)), h(t)⟩ + ⟨G(t), ḣ(t)⟩

Integrate by parts, to obtain that

∫ ⟨G(t), ḣ⟩(t)dt = −∫ ⟨∇V (q(t)), h(t)⟩dt

where the boundary term vanishes upon integration by parts because h(0) = 0 =
h(T ). Set

β̇ = ċ∗ +G(t)
and observe that β ∈ H1. The condition dA(c∗)(h) = 0 for all h ∈ Ω0 now reads

⟨⟨β,h⟩⟩ = 0 for all h ∈ Ω0. By the Fundamental lemma, we have that β̇ = const. = v0,
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which means that ċ∗ = − ∫
t

0 ∇V (c∗(s))ds + v0 where v0 is a constant vector. Now
c∗ is absolutely continuous, and hence so is ∇V (c∗) and thus the integral G(t)
is differentiable with continuous derivative. This shows that ċ∗ is continuously
differentiable, with derivative equal to −∇V (c∗(s)), concluding the proof.

(!! Yay!! )



APPENDIX C

Braids, Homotopy and Homology

sec:topology
relegate this topological
section to an appendix.
(??) -RM

Two closed curves in a space X are said to be freely homotopic if you can
deform one into the other while staying within the space X. When defining the
fundamental group of X we fix a base-point x0 ∈ X and we insist that all loops
pass through x0 at time t = 0. An element of the fundamental group is a homotopy
classes of such a based loops. In free homotopy neither the loops nor the homotopies
need pass through the base point. The set of all free homotopy classes of loops
S1 → X is denoted [S1,X] and can be canonically identified with the space of
conjugacy classes of the group π1(X) when X is path-connected. This identification
is achieved by taking a free loop c ∶ S1 → X and adding to it a leg connecting the
base point to c(0), travelling c, and then returning to the base point by travelling
backward along the leg. [See figure]. In this way we get a composition of surjective
maps

π1(X)→ [S1,X]→H1(X).
‘ The last space is the 1st homology group of X with integer coefficients. The com-
position of these two maps π1(X) → H1(X) is a surjective group homomorphism
sometimes called the “Hurewicz map”. This map “Abelianizes” the fundamental
group by sending every commutator aba−1b−1 to 0 ∈H1(X).

Take X = CN ∖∆, the configuration space of the collision-free planar N-body
problem. Then PN = π1(X) is the pure braid group. The above sequence then
becomes

PN → [S1,CN ∖∆]→ Z(N
2
)

PN has (N
2
) standard generators, one for each pair ab of bodies, and denoted Aab

by Birman. A “tight binary” - a loop in which masses a and b make one full
counterclockwise revolution around each other while the other masses stay still
and far away represents this generator. Equivalently, this is a small loop in Cn
encircling the binary collision plane ∆ab ⊂ CN once, while avoiding all the other
binary collision planes of ∆ = ∪ij∆ij . Mapped to homology, these generators form

a standard integer basis for H1(CN ∖∆) ≅ Z(N
2
) and the winding numbers of edge

qa − qb realize the coefficients of the homology class of a loop q(t) relative to this
basis.

PICTURE
The usual braid group is related to the pure braid group via an exact sequence

1→ PN → BN → SN → 1

where SN is the symmetric group on N letters. SN acts freeling on CN ∖ ∆ by
interchanging mass labels and the quotient (CN ∖∆)/SN is the configuration space
of N indistinguishable but non-colliding particles. We have that BN = π1(CN ∖
∆)/SN). Generators of BN can be obtained by taking the square roots σab of the
standard generators Aab. The σab map to the element (ab) ∈ SN which transposes a
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and b. Not all are needed to generate. In the usual representation of the braid group
one just takes N − 1 of these (N

2
) generators, for example σi = σi,i+1, i = 1 . . . ,N − 1.

Instead of forming the quotient of Ê0 = CN ∖ ∆ by the group SN of particle
permutations we can form the quotient by the group of isometries and get shape
space, which we have seen deformation retracts onto CPN−2∖∆) The rotation part
of the group of isometries generates the center of the braid group. In this way
the sequence of spaces S1 → Ê0 = CN−1 ∖ ∆ → Shapespace leads to the sequence
of groups Z → PN → PPN ∶= PN /Z where Z = π1(S1) is the center of PN . This
sequence of spaces deformation retracts to the Hopf fibration S2N−3 → CPN−2,
with collisions deleted. Deleting any one of the binary collision planes allows us to
trivialize the Hopf fibration so that S2N−3 ∖∆ ≅ S1 × (CPN−2 ∖∆). It follows that

PN = PPN ×Z.
See corollary 3.4 of ?? USE: THE CENTER OF SOME BRAID GROUPS AND
THE FARRELL COHOMOLOGY OF CERTAIN PURE MAPPING CLASS GROUPS
YU QING CHEN, HENRY H. GLOVER AND CRAIG A. JENSEN. for an alter-
native proof of this fact regarding splitting the pure braid group.

Rotate a regular N gon one full revolution. Its vertices sweep out a pure braid
which generates the center of the braid group on N strands.

Definition C.1. The projective pure braid group, denoted PPN is the quotient
PN /Zof the pure braid group PN by its center Z, this center being generated by
applying a full rotation to the initial configuration of N points.

The Lagrange solution, projected to the shape sphere is trivial homotopically: it is
a constant loop. A loop in the shape sphere S2 represents a relative periodic curve:
a curve which closes up modulo a rotation. If that loop avoids the three binary
collision points ∆ then the curve upstairs in configuration space is collision free.
More generally we have

Lemma C.1. The projective pure braid group PPN is the fundamental group of
CPN−2 ∖∆ - the collision-free shape space for the planar N-body problem.

equivariant braids here? -
RM ******* to rewrite or delete:

for N = 3
The explicit form of this map can be expressed by realizing that the ‘tight

binaries’ - the loops where masses i and j circle each other once while all other
masses stay still - form a generator for PN . We will call these generators (ij).
(Birman [14] writes them as Aij .) For N = 3 they are subject to the single relation
(12)(23)(31) = Id. Now write an eclipse sequence in terms of generators. For
example 123123 = (12)(31)(23). To see where it maps to in homology, let the
generators commute: (12)(31)(23) = (12)(23)(31) which is trivial, being the class
of the identity which is zero in homology. This computation shows that the figure
eight’s class, represented by 123123, is homologically trivial, a fact which can also
be seen by drawing it on the shape sphere.



APPENDIX D

The Jacobi-Maupertuis metric

App: JM
The Jacobi-Maupertuis [JM] metric is a family of Riemannian metrics param-

eterized by energy E whose geodesics are almost in bijection with solutions to
Newton’s equations having energy E. We describe the metrics and their properties
here. We will focus some attention on the “almost” nature of this bijection which
concerns brake orbits and collisions and is rarely if ever treated in textbooks.

The JM trick works for any natural mechanical system (definition ??). Such a
system is specified by a Riemannian metric ⟨⋅, ⋅⟩ and a function V on a manifold Q.
Newton’s equations for the system are

∇q̇ q̇ = −∇V (q)
where ∇ is the Levi-Civita connection of the Riemannian metric. Newton’s equa-
tions are equivalent to Euler-Lagrange equations for the Lagrangian L =K −V and
to Hamilton’s equations for the Hamiltonian H =K+V which is the Legendre trans-
form of L. Here K is the kinetic energy for the metric is K(q, v) = 1

2
⟨v, v⟩q. The

Legendre transform for L is the metric induced isomorphism TQ→ T ∗Q. When we
wrote

H(q, p) =K(q, p) + V (q))
as being the Legendre transform of L we introduced an abuse of notation by using
the same symbol K for the quadratic form on T ∗Q induced by the cometric to
our metric. This other K is the Legendre-transform of the K original K ∶ TQ →
R. If we write the Riemannian metric in the traditional coordinate form ds2

K =
Σgij(x)dxidxj and if vi are the usual coordinate-induced fiber-velocity coordinates

according to v = Σvi ∂
∂xi

then K = 1
2
Σgij(x)vivj = 1

2
Σgij(q)pipj where gij(x) is

the matrix inverse to gij(x) and the Legendre transformation is pi = Σgij(x)vj .
Newton’s equations for the N-body problem form the model example of a natural
mechanical system. Then the metric is the mass metric and the potential is the
usual N-body potential.

Energy is conserved along solutions to Newton’s equations so that Hamilton’s
equations induces a flow on the constant energy hypersurface {(q, p) ∶ H(q, p) =
E} ⊂ T ∗Q. Since K ≥ 0 and E =K + V =K −U the projection of this hypersurface
to the configuration space Q forms the the Hill region, the domain

ΩE ∶= {q ∶ E +U(q) ≥ 0} where U = −V.
An energy E solution q(t) to Newton’s equations must lie in the Hill region.

def: Hill region Definition D.1. The region ΩE is called the Hill region for energy E.
The Hill boundary for energy E is the subset ∂ΩE ∶ {q ∶ E +U(q) = 0} ⊂ ΩE.
A brake orbit is an energy E solution q(t) to Newton’s equations which touches

the Hill boundary at some instant.
We allow U(q) =∞, calling these q’s “collision points”.
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The interior of the Hill region ΩE is the the locus {q ∶ 0 < E +U(q) <∞} ⊂ ΩE
so coincides with the Hill region minus the Hill boundary and the collision locus.

The JM metric at energy E is the the Riemannian metric

ds2
E = λEds2

K , with conformal factor λE(q) ∶= 2(E +U(q)).

and domain the interior of the Hill region.

Proposition D.1. Geodesics for the JM metric ds2
E at energy E are reparam-

eterizations of collision-free, brake-free energy E solutions to Newton’s equations.
The reparameterizaton is given by ds = λE(q(t))dt where t is Newtonian time t and
s is is the JM arclength.

The proof follows from a simple but powerful lemma in symplectic geometry.

Lemma D.1. Let (P,ω) be a symplectic manifold. Suppose that H,F ∶ P → R
are two smooth functions on P which share a common level set:

{H = cH} = {F = cF }

where the constants cH , cF are regular values for the respective functions so that
the shared level set is a smooth hypersurface in P . Then, on this hypersurface, the
solutions to Hamilton’s equations for H and for F are reparameterizations of each
other.

Proof of lemma. Recall that ω, being non-degenerate, defines a fiber linear
isomorphism T ∗P → TP . The Hamiltonian vector field XF of a function F on P is
obtained by applying this isomorphism to the one-form dF , according to ω(XF , ⋅) =
dF . It follows that if dF (ζ) = cdH(ζ) at some point ζ ∈ P and for some constant
c, then XF (ζ) = cXH(ζ).

Write Σ ⊂ P for the hypothesized common level set of the lemma. Since the
constants are regular values Σ is a smooth hypersurface whose tangent space at
ζ ∈ Σ is the kernel of dF (ζ) which is also the kernel of dH(ζ). It follows that
dF (ζ) = λdH(ζ) for some nonzero constant λ. Letting ζ vary we get a smooth non-
vanishing function λ ∶ Σ → R such that dF = λdH holds along Σ. It follows that
the identity XF = λXH holds along Σ, which proves the lemma, with the function
λ supplying the reparameterization. QED

Proof of proposition.
Apply the lemma with F being the Hamiltonian on T ∗Q whose geodesic flow is

that of the JM metric and H the Hamiltonian for our natural mechanical system.
Since F is defined by the inverse metric to ds2

JM we have that F = 1
λE
K or F =

1
2

1
λE

∥p∥2 where K = 1
2
∥p∥2 denotes the original kinetic energy on T ∗Q. (Strictly

speaking we ought to write ∥p∥2
q since the metric depends on q.) We now take

cF = 1/2 and cH = E and verify that the hypothesis of the lemma :

F (q, p) = 1

2
⇐⇒ ∥p∥2 = λE(q)

⇐⇒ ∥p∥2 = 2(E − V (q))
⇐⇒ K(q, p) = E − V (q)
⇐⇒ K(q, p) + V (q) = E
⇐⇒ H(q, p) = E
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It remains to verify that the conformal factor λE defines the reparameterization.
So let (q(t), p(t)) = ζ(t) be an energy E solution for H and (q(s), p(s)) = ζ(s) the
same solution curve reparameterized by arclength according to F = 1/2. According
to what we just proved we have that d

dt
ζ = f d

ds
ζ for some function f and the problem

is to find f . From Hamilton’s equations we have d
dt
q = g−1p where g−1 = g−1(q) is the

inverse of the kinetic energy metric. (In index notation q̇i = gijpj .) On the other
hand, from the geodesic equations, rewritten as Hamilton’s equations for F , the
Hamiltonian associated to the JM metric, we have that d

ds
q = 1

λE
g−1p. Comparing

these two ODEs for q we see that d
ds

= 1
λE

d
dt

or λEdt = ds.
QED
Brakes and the Hill boundary. From K = E+U we see that the conformal

factor λE goes to zero along an energy E solution q(t) precisely whenK(q(t), q̇(t)) =
0, which is to say, when q̇(t) = 0. At such an instant t the energy E-solution q(t)
has instantaneously stopped, or “braked”, hence the terminology “brake orbit”.
Since p(t) is related to q̇(t) linearly we also have p(t) = 0 at the brake instant.
If t = 0 is this brake instant then q(−t) = q(t) since both curves q(t) and q(−t)
solve Newton’s equations and have the same initial conditions at t = 0. The brake
solution instantaneously stops, pausing to turn around, and then retraces its path.
Differentiation yields q̇(−t) = −q̇(t) and so p(−t) = −p(t). Newtonian orbits that
touch the Hill boundary retrace their steps. A curve which retraces itself can never
be a geodesic – a locally minimizing curve - for any length structure.

Collisions. Along collision solutions to the N-body problem we have λE →∞
since U(q) → +∞ precisely at collisions. Typically there is no consistent way to
extend solutions through collisions. In special instances such as isolated binary col-
lisions for the gravitational N-body problem we may be able to analytically extend
the flow through collisions after forming a branched cover and reparameterizing
time.

0.1. Metric completions for JM metrics. Associated to a Riemannian
metric is a metric distance so we have a metric space structure on the interior of
the Hill region. Metric spaces can be completed. The completion is unique up to
isometry. What is the metric completion of the interior of the Hill region? Should
a dynamicist even care?

The completion of the JM metric will contain Hill boundary points if there are
any. It may contain collision points. It could contain added points “at infinity”.
We are most interested in the gravitational N-body problems and the power law
N-body problems which contain them and focus our questions on these. We refer
to the power law exponent as α. Thus U = Σmamb/rαab.

First recall the definition of the metric distance d(A,B) between points A and
B of a Riemannian manifold. We consider all paths joining A to B, take the infimum
of their lengths and declare that to be the disrtance d(A,B). If the manifold is
connected the result is a metric in the standard sense. In this way, we get the JM
distance function on the interior of the Hill region.

E ≥ 0: No Hill boundary. When the energy E is positive or zero in power
law N-body problems the corresponding Hill boundary is empty and the Hill region
is all of configuration space E regardless of the exponent α.

Collisions. If the exponent α ≥ 2 then paths which hit the collision locus
have infinite JM length, regardless of energy.
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If α < 2 then the Newtonian solutions ending in collision have finite JM length
regardless of energy. Hence we must add in the collision locus in order to complete
the metric space.

If E > 0 then paths heading out to infinity (r →∞) always have infinite length.
It follows that no points needed to be added at infinity when completing. So for
E > 0 and α ≥ 2 the Hill region minus collisions is complete relative to the JM
metric.

E = 0- parabolic case. For E = 0 and α ≥ 2 the radial paths extended all the
way to infinity have finite length since ∫ dr/rα/2 converges as r1 → ∞. Points at
infinity need to be added at infinty to complete the space. We have not investigated
the nature of this completion. For α < 2 the length to infiinity is infinite. We do
not need to add points at infiinity to complete.

E < 0: Dealing with the Hill boundary. When E < 0 the Hill boundary
is the non-empty smooth non-compact hypersurface {U = −E}. This hypersurface
is topologically isotopy to the boundary of a tubular neighborhood of the collision
locus ∆. As pairs of points tend to the Hill boundary their distances converge to
zero. We must add the Hill boundary to complete the metric space. But when
we do , we must also collapse the entire boundary to a single point assuming it
is connected. (In the case of the N-body problem in d-dimensions, d > 1, the Hill
boundary is connected.) For the metric ds2

E still makes sense on the boundary but
then all paths travelling along the boundary have zero JM-length so that the JM
distance function extended to the boundary yields that the distance between two
points of the boundary is zero. To reiterate: the extended distance function to the
Hill boundary is not a true distance fucntion but rather it is a semi-distance since
any two points on the Hill boundary have zero distance apart. 1

From a metric perspective there is only one way to proceed. Crunch the entire
Hill boundary to a single point. We call this point the Hill point. This ‘crunching”
is the standard procedure used to produce a metric space out of a semi-metric
space: identify all points a distance zero away from each other to a single point –
divide out by the equivalence relation of “being a distance zero apart”.

We now come to a rather surprising conclusion.

Proposition D.2. Consider the gravitational N-body problem with energy E <
0. Then the completion of the JM metric in the interior of the Hill region forms a
non-compact complete metric space structure on the entire Hill region with the Hill
boundary collapsed to a point called the Hill point. All points are a finite distance
D from the Hill point so that, in particular the space is bounded, no points being
further than 2D apart.

Question. When N = 3 is it true that this maximum distance D from the Hill
point is realized by the triple collision point and that D is the JM length of the
energy E Lagrange collision orbit ?

Remark. The same conclusion holds for negative energies and power law N-
body problems with exponent α in the range 0 < α < 2 and with the bodies moving
in a Euclidean space of dimension d > 1. For α ≥ 2 when we complete we exclude
the collision locus since its points are infinitely JM-distant from any point in the
interior of the Hill region.

1By a semi-distance on a set Ω we mean a function d ∶ Ω×Ω→ R which satisfies all the axioms
of a metric except the one which says d(A,B) = 0 iff A = B.
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.....
from the Hill region and the JM metric continues to be complete. .

complete in the zero or
positive energy case...
NOT in negative energy!
For then any point can
be connected to the Hill
point by a finite length
path whose length is
bounded, roughly by
the Kepler problems at
infinity. So the entire
metric space is finite di-
ameter. A finite diameter
locally compact complete
metric space is compact.
To make the negative
energy space compact
must attach two-discs at
each end corresponding
to the Kepler problem
there -RM

In all cases we arrive at a complete metric space on the Hill region. When

Nope! not for negative
energies! For neg energy
have to add these Kepler
discs at infinity -RM

E ≥ 0 the Hill boundary is empty so we do not have to worry about it. If E < 0
and d > 1, the Hill boundary forms a single component which we crunch to a point.
If the power law has α < 2, as is the case with gravity, then we must include the
collision locus in order for the metric space to be complete.

0.2. Geodesics through collisions or the Hill boundary. Do geodesics
extend through the added points? We will show that geodesics can be extended
through the Hill point, but these extensions have essentially nothing to do with
Newtonian dynamics. On the other hand we will see that geodesics cannot be
extended through a collision, although by Levi-Civita the dynamics can be extended
through isolated binary collisions.

We recall the notion of “geodesic” on a general metric space. See [?] for de-
tails. On any metric space (M,d) one can define the length `(γ) of a continuous
path γ ∶ [a, b] → M by means of “polygonal approximations”. The length may be
infinite. If A = γ(a) and B = γ(b) then d(A,B) ≤ `(γ). We call γ a minimizing
geodesic when equality holds: d(A,B) = `(γ). We call M a geodesic length space
if there is a minimizing geodesic joining any two points of M . The Hill region for
the gravitational N-body problem, endowed with the JM metric, with boundary
collapsed to a point when E < 0 has the structure of a geodesic length space 2 .

A curve can be a metric geodesic without being a minimizing geodesic. Think
about great circles on the sphere. In order to define “geodesic” for general metric
spaces we first talk about arclength parameterization. A curve is called rectifiable if
its length is finite. Rectifiable curves can be reparameterized by arc length. When
a minimizing geodesic is parameterized by arclength we find that it provides an
isometric embedding of its domain into M , so that , in particular d(γ(a), γ(b)) =
b−a. A geodesic is a curve in M parameterized by arclength for which all sufficiently
short subarcs of the curve are minimizing geodesics. For example, if the domain of
γ is all of R so that γ ∶ R →M , then we say that γ is a geodesic if for every t0 ∈ R
there is an ε = ε(t0) > 0 such that the restriction of γ to the interval [t0 − ε, t0 + ε]
is a minimizing geodesic between its endpoints: d(γ(t0 − ε), γ(t0 + ε)) = 2ε.

It can happen that on a complete geodesic length space certain geodesics cannot
be extended. For example a closed bounded strictly convex domain in Rn with its
metric inherited from the Euclidean metric is a complete geodesic length space.
Any geodesic (line segment) which hits the boundary cannot be extended beyond
the boundary point as a curve in the domain and remain a metric geodesic.

JM Marchal theorem ... Lemma 1. [Jacobi-Maupertuis Marchal?s lemma]
Given two points q0 and q1 in the Hill region for some energy E, a minimizing JM
geodesic for this energy exists which connects the two points and which is collision
free except possibly at one or the other of the endpoints. If this geodesic arc touches
the Hill boundary at some point besides the endpoints then it hits the Hill point
exactly once and is the the projection of the concatentation of two brake orbits and
a zero length ‘instantaneous’ curve lying on the Hill boundary.

2One defines a metric “length space” by putting the length functional first, as in Riemann-
ian geometry, and derives the distance function d out of the length functional. See [?] for an

axiomatization of “length functional” and length space.
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A JM version of the Marchal lemma holds. See ??XUU. This means that
JM geodesics ending in collision cannot be continued through collision and remain
geodesics.

The celebrated Hopf-Rinow theorem asserts that a Riemannian manifold with-
out boundary is complete in the metric space sense if and only if its geodesic flow
is complete. The JM metric, extended to collisions, the Hill boundary (crunched
to a point), and, in the negative energy case, to the ‘Kepler boundaries” at infinity
is complete, but fails to be Riemannian at the added points. We have seen that
JM geodesics correspond to solutions to Newton’s equations in the interior of Hill
region. Do these geodesics continue as geodesics through all the points we’ve added
when we complete the Hill region ?

The answer depends on what we take “geodesic” to mean. If we take the strict
metric meaning of geodesic, which we will review momentarily, then the answer is
“no” for collision points, and ‘yes’ for the Hill point. On the other hand, if we take
the dynamical meaning of geodesic as solutions to a “geodesic equation” i.e. to
Newton’s equations (appropriately regularized), then the correct answer appears to
be “yes” for isolated binary collision points in the gravitational N-body problem,
“no” for all other collision points, and “yes” for the Hill boundary points. But
the dynamically extended geodesics through the Hill point do not agree with the
metric extended geodesics as we will see.

Proposition D.3. Any JM geodesic ending in collision cannot be extended
beyond collision and remain a metric geodesic

This proposition is a JM version of the Marchall lemma (3.3) so crucial for
applying the action minimization techniques to the problem of chapter 3. For a
proof see [104].

On the other hand, as far as hitting the Hill boundary we have

Proposition D.4. Every geodesic hitting the Hill boundary can be extended to
remain a metric geodesic. There are a continuum of such extensions corresponding
to all brake orbits distinct from this geodesic. None of these geodesic extensions solve
Newton’s equations. Only the original geodesic, viewed as a brake orbit, folding back
on itself, satisfies Newton’s equations and this unique Newtonian extension is not
a metric geodesic.

Proof. Take such a geodesic γ1(t) with brake instant t = 0. Take any other
brake orbit γ2(t) with brake instant t = 0 and distinct γ1(t). Being distinct, we
have γ1(0) ≠ γ2(0) as points in configuration space. The concatenation of γ1 for
t ≤ 0 with γ2(t) for t ≤ 0 projects to a continuous curve c(t) upon crunching the
Hill boundary to a point, this point being c(0). For ε small enough c([−ε, ε]) is a
minimizing geodesic. The best (= JM shortest) way to get from γ1(−ε) to γ2(ε) is
to head straight to the Hill boundary along γ1, travel the boundary for no penalty
– all paths have zero length on the boundary – to γ2(0), and then head straight
back out to γ2(ε) along γ2. The unique dynamical extension of γ1 is γ1 itself - the
brake orbit turns back on itself according to γ1(−t) = γ1(t). A path which retraces
itself cannot be locally minimizing in any neighborhood (−ε, ε) of the turnaround
point, i.e. the brake instant so that the dynamical extension fails to be a geodesic
in the metric sense.

QED
blah blah blah:
a few words on the discon-
tinuous solutions of Tod-
hunter; related to what
are called ‘turnpike’ op-
timal paths in economic
theory. ‘Turnback” and
that other long Kepler pa-
per [154], [155], [118]
a paragraph on seifert’s
paper and his trick [?],
[138] -RM



APPENDIX E

One-degree of freedom and central scattering

App: Scattering
1. Radial motion as a one-degree of freedom system

In this appendix we gather well-known facts regarding one-degree of freedom
motions and apply them to scattering for central potentials, which is to say, to
two-body classical scattering problems.

By a one degree of freedom system we mean a one-dimensional Newton equation
ẍ = −V ′(x) where x ∈ R. The associated energy E = 1

2
ẋ2 + V (x) is constant along

solutions. In the phase space, whose coordinates are x, ẋ, solutions trace out contour
level sets of energy.

One-degree of freedom systems arise within two-body problems where they have
x = r = r12 the distance between the two bodies. If we fix the angular momentum
J and work in the center-of-mass frame then the two-body energy is

{eq: radial energy}{eq: radial energy} (114) E = 1

2
ṙ2 + 1

2

J2

r2
− f(r)

where f(r) is the negative of the two-body potential. The corresponding central
force equation for the evolution of q = q1 − q2 is q̈ = f ′(r) q

r
. See section 0.2. The

function

{eq: effective potential}{eq: effective potential} (115) VJ(r) ∶=
1

2

J2

r2
− f(r)

is called the effective potential and plays the role of the one-degree of freedom
potential V (x). In particular, r evolves by r̈ = −V ′

J(r).
We can qualitatively understand everything about a one-degree of freedom

system by simply graphing the potential V (x) versus x. We then fix any energy
value E of interest, draw the horizontal line V = E and use the graph to mark out
the intervals of the x-line where V (x) ≤ E. We call these the Hill intervals associated
to the energy E. Since ẋ2 ≥ 0 and E is constant, the solutions x(t) having energy
E are constrained to move within these Hill intervals. The endpoints of a Hill
interval satisfy V (x) = E which means that ẋ = 0 there. If we choose the time
origin so that t = 0 when ẋ = 0 then one has x(−t) = x(t) and ẋ(−t) = −ẋ(t) and for
this reason the Hill endpoints are also called “turning points”. If a particular Hill
interval is compact and both its endpoints are regular points for V (x),meaning that
V ′(x) ≠ 0, then the solution x(t) shuttles back and forth between these endpoints.
The solution is periodic, with the period equal to twice the time required to pass
from one turning point to the other. When the Hill interval is a half-line [a,∞)
with V (a) = E and V ′(a) < 0 then the solution come in from infinity, hits the
turning point x = a and turns around, retracing its steps to infinity.

Let us see how this one-degree-of-freedom analysis pans out for the Kepler

problem. Then VJ = 1
2
J2

r2
− µ
r

. The graph of VJ is shown in FIGURE 1with J = 1 and
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Figure 1. The graph of an effective potential arising in the Kepler
problem. Here VJ(r) = 1/r2 − 2/r. The black horizontal interval
represents a chosen negative energy value with corresponding so-
lution. The purple is a positive energy value with corresponding
unbounded, or scattering orbit. fig: KeplerEffectiveB

µ = 2. The effective potential has a global minimum when J ≠ 0, this minimimum
occuring at r = r0. If E < Vmin then the Hill interval is empty. When E = Vmin
the Hill interval is the single point r0 which is a stable equilibrium for the one-
dimensional dynamics and represents the circular Kepler orbit at that energy. For
Vmin < E < 0 the Hill interval is a bounded interval containing the circular radius
r0 and the turning points are the perihelion and apihelion radii rmin and rmax
of the corresponding Kepler ellipse. When E ≥ 0 the Hill interval is a half-line,
representing parabolic or hyperbolic motion.

Exercise E.1. Show that the radial motions for power law potentials f(r) =
1/rα having 0 < α < 2 and J ≠ 0 are qualitatively the same as those of Kepler.
That is, when J ≠ 0 the negative energy solutions r(t) are oscillatory, with r shut-
tling back and forth between apicenter rmin and pericenter rmax, while when E ≥ 0
the solutions ‘scatter’: they come in from infinity, hit an apicenter and return to
infinity.

For the strong force case of α > 2 the situation is, in a way, the reverse of the
previous 0 < α < 2 case. In figure 2 we graphed the effective potential for such a
case,namely α = 4 so that f(r) = r−4, µ = .6 and J2 = 2. When α > 2 and when
J ≠ 0 we that VJ now has a unique global maximum Vmax = V (r0) instead of a
unique global minimum and is unbounded below instead of above. Only for energy
E = Vmax are the solutions bounded and collision free. Here the Hill interval is the
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single point r0 which is an unstable fixed point for the one-dimensional dynamics,
representing a circular orbit. If E > Vmax all solutions come in from infinity and hit
total collision r = 0, or, are the time reversal of such an orbit. One can verify that
they spiral infinitely often on the way to collision. If E < 0 then the Hill interval
is of the form (0, a] and all solutions end at total collision and reach a finite size
corresponding to a > 0. For 0 < E < Vmax there are two Hill intervals, one ending in
collision at r = 0 and the other of scattering type, with a finite nonzero perihelion.

Figure 2. The graph of the effective potential VJ(r) = 2/r2−.6/r4

arising in the α = 4 strong central force problem when µ = .6 and
J2 = 2. The purple horizontal lines represent various energy levels
with corresponding solutions indicated. The top line goes from
infinity to collision, or the reverse. The intermediate energy level
splits into two Hill intervals, one ending in collision and bounded,
the other coming in from infinity and returning to infinity. The
bottom energy level is bounded and ends in collision. fig: strongForceEffective
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The case α = 2 is special among the power law potentials. Here the two terms of
VJ balance. Indeed, by choosing J2 = µ they cancel and we get a family of circular
periodic orbits all having zero energy.

2. Scattering

Here we substantiate the 3rd claim of section 4.3 regarding 2-body scattering
for power law potentials by using some one-degree-of-freedom tricks and the JM
metrics for zero energy.

Proposition E.1. Consider positive energy dynamics for a power law potential
with exponent α satisfying 0 < α < 1. Then the image of a beam under the scattering
map for the corresponding central force law q̈ = − q

rα+2 in the plane is a circular arc
of arclength 2πα/(2−α) which is centered on the ‘undeflected’ ray which travels in
the beam direction. If 1 < α < 2 the scattered image of the beam covers the entire
circle and then some: some directions are hit more than once. As α → 2 the circle
is covered more and more times, so that in the limit α → 2 each direction is covered
infinitely many times.

The angular momentum for a central force problem, after normalizing units,
satisfies J = r2θ̇, so that

dθ

dt
= J

r2

Solve the energy equation (114) for the radial velocity to get

dr

dt
= ±

√
2(E − VJ(r),

with the + sign valid for the branch of r(t) receding from the origin and the − sign
for the branch coming in towards the origin. Dividing the equation for dr/dt by
that for dθ/dt we get an equation for dr/dθ valid along one branch or the another.
Integrating this equation for dr/dθ, and paying attention to signs we get, in the
unbounded case,

∆θ(E,J) = 2∫
∞

rmin

J/r2

√
2(E − VJ(r)

dr

for the total change in angle ∆θ = ∆θ(E,J) suffered in travelling along the tra-
jectory labelled by E and J from t = −∞ to t = +∞. In the integral rmin is the
pericenter or turn-around point, that unique value of r for which E − VJ(r) = 0.
Note that ∆θ is the angle between the two asympotic positions, limt→−∞(q(t)/r(t))
and limt→+∞(q(t)/r(t)). In particular, ∆θ = π corresponds to straight line motion.
In the Kepler case, this angle ∆θ is the (signed) angle between the asymptotes of
Keplerian hyperbola, with both asymptotes oriented to point outwards.

Recall from Rutherford scattering, 4.1 in chapter 4, the meaning of the impact
parameter b. If we turn the force off , angular momentum is still conserved, and
from this we see by a quick sketch or by an inspection of the relation J = q ∧ q̇ as q
tends to infinity along a line that

J = b.
Henceforth we use b in place of J . Choose the x-axis along the beam direction,
with the rays of the travelling towards the origin, coming in from infinity , head-
ing in the direction (−1,0) of the negative x-axis. Reflection about the x-axis
maps solutions to solutions, preserving the beam direction and hence maps the
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entire beam’s worth of trajectories to itself, acting on the impact parameter by
b → −b. Reflectional symmetry implies that ∆θ(E,−b) = −∆θ(E, b). As b →∞ the
corresponding trajectories tend to straight lines, undeflected by the central force
providing f(r)→ 0 sufficiently quickly as r →∞. The power laws for α > 0 all decay
sufficiently fast. Since ∆θ = π for straight lines this yields limb→±∞ ∆θ(E, b) = π.
Reflectional symmetry implies that the arc swept out by the scattering map is re-
flectionally symmetric, so of the form (π −∆ψ,π +∆ψ). The midpoint of the arc
is the angle π corresponding to the straight undeflected lines which correspond to
b = ±∞.

The ray b = 0 corresponds to the solution with angular momentum zero and
is the unique trajectory in the beam which ends in collision when f(r) = r−α with
0 < α < −2. This collision trajectory associated to b = 0 splits the beam into two
connected half-beams, one having b > 0 and the other having b < 0. Reflection
symmetry shows that if the scattered image of one half beam is an arc (π,π +∆ψ)
then the the other half beam has scattered image equal to the arc (π −∆ψ,π).

If, as is the case with power laws, the potential f(r) is strictly monotone in r,
then ∆θ(E, b) is a strictly monotone function of b in either half-beam. It follows
that the endpoints π ±∆ψ of the scattered arc are characterized by

∆ψ(E) = lim
b→0±

∣∆θ(E, b) − π∣.

We will see momentarily that for power law potentials limb→0+ ∆θ(E, b) is indepen-
dent of the energy E as long as E is positive. Knauf and Krapf in [72] explicitly
compute

{KKlimit}{KKlimit} (116) lim
b→0+

∆θ(E, b) = 2π

2 − α, f(r) = r−α

by taking limits of integrals for power laws f(r) = r−α of the integral expression
(??) for ∆θ(E, b) (See their equation (4.6).) As a consequence of their computation

{eq: limit scattering}{eq: limit scattering} (117) ∆ψ(α) = π α

2 − α.

from which it follows that the overall size of the arc scattered into is 2∆ψ = 2π α
2−α .

as claimed.
Figure 3 summarizes the situation described in the last few paragraphs for the

particular case of α = 1/2 for which ∆ψ(1/2) = π/3.
We will compute ∆ψ(α) by a different means, taking advantage of the fact that

the zero energy JM metric is conical for power-law potentials.
Scaling. In the first step of this computation we use scaling to trade b → 0

with E → 0. Recall the scaling symmety q(t) ↦ λq(λ−βt) where β = 1 + α/2. (See
3.4.) Scaling a solution does not change its limiting direction but changes its energy

and angular momentum scale according to (E,J) = λ−αE,λ1−α/2J). It follows that

∆θ(λ−αE,λcb) = ∆Θ(E, b), c = 1 − α
2

It follows immediately from this scaling law that the image of the scattered beam
does not depend on energy as long as the energy is positive. Scaling symmetry
yields that ∆θ(1, λc) = ∆θ(λα,1), or, more generally ∆θ(E∗, λ

cb∗) = ∆θ(λαE∗, b∗)
for any positive constants E∗, b∗. Now let λ → 0 and use that α, c > 0 to conclude
that

limE→0+∆θ(E, b∗) = lim
b→0

∆θ(E∗, b)
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Figure 3. The right panel shows a half beam being scattered by
an attractive central force power law f(r) = r−1/2. The left panel
shows the arc of the circle resulting from the scattering map applied
to this half beam, its image being half of the scattered image of
the full beam. fig: halfbeam

for any E∗, b∗ > 0. This common limit is the desired angle of equation (116).
Now in the scaling limit E → 0 our entire beam (now with spatial scale λ

growing according to the relation λ−α = E → 0) limits to a beam of trajectories for
the zero energy problem. At zero energy all solutions except the collision solution
b = 0 suffer the same overall deflection and this angle is again the desired limiting
angle limb→0 ∆θ(E, b) which we want to compute.

Step two. Reduction to conical geometry.

Lemma E.1. The Jacobi-Maupertuis metric at zero energy for the power law
potential whose negative is U(q) = f(r) = r−α is isometric to the cone metric dρ2 +
c2ρ2dθ2 where c = 1 − α/2. This result is valid as long as c ≠ 0.

Proof. In standard r, θ polar coordinates the JM metric is

ds2
JM = r−α(dr2 + r2dθ2) = r−αdr2 + r2−αdθ2.

We can put this metric into the form dρ2 + f(ρ)2dθ2 by a change of variables r → ρ

defined by imposing r−αdr2 = dρ2. Thus dρ = r−α/2dr. The change

ρ = 1

c
rc

does the trick, with c as given in the lemma. Note that ρ2 = 1
c2
r2c = 1

c2
r2−α or

r2−α = c2ρ2. This last is our “f(ρ)2”. We have put the metric into the form

ds2
JM = dρ2 + c2ρ2dθ2,

that of the cone over a circle of circumference 2πc as claimed. QED
The further change of variables

ψ = cθ
puts the metric into the form:

ds2
JM = dρ2 + ρ2dψ2

which is that of the flat Euclidean metric on the plane if (ρ,ψ) are standard polar
coordinates on that plane.
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We summarize our change of variables:

1

c
rc = ρ(118)

cθ = ψ(119)

c = 1 − α/2(120)

This change can be summarized by w = 1
c
zc if we set z = reiθ and w = ρeiψ.

Henceforth we will refer to the flat model as the “w-plane.
As θ varies from 0 to 2π, the angle ψ varies from 0 to 2cπ. Thus the JM metric

is isometric to that of a cone for which the circle of radius ρ = 1 about the cone point
is a circle whose circumference is 2cπ. Such a circle can be constructed by a “paper
and scissors” construction from the Euclidean plane by cutting out the interior of
an angle with the complementary opening 2π − 2cπ and gluing the bounding rays
togethter . SEE FIGURE ...

Geodesics and Scattering.
In figure 4 we have drawn the flat w-plane with a geodesic - a line - and several

congruent ‘fundamental domains” corresponding to the sectors of angle 2cπ. The w-
plane metric is flat so its geodesics are standard lines. Appropriately interpreted,
these lines project to the geodesics of our JM cone metric. Choose k congruent
sectors sharing rays so as to cover a half-plane containing the line, so roughly
k ∼ 1/c sectors will do, one if c ≥ 1/2. The metric cone is then the quotient of
the large obtuse sector made from the k sectors by identifying points in different
sectors by the appropriate multiple of the rotation w ∼ eic2πw. In this way, we
see the whole line and can visualize its wrappings around the cone, rather in the
style that one investigates trajectories by square billiard table problems by tiling
the plane.

These w-lines, being geodesics correspond to the zero energy solutions for the
r−α central force problem. Any line in the w- plane which does not pass through
the origin represents a JM geodesic for which b ≠ 0. The scattering angle for any
such line is π. Indeed, take the line X = t, Y = y0 ≠ 0 where w = X + iY and
look at the change in angle ψ as suffered in travelling from t = −∞ to t = +∞ is
π. (Rotational invariance implies that this angle does not depend on the choice of
line.) Remember this is the overall ψ-angle suffered.

But the scattering angle described in equation (116) is the overall change in
the angle θ suffered when travelling from t = −∞ to t = +∞, while what we just
described is the overall change in ψ. Since θ = ψ/c we have that the overall angle
suffered by θ is π/c which is equal to 2π/(2 − α), thus establishing equation (116).

QED

CASE OF KEPLER, α = 1 underlined next...
....
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Figure 4. The cone over a circle of circumference 2πc is realizes
as a quotient of any k sectors glued by rotation by the angle 2πc.
We choose k large enough so that the sectors cover a half-plane
containing a straight line which induces a geodesic on the cone. fig: alphaConemetric
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indéfiniment, Ann. Sci. École Norm. Sup. (3), 29–130, (1922). http://www.numdam.org/

item?id=ASENS_1922_3_39__29_0

193

http://www.aimsciences.org/article/doi/10.3934/jgm.2020012
http://www.aimsciences.org/article/doi/10.3934/jgm.2020012
https://arxiv.org/abs/2002.00649
http://link.springer.com/article/10.1007%2Fs10569-012-9431-1
http://link.springer.com/article/10.1007%2Fs10569-012-9431-1
http://arxiv.org/abs/1305.3191
http://annals.math.princeton.edu/2012/176-1/p10
http://annals.math.princeton.edu/2012/176-1/p10
http://link.springer.com/article/10.1007%2Fs002220050200
 http://www.numdam.org/item?id=ASENS_1922_3_39__29_0
 http://www.numdam.org/item?id=ASENS_1922_3_39__29_0


194 BIBLIOGRAPHY

[19] Chen, K-C., (2003),Variational methods on periodic and quasi-periodic solutions for the

N-body problem Ergod. Th. & Dynam. Sys. 23, 1691?1715

[20] Chen, K-C., Ouyang, T., and Xia, Z., (2012)Action-Minimizing Periodic and quasi-periodic
solutions in the n-body problem Math. Res. Lett. 19 , no. 02, 483?497
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de masses égales dans R3: orbites hip-hop Cele Mech. Dyn. Astronom., 77, 139-152, (2000).

[26] Chierchia, L. and Pinzari, G. , The planetary N-body problem: symplectic foliation, reduc-
tions and invariant tori. Invent. Math. 186, no. 1, 1?77, (2011).

[27] Deprit A. and Delie, A. Régularisation du problème des trois corps, Arch. for Rat. Mech.,

12, 325-353, (1962).
[28] Deprit A. and Delie, A. Courbure de la métrique riemannienne du probème plan des trois

corps Bull. Cl. Sc. Acad. Belg. , no. 5, 48, 652-658, (1962).
maybe delete first two De-
prit refs; unused -RM [29] A. Deprit and A. Deprit-Bartholome, Stability of the triangular lagrangian points The As-

tronomical Journal, 72, 173–179, (1967).

[30] N. Duignan and H. Dullin On the C8/3 -regularisation of simultaneous binary collisions in
the planar four-body problem Nonlinearity, 34, (7), 4944-4982(2021).

[31] Duistermaat, J.J., Symplectic Geometry, Course Notes, Summer Course, 2004.

[32] H.Dullin and J. Scheurle, Symmetry reduction of the 3-body problem in R4, Journal of
Geometric Mechanics, (in print, accepted 20 Nov 2019), arXiv:1908.04496.b

[33] Einstein, A. (1945), The Meaning of Relativity, (2nd ed.). Princeton, N.J.: Princeton

University Press.
[34] L. Euler, De motu rectilineo trium corporum se mutuo attrahentium, (1765).
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hyperbolic, solutions, 136

impact parameter, 132

invariable plane, 37

Jacobi vectors, 42

KAM stable, 88

Kepler’s Laws, 38

Kepler’s problem, 37

Lagrange-Jacobi identity, 45

Legendre transform, 116, 148

Lyapunov stable, 81

Marchal’s lemma, 117

mass inner product, mass metric, 39

mass matrix, 33
minimizing sequence, 113

Newton’s equations, condensed form, 39

non-resonance condition, 89

phase space, 33

potential, normalized, 46

rank, 67

rank of a configuration, 67
relative braid type, 102

relative equilibrium, 61

relative periodic, 43
relatively periodic, 45

scattering map, full, 135
stable, elliptic, 85

stable, KAM, 88

stable, linearly, 85
strong force, 107

stutter, 105

time circle, 109

unbounded, 45

virial identity, 45
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