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Stopped processes

Let X be a one dimensional uniformly elliptic diffusion starting at x > L .
Consider τ := inf{t > 0; Xt = L}.
Question: Is it possible to give meaning to ∂xXT∧τ? (First consider the case
τ > T for boundary type effects)
Some preliminary information:
I Airault, Malliavin and Ren (1999) prove that Malliavin derivatives of order

1/2 of stopping times do not exist.

I The killed semigroup Pt f (x) = E
[
f (XT )1(τ>T )

]
with f (L ) = 0 is smooth

I A discretized IBP formula for ∂xPt f (x) was obtained in joint work with N.
Frikha (Paris-Diderot) and L. Li (Australia).

•What to expect:
I We need to change the notion of derivative: (You expect
∂xE [f (XT )] = E [f ′(XT )ET ])

∂xE
[
f (XT )1(τ>T )

]
= E

[
f ′(YT )ET

]
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•What to expect:
I The derivative of the killed process is a pair (Y ,E) such that for any

f ∈ C1
b with f (L ) = 0, we have

∂xE
[
f (XT )1(τ>T )

]
= E

[
f ′(YT )ET

]
I In fact, it is not difficult to expect that Y has to be a reflected process.

Densities of stopped (reflected ) BM with no-drift !! :

gt (y − x)
Xt
−/+

Yt

gt (y + x − 2L ), y ≥ L

gt (y) =
e−

y2

2σ2 t

√
2πσ

When applying ∂x to the above expression there is a change in sign!



1-dim with no drift: the symmetric case

Xt =x +
∫ t

0
σ(Xs)dWs ,

Yt =x +
∫ t

0
σ(Ys)dWs + Bt ,

Et =1 +
∫ t

0
σ′(Ys)EsdWs .

Some ideas about the proof:
I Use approximations, do the calculations (hope for the best) and use at

the end Mémin, Jakubowski, Pagès (or the contemporary version for
sde’s in Kurtz, Protter). We prefer this argument because it is easier to
generalize.

I It is essential to consider 1(τ>T ) in E
[
f (XT )1(τ>T )

]
as a change of

measure (see Gobet) that goes from stopping into reflection.



some details
Consider the EM approximation Xn

i and Ui ∼ U(0, 1), iid. τn is the st. time for
the continuously interpolated EM

E
[
f (Xn

T )1(τn>T )

]
=E

[
f (Xn

n )Mn
n
]

Mn
j =

j∏
i=1

1(Ui>pi )

pi := exp
−2

(Xn
i − L )(Xn

i−1 − L )

σ2(Xn
i−1)(ti − ti−1)


Now differentiate the MChains and the “change of measure" Mn, rearrange
and take limits

∂xE
[
f
(
Xn

n
)
Mn

n
]

= E
[
f ′

(
Xn

n
)
En

n M̄n
n

]
Here M̄n

j =
∏j

i=1(1 + 1(Ui≤pi )) gives the reflecting process. The limit is

∂xE[f (XT )1(τ>T )] = E
[
f ′(YT ) exp

(∫ t

0
σ′(Ys)dWs −

1
2

∫ t

0
σ′(Ys)2ds

)]
.



The drift case: Non-symmetric case

• Most people, would say that the general case is finished after Girsanov and

smooth transformations in multi-dim.

Define hi = bi
σi

1(Ui≤pi )

∂xE
[
f
(
Xn

n
)
Mn

n
]

= E
[
f ′

(
Xn

n
)
En

n M̄n
n

]
+

n∑
i=1

E
[
fi
(
Xn

i

)
En

i−1hiM̄n
i

]
.

Solve the following linear equation for Pt f (x) = E[f (XT )1(τ>t)]

∂xPT f (x) =E[f ′(YT )ÊT ] +
b
a

(L )E
[∫ T

0
∂xPT−s f (L )ÊsdBs

]
Êt =1 +

∫ t

0
Ês

(
b ′(Ys)ds + σ′(Ys)dWs +

b
σ2

(L ) dBs

)
.

Actually, Girsanov for the killed process with drift and its approximation is
natural while for reflected processes with drift is not.
Here the proof is more involved as it requires the analysis of convergence of
the honest time ρt .
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Two theorems in 1-dim

Theorem
Let f ∈ C1

b then ∂xPt f (x) = E[f ′(YT )ET ] where

Et =1 +
∫ t

0
Es

(
b ′(Ys)ds + σ′(Ys)dWs + 2

b
σ2

(L ) dBs

)
.

Theorem
Let f : [L ,∞)→ R be a measurable and bounded function such that f (L ) = 0 .
Then for τ(s) := inf{u > s : Ys = L}, we have

T∂xPT f (x) = E
[
f (YT )

∫ T

0
1(τ(s)>T )Esσ

−1(Ys)dWs

]
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